Dispelling the Myth Surrounding Maxwell's Displacement Current, and Its Applications in Triboelectric Nanogenerators for Energy Harvesting

Victor Christianto^{*1}, Florentin Smarandache²

¹Malang Institute of Agriculture (IPM), Malang, Indonesia. Founder of www.ketindo.com *Email: victorchristianto@gmail.com. URL: http://researchgate.net/profile/Victor_Christianto ²Dept. Mathematics and Sciences, University of New Mexico, Gallup – USA. Email: florentin.smarandache@laposte.net

Abstract

In recent years, there are growing number of proposals to use a novel concept of energy harvesting using nanogenerators. This concept can be used for water wave energy harvesting, wind energy harvesting, but also for self-powered microdevices. This novel concept is based on the reality of Maxwell's displacement current. On the other hand, such a displacement current has been debated for many years: whether it is real or just a mathematical entity. This paper is intended to dispelling the myth surrounding the reality and correct interpretation of displacement current based on on Maxwell's electromagnetic theory. We also briefly discuss a plausible extension of Maxwell equations based on vortex sound theory of Prof. Tsutomu Kambe. It is our hope that discerning the myth from reality is very important step toward tapping and harvesting energy from the hidden electromagnetic structure in Nature.

Key Words: Maxwell electromagnetic theory, displacement current, piezoelectric nanogenerator, triboelectric nanogenerator, vortex sound theory.

1. Introduction

In a series of recent papers, Wang discusses possible applications of a novel concept for energy harvesting called triboelectric nanogenerators. Self-powered system is a system that can sustainably operate without an external power supply for sensing, detection, data processing and data transmission. Nanogenerators were first developed for self-powered systems based on piezoelectric effect and triboelectrification effect for converting tiny mechanical energy into electricity, which have applications in internet of things, environmental/infrastructural monitoring, medical science and security. In this paper, we present the fundamental reasoning of the nanogenerators starting from the Maxwell equations.[1]

In the Maxwell's displacement current, the first term gives the birth of electromagnetic wave, which is the foundation of wireless communication, radar and later the information technology. Our study indicates that the second term in the Maxwell's displacement current is directly related to the output electric current of the nanogenerator, meaning that our nanogenerators are the applications of Maxwell's displacement current in energy and sensors. By contrast,

electromagnetic generators are built based on Lorentz force driven flow of free electrons in a conductor.[2]

This paper is intended to dispelling the myth surrounding the reality and correct interpretation of Maxwell's original electromagnetic theory. It is our hope that discerning the myth from reality is very important step toward tapping the hidden electromagnetic structure in Nature.

2. Several different interpretations of Maxwell's displacement current

Our discussion starts from the fundamental Maxwell's equations that unify electromagnetism[2]:

$$\nabla \cdot B = 0(MagneticGauss),$$

$$\nabla \cdot D = \rho_f (Gauss),$$

$$\nabla \times E + \partial_t B = 0(Faraday),$$

$$\nabla \times H - \partial_t D = J_f (Amperecircuitallaw),$$

(1)

Where the electric field E; the magnetic field B; magnetizing field H; the free electric charge density ρ_f ; the free electric current

density J_{f} ; displacement field D,

$$D = \varepsilon_o E + P.$$

In fourth equation of (1), the second term in l.h.s. of the equation is the Maxwell's displacement current defined as

$$J_{D} = \partial_{t} D = \varepsilon_{0} \frac{\partial E}{\partial t} + \frac{\partial P}{\partial t}.$$
(3)

The displacement current was first postulated by Maxwell in 1861 [1], and it was introduced on consistency consideration between Ampere's law for the magnetic field and the continuity equation for electric charges. The displacement current is not an electric current of moving free charges, but a time-varying electric field (vacuum or media), plus a contribution from the slight motion of charges bound in atoms, dielectric polarization in materials. In Eq. (3), the first component in the displacement current gives the birth of electromagnetic wave, which later being taken as the approach for developing radio, radar, TV and long distance wireless communication.

It can be shown that there is relationship between the second term in the displacement current and the output signal from nanogenerators, and show the contribution of displacement current to energy and sensors in the near future. [2]

In this paper, we briefly mention two applications of displacement current:[2] (1) Piezoelectric nanogenerator, where the displacement current from the media polarization is:

$$J_{Di} = \frac{\partial P_i}{\partial t} = (e)_{ijk} \left(\frac{\partial s}{\partial t}\right)_{jk}$$

(4)

(5)

(2) <u>Triboelectric nanogenerator</u>, where the displacement current can be expressed as:

$$J_{D} = \frac{\partial D_{z}}{\partial t} = \frac{\partial \sigma_{I}(z,t)}{\partial t} = \sigma_{c} \frac{dz}{dt} \frac{d_{1}\varepsilon_{0}/\varepsilon_{1} + d_{2}\varepsilon_{0}/\varepsilon_{2}}{\left(d_{1}\varepsilon_{0}/\varepsilon_{1} + d_{2}\varepsilon_{0}/\varepsilon_{2} + z\right)^{2}}.$$

Nonetheless, it is known for experts in classical electromagnetic theory, that there are various opinions concerning the meaning and physical reality of equation (3). For experts, see for instance Marco Landini [4], Jackson [5], and Selvan [7]. Here we will only cite some remarks by Tombe [6], as follows:

- a. Maxwell's original approach: Maxwell conceived the idea of displacement current in connection with elasticity. He had proposed a sea of molecular vortices to explain electromagnetic phenomena, and those vortices were surrounded by electric particles that acted as idle wheels. His views on displacement current can be read in the introduction to part III of his 1861 paper 'On Physical Lines of Force' (beginning at page 39 in the pdf file) at [1]. Maxwell was never satisfied that his molecular vortex model represented a totally accurate picture, and so his attempt to explain the detailed physical significance of displacement current in relation to the rotational aspect of his molecular vortices was somewhat vague. He seemed to be saying that the force involved in displacement current is a tangential force which alters the state of angular momentum of the vortices, and that electromagnetic radiation is therefore a propagation of fine-grained angular acceleration. The angular momentum H would therefore be at right angles and in phase with the tangential force E. Maxwell added displacement current to Ampère's Circuital Law in order to make it applicable to 'Total Current', but it is clear that he did not intend the applicability of this modified version of Ampère's Circuital Law to be restricted to the vicinity of electric current circuits. His follow up work indicates that he intended it to apply anywhere where electromagnetic radiation exists. There seems to be a popular idea circulating around that Maxwell conceived of displacement current in conjunction with the electric capacitor circuit, but this idea is not found in his original papers. [6]
- b. *The Modern Textbook Approach:* The modern textbook approach to displacement current is quite different to Maxwell's approach. It is based on the idea that Ampère's Circuital Law needs to be modified in order to comply with situations, such as that which arises in the capacitor circuit, in which charge density is varying with time. Displacement current is then added to one side of Ampère's Circuital Law as an additional term, but it is added on the basis that it is not a real current. The fact that modern displacement is not a real current means that the Ampère's Circuital Law equation has been unbalanced by virtue of

adding a new term to one side only. This approach however creates two problems. First of all, the justification for unbalancing the equation is based on the philosophy that the end justifies the means. That is a highly dubious approach when it comes to interfering with equations that have already been derived in the state that they are in. A closer look at the situation further shows that the additional term does not address the issue which it is said to be addressing.[6]

c. *The Polarization approach:* A current flows in a capacitor circuit. This in turn causes a linear polarization of the dielectric between the capacitor plates which blocks the current flow. Linear polarization is a self restoring elastic effect and it is roughly what Maxwell had in mind for displacement current. Maxwell considered displacement current to differ from free current in that the elasticity of the medium would cause the displacement current to grind to a halt. However, as regards electromagnetic radiation, the displacement in question would have to be an angular displacement as opposed to a linear displacement. And in that regard it is interesting to note that Maxwell's concept of polarization was not the straightforward linear effect that we have in mind. In part III of Maxwell's 1861 paper, he says "I conceived the rotating matter to be the substance of certain cells, divided from each other by cell-walls composed of particles which are very small compared with the cells, and that it is by the motions of these particles, and their tangential action on the substance in the cells, that the rotation is communicated from one cell to another." [1]

To conclude this matter, again allow us to cite Tombe [6]:

"The modern day displacement current is a highly dubious virtual concept, and it bears no connection to what Maxwell had in mind. Conservation of charge in a capacitor circuit is not an issue which is in anyway addressed by displacement current. Conservation of charge is a hydrodynamical issue that is catered for by Bernoulli's Principle whereby voltage and charge represent pressure and current represents velocity. Charge variation with time is not a matter which is catered for in any respect within the realm of Ampère's Circuital Law. If we wish to add a displacement current term to Ampère's Circuital Law then we must justify it in terms of real current just as Maxwell did."

It appears to us that the only way to figure out the reality of Maxwell's displacement current is either to measure it with capacitor [8], or use it for nanogenerators [2]. In other words, it seems possible that future nanogenerators will expose the hidden reality behind displacement current, or may be a new term needs to be added.

3. A plausible extension of Maxwell's displacement current

There are a number of proposals to revise Maxwell equations. But few has considered a fresh starting point with regards to the structure of aether. It is very interesting to note that Prof. T. Kambe from University of Tokyo has made a connection between the equation of vortex sound

and fluid Maxwell equations. He wrote that it would be no exaggeration to say that any vortex motion excites *acoustic* waves. [3]

He considers the equation of vortex sound of the form: [3]

$$\frac{1}{c^2}\partial_t^2 p - \nabla^2 p = \rho_0 \nabla L = \rho_0 div(\omega \times v)$$
(8)

He also wrote that dipolar emission by the vortex-body interaction is:[3]

$$p_F(x,t) = -\frac{P_0}{4\pi c} \dot{\Pi}_i (t - \frac{x}{c}) \frac{x_c}{x^2}$$
(9)

Then he obtained an expression of fluid Maxwell equations as follows [3]:

$$\nabla \cdot H = 0$$

$$\nabla \cdot E = q$$

$$\nabla \times E + \partial_t H = 0$$

$$a_0^2 \nabla \times H - \partial_t E = J$$
(10)

Where [4]:

 a_0 denotes the sound speed, and

$$q = -\partial_t (\nabla \cdot \upsilon) - \nabla \hbar,$$

$$J = \partial_t^2 \upsilon + \nabla \partial_t h + a_o^2 \nabla \times (\nabla \times \upsilon)$$
(11)

In our opinion, this new expression of fluid Maxwell equations suggests that there is a deep connection between vortex sound and electromagnetic fields. Therefore, it may offer new ways to *alter* the form of electronuclear potential as described in the previous section.

However, it should be noted that the above expressions based on fluid dynamics need to be verified with experiments. We should note also that in (10) and (11), the speed of sound a_0 is analogous of the speed of light in Maxwell equations, whereas in equation (8), the speed of sound is designated "c" (as analogous to the light speed in EM wave equation).

It is our hope that such a new interpretation and modification of Maxwell equations based on vortex sound will lead to further development in nanogenerators technology.

As an added note, we can mention here that elsewhere Wang [9] was able to derive Coulomb law from the source-sink approach. We are wondering if it is also possible to rederive Maxwell equations including displacement current from the same approach. If yes, then it may offer another fresh starting point to understand the physical meaning of displacement current.

4. Concluding remarks

In recent years, there are growing number of proposals to use a novel concept of energy harvesting using nanogenerators. This concept can be used for water wave energy harvesting, wind energy harvesting, but also for self-powered microdevices. This novel concept is based on the reality of Maxwell's displacement current. On the other hand, such a displacement current has been debated for many years: whether it is real or just a mathematical entity. This paper is intended to dispelling the myth surrounding the reality and correct interpretation of displacement current based on on Maxwell's electromagnetic theory. We also briefly discuss a plausible extension of Maxwell equations based on vortex sound theory of Prof. Tsutomu Kambe. It is our hope that discerning the myth from reality is very important step toward tapping and harvesting energy from the hidden electromagnetic structure in Nature.

Acknowledgment: The first author (VC) also would like to express his gratitude to Jesus Christ who always encouraged and empowered him in many occasions. He is the Good Shepherd. *Soli Deo Gloria!*

References

[1] James C. Maxwell. *On Physical Lines of Force*. 1861. http://vacuum-physics.com/Maxwell/maxwell_oplf.pdf

[2] Zhong Lin Wang. On Maxwell's displacement current for energy and sensors: the origin of nanogenerators. *Materials Today*, Volume 00, Number 00, January 2017. http://dx.doi.org/10.1016/j.mattod.2016.12.001

[3] Victor Christianto, Yunita Umniyati, Volodymyr Krasnoholovets. On Plausible Role of Classical Electromagnetic Theory and Submicroscopic Physics to understand and enhance Low Energy Nuclear Reaction (LENR): A Preliminary Review. *J. Cond. Matt. Nucl. Sci.*, April 2017. http://www.iscmns.org

[4] Marco Landini. About the Physical Reality of "Maxwell's Displacement Current" in Classical Electrodynamics. *Progress In Electromagnetics Research*, Vol. 144, 329-343, 2014

[5] J.D. Jackson. Maxwell's displacement current revisited. *Eur. J. Phys.* 20 (1999) 495–499. PII: S0143-0807(99)06956-1

[6] Frederick David Tombe. Displacement Current. http://www.wbabin.net/science/displacement.pdf

[7] Krishnasamy T. Selvan. A revisiting of scientific and philosophical perspectives on Maxwell's displacement current. *IEEE Antennas and Propagation Magazine*, Vol. 51, No.3, June 2009

[8] D.F. Bartlett & T.R. Corle. Measuring Maxwell's Displacement Current inside a Capacitor. *Physical Review Letters* vol. 55 no. 1, 1985.

[9] Xiao-Song Wang. Derivation of Coulomb's Law of Forces Between Static Electric Charges Based on Spherical Source and Sink Model of Particles. arXiv: physics/0609099v2 [physics.gen-ph]

Document history:

Version 1.0: July 19th, 2017, pk. 17:05.

VC & FS