
1

The Backward Differentiation of the Bordering Algorithm for an Indefinite
Cholesky Factorization

August 2017
Stephen P. Smith
email: hucklebird@aol.com

Abstract

The bordering method of the Cholesky decomposition is backward differentiated to
derive a method of calculating first derivatives. The result is backward differentiated
again and an algorithm for calculating second derivatives results. Applying backward
differentiation twice also generates an algorithm for conducting forward differentiation.
The differentiation methods utilize three main modules: a generalization of forward
substitution for calculating the forward derivatives; a generalization of backward
substitution for calculating the backward derivatives; and an additional module involved
with the calculation of second derivatives. Separating the methods into three modules
lends itself to optimization where software can be developed for special cases that are
suitable for sparse matrix manipulation, vector processing and/or blocking strategies
that utilize matrix partitions. Surprisingly, the same derivative algorithms fashioned for
the Cholesky decomposition of a positive definite matrix can be used again for matrices
that are indefinite. The only differences are very minor adjustments involving an
initialization step that leads into backward differentiation and a finalization step that
follows forward differentiation.

1. Introduction

General methods to conduct forward and backward differentiation are well described by
Griewank (1989, 2000). Smith (1995a) described the forward and backward derivatives
that were particular to the Cholesky decomposition computed by the outer-product
form. Murray (2016) provided those same derivatives for the Cholesky decomposition
computed by the inner-product form. Smith (2017) provided the backward differentiation
for the Cholesky decomposition computed by the bordering method. Moreover, there
are now available symbolically derived derivatives for the Cholesky decomposition (and
the LU factorization) that are algorithm independent (De Hoog, Anderssen and Lukas,
2011, Koerber 2015, Murray 2016). What went unanticipated in 1995 was how open-
ended and varied the different approaches were to become. The three standard ways
to compute the Cholesky decomposition are all distinguished by a re-ordering of the
calculations. When algorithmic differentiation is applied over these different variants of
the Cholesky decomposition, what returns is a new algorithm that comes with unique

2

properties that might find special advantages with particular applications. These
different approaches can all be explored, in a search for a better algorithm that might be
superior for sparse-matrix manipulation, or vector processing or blocking strategies.

The purpose of the present paper is to expand on the methods that emerge from the
bordering algorithm of the Cholesky decomposition, an effort initiated by Smith (2017)
that provided only first derivatives. The present paper will provide the second
derivatives, but also generalize the Cholesky decomposition for treating indefinite
matrices. Some theoretical considerations for factorizing an indefinite matrix are
provided by Smith(2001a). In application, indefinite equations emerge naturally with
Siegel’s (1965) method to treat least squares. Smith (2001b) described restricted
maximum likelihood using the Cholesky decomposition of an indefinite matrix, and also
provided first and second derivatives that came with the algorithmic differentiation of the
Cholesky’s factorization of an indefinite matrix using the outer-product form. Smith,
Nikolic and Smith (2012) applied Cholesky’s factorization of an indefinite matrix to a
problem in particle physics, and also posted corrections to the differentiation method
presented by Smith (2001b).

The indefinite Cholesky decomposition is represented by the following.

(1) L)L =MT

Where L is a lower triangular matrix and) is a diagonal matrix with diagonals 1 or -1.
The matrix M is the symmetric and indefinite matrix that is subject to factorization. One
of the remarkable discoveries reported in the present paper is that differentiation can
proceed by using) in initialization, and then continuing with algorithms developed for
the case when M is more normally positive definite. In other words, treating the
indefinite case is a mere tack-on of) to the methods developed for the positive definite
case. This observation was missed in Smith (2001b), but it is apparent with the
symbolic differentiation that resembles forward differentiation. To see this define the

x xshorthand matrices L and M below.

Differentiating both side of (1) gives the following.

x x x(2) L)L + L)L = MT T

Pre-multiplying equation (2) by L and post-multiplying by L (or L for short), gives-1 -1 T -T

the following where the left-hand side is recognized as the sum of a lower triangular

De Hoog, Anderssen and Lukas (2011), and Murray (2016), in particular.1

In terms of computing time and memory.2

3

matrix and an upper triangular matrix.

x x xL L) +)L L = L M L-1 T -T -1 -T

As others have done, define the matrix function M(A)=Lower(A)-½Diag(A) where1

Lower(A) is the lower triangular part of A and Diag(A) is diagonal with the diagonals of

x x xA. Then it becomes apparent that L L) = M(L M L), and solving for L gives the-1 -1 -T

sought derivatives:

x xL =L M(L M L))-1 -T

In other words, the same calculations are used that assume M is positive definite, and
then the result is post-multiplied by) in the most trivial of post-hoc adjustments.

The present paper takes the permutation order of M that makes it factorable, as
provided. A symbolic factorization is possible when M is positive definite. However,
when M is indefinite the permutation order is found dynamically using real number
calculations. This is accomplished with the outer-product form, and it is very expensive2

for large and sparse matrices where a double linked-list is used. Because M is assumed
to be a continuous function of parameters and is subject to differentiation, in theory a
different permutation order may be needed for each parameter set. This requirement
would defeat the present paper where attention is given to the bordering method rather
than the outer product form. Fortunately, once a permutation order is found, and along
with the sparse structure, it is unlikely that a different permutation order is needed for
alternative selections of the parameter set. Neither does) change for different
selections of the parameter set.

In Section 2, the bordering method is described for the indefinite Cholesky
decomposition. All the algorithms described in this paper will be presented in modular
form as much as possible. This ads a layer of complexity, but the return for doing this is
great given that each module can be optimized independently. In Sections 3 and 4,
forward substitution, backward substitution and their generalizations are presented.
These operations will become primal modules and used for the first and second
derivative calculations presented in Sections 5 and 6. It is found that backward
differentiation uses a generalized backward substitution and forward differentiation uses
a generalized forward substitution.

Regarding notation, matrices and vectors will be represented in bold, as already
illustrated. When a lower triangular matrix or symmetric matrix A is indicated as half-

ijstored, the ij-th element given in the i-th row and j-th column of A is denoted by A ,

4

ijwhere j#i. Occasionally, the algorithms will automatically select an element A where j>i

ij jiand in this case it is always understood that A =A . Likewise, the full-stored version of a
lower triangular matrix L is defined to be L+L -Diag(L).T

2. Bordering Algorithm for an Indefinite Matrix

Notation required to define the bordering method is presented below.

where:

k kand) is a diagonal matrix with diagonals 1 or -1, * is a scalar being 1 or -1, all
depending on whether the diagonals or scalar represent the positive or negative

N k kpartition of the N×N matrix A =M. Both) and * can be represented implicitly from the

N k kinitial matrix structure of A , and never change. Note than) =) .-1

The bordering method to compute the Cholesky decomposition of the indefinite matrix

NM, with) provided, is given below.

N k k k 1 11. Set A =M, thereby defining all the arrays, A , a , " , N$k>1, and A =" , implicitly as
data entries.

1 1 12. Evaluate d =(* ") .½

3. For k=1, 2, ... N-1, perform the following calculations.

k k+1A) Solve v in the lower triangular system, L v=a , by forward substitution, then

k+1 kset u =) v.

k+1 k k+1B) Evaluate the vector product, >=u) u , and then evaluate T

k+1 k+1 k+1d =[* (" - >)] .½

The matrix M can be half stored, and because its entries are used only once in one of

Nthe above calculations, it is feasible to overwrite M with L while following the bordering

5

method.

3. Generalized Forward Substitution

It is useful to generalize matrix routines to permit streamlining thereby improving
numerical efficiency and to permit modulation thereby aiding the chore of programming.

Forward substitution to solve the lower triangular system, Lv=a, is well known and

ijindicated in Display 1. Initialize the function call by providing L (lower triangular) with L ,
j#i, and set v7a with call to FS(L,a,N).

Display 1. Forward Substitution, denoted by FS(L,v,N).

The routine of Display 1 overwrites the vector a with the solution v, and hence only one
vector v is needed in the routine.

Denote the above forward substitution algorithm by FS(L,v,N). Make one modification
to FS(L,v,N) to generate a new algorithm that can be suspended once index-i becomes
k#N. The new procedure is presented in Display 2, and is denoted by GFS(L,v,k,N).

Operations are postponed not to simplify mathematical derivations. That this is done3

inflates the number of possible algorithms that are derived from one simple algorithm. Rather,
operations are postponed because with sparse-matrix manipulation (even vector processing) it is
more efficient to treat all the subtractions together in appropriately defined groups.

6

Display 2. Generalized Forward Substitution, denoted by GFS(L,v,k,N).

Make an additional modification to GFS(L,v,k,N) by postponing all the subtractions until3

when they are needed prior to the respective division. The new algorithm, denoted by
GFS1(L,v,k), is presented in Display 3. GFS1(L,v,k) provides an alterative calculation to
GFS(L,v,k,N) only when k=N.

Display 3. Generalized Forward Substitution, version 1 denoted by GFS1(L,v,k).

iThe multiplication by * is done to conform with the bordering algorithm in Section 2, as4

i i i iwill become apparent shortly. Note that * = * ×* ×* .

7

For illustration purposes, make three additional changes to GFS1(L,v,k), turning it into

i ikGFS2(L,),k): implicitly make v part of L, where v=L ; and suspend the last division
where the index-i becomes k, but additionally intervene before the index-i becomes k

ki iand multiply L and its square by * or the i-th diagonal of) . These changes make the4

following algorithm.

Display 4. Generalized Forward Substitution, version 2 denoted by GFS2(L,),k).

With these routines defined, shorthand representations of the indefinite Cholesky
decomposition and its derivatives become available. In particular, the bordering
algorithm presented in Section 2 becomes the following.

) provided
L7half-stored(M)

For k=1 to N
Call the routine GFS2(L,),k)

8

4. Generalized Backward Substitution

Backward substitution to solve the upper triangular system, L v=a, is well known andT

ijindicated in Display 5. To initialize, provide L upper triangular with L , j#i, and set v7aT

by the function call BS(L,a,N) .

Display 5. Backward substitution algorithm denoted by BS(L,v,N).

As was accomplished for forward substitution, make two modifications to BS(L,v,N):
postpone all the subtractions until when they are needed prior to the respective division;
make it so the routine can start with the index-i beginning with k rather than N. The new
algorithm, denoted by GBS(L,v,k,N), is presented in Display 6.

Display 6. Generalized backward substitution algorithm denoted by GBS(L,v,k,N).

Rules for Backward Differentiation follow form Griewank (1989). They are provided in5

memos by Smith (1995b, pg 13; and 2000, Section 4.2), as symbolic tools that can be used

k k k k idirectly by a programer. In the forward sweep the k-th recursion is h =f (S), for S f{h :i<k},
k=1, 2, ...r; then in the reverse sweep, backward derivatives are accumulated by,

h(i) h(i) h(k) k i i kF = F + F ×Mf /Mh , for all h0S , k=r, ... 2, 1, such that F is an array corresponding to all the

h h(r)intermediates where F represents h(), and F is suitably initialized to F= null except for F = 1

rwhere h is a scalar. If a step also involves overwriting, where the k-th recursion is typically of

i k k k k i kthe form h7f (S), i.e., where h overwrites an element of S as h7h , then the update is

h(i) h(k) k i i kF 7 F ×Mf /Mh for the particular h0S that changes status. Overwriting is vary problematic

k j j k when some of the partial derivatives, Mf /Mh for h0S , are unavailable because some of the

k elements of S are lost due to overwriting.

9

5. First Derivatives by Backward Differentiation

The bordering method is highly granular because all the main intermediate calculations
are saved and are not lost to overwriting. Except for the possibility of overwriting various

N parts of the initial data, or the matrix M, with various parts of L as they are computed,
the application of the Rules for Backward Differentiation are directly applicable. Even5

Nwhen matrix M is overwritten, enough information is saved in L to propagate the
derivatives backward to the initial data with little difficulty. Therefore, it is advantages to
permit what little overwriting that may exists. If F is the array that stores the backward

L(N)propagated derivatives (following the Rules for Backward Differentiation) then let F

N Mcorrespond to all the non-data intermediates that are all neatly collected in L and let F
correspond to the intermediates given by the initial data, or M, that is overwritten in the

L(N) Mforward sweep. The overwriting is represented by F 7 F in the backward sweep

Mwhere F signifies a half-stored matrix. The symbolic representations preserve the

L(N) M L(N)distinction between F and F , even though F is lost by overwriting, and that is

L(k) u(k) d(k)enough for our purpose. Likewise, let F , F , and F correspond to the intermediates

k k k L(N) A(k) a(k) "(k)of L , u and d , all belonging to the larger array F . Let F , F and F correspond

k k k M ijto A , a , " , all belonging to F . More generally, let F correspond to the intermediate

ij ijrepresented by L or M .

The Rules for Backward Differentiation can be applied directly to the algorithm in Section
2, where a slight modification is needed for Step 3A that indicates a non-scalar function.
That first approach was followed by Smith (2017), but for the case that)=I. Alternatively,
the rules can be applied directly to the algorithm presented in Section 3 (i.e., the nested
application of GFS2), with no modification. That algorithm is listed in Display 7 again, but
with embellishment to aid differentiation by hand.

This provides a justification for using an automatic tool, even one that provides the6

symbolic manipulation done here. However, humans deserve employment too.

10

Display 7. Bordering method with embellishments to aid differentiation by hand.

Intermediates of Display 7 to the right of the arrows fall into three classifications. If it has
no hat nor an over-bar, the intermediate is not overwritten by the algorithm. Those
intermediates are available during the reverse sweep. If the intermediate has an over-
bar then it is lost due to overwriting, but in a way that brings no complexity to the Rules
of Backward Differentiation. If the intermediate has a hat, then it is lost with overwriting
and special adjustments and precautions are needed with hand differentiation: namely,
when the needed partial derivatives are sought, they must be imputed from the
information that is available and fitted together in a way that is consistent with the
intended calculous. Without these distinctions it is easy to muddle the process and
produce incorrect results. Otherwise, a correct application of the reverse sweep, starting6

at the bottom and working through the list backwards, produces the algorithm presented

jin Display 8. Note that the correct application has various * permeating through it.

j j j kj kj j kj kk j kj j kj kj kkTo see this note that * =* ×* and F 7F -2* L F implies * F 7* F -2L F .7

11

Display 8. Symbolic backward derivatives of the bordering method.

L1. Initialize F to the firth derivatives of f(L) where f() is a scalar function of L, as
indicated below.

2. For k=N to 1 perform the following recursive calculations.

kkThe calculation in Step 2 of Display 8 can be rearranged. Firstly, the division of F by 2

k kkcan be withheld to the end. Secondly, the multiplications involving), namely * F and

kj*jF , can be first up. Lastly, the second summation involving index-j can be combined7

This is less surprising once the symbolic differentiation presented in Section 1 is8

appreciated, and noting that the difference between forward and backward differentiation can be
described as the order matrices (each representing partial differentiation) are multiplied together
(Greiwank 1992). The result is surprising, nevertheless, because) remains hopelessly entangled
in the bordering method.

12

with the first by removing the starred operations and letting index-i range from k to 1.
The starred operations can be separated and moved to their own summation. These
changes produce the interesting recursions for Step 2 that are presented in Display 9.

Display 9. Rearranged derivative calculations.

2. For k=N to 1 perform the following recursive calculations.

L kiThe starred operations make adjustments to F that follow calculating F , i#k, in the k-th
step. These can all be postponed until when they are needed. A surprising observation8

jis that the multiplication of * for the starred calculations cancels with the up-front
multiplications that are waiting their turn to initialize backward substitution when k=i and

j jleading to *×* =1. This lets the entire) matrix be factored out of the algorithm and

Lapplied with the initialization step for F . Excluding the first multiplications involving),
and the starred operations, and the last division by 2, what is left is recognized as simple

jbackward substitution. Moreover, the starred or postponed operations (with * dropped)
are precisely those adjustments that are made with a generalized backward substitution.
This revelation agrees exactly with Smith (2017) but now generalized to include). More

13

importantly, with) factored completely out then any suitable algorithm that backward
differentiates the Cholesky decomposition (for a positive definite matrix) can be used
carte blanche, but our focus is with the bordering method.

These remarkable results are now rewritten to express backward differentiation in

kmodular form. First define the vector v as the k-th column of the full-stored version of

L L L L k k k k kF , namely F + F -Diag{ F }. Partition v into v =(v ,v), where v are the elements ofT T T T

L k LF above and including the k-th diagonal and v are the elements of F strictly below theT T

k L k-th diagonal. The vector v represents elements of F that are being fully computed

k Lduring the k-th step, whereas the vector v corresponds to elements of F that are
already computed but required for the k-th step. Backward differentiation is neatly
provided by the following algorithm.

L1. Initialize F to the firth derivatives of f(L) where f() is a scalar function of L and multiply
by), as indicated below.

L2. Denote this step by BD(L,F ,N). For k=N to 1 perform the following calculations:

k L L LA) Extract v as the k-th column of F + F -Diag{ F }.T

kB) Call GBS(L,v ,k,N)

kC) Multiply the k-th element of v by ½

k LD) Write v to storage device holding F

There are some significant advantages to this algorithm. First, for treating large sparse
matrices, the bordering algorithm for computing L, and the associated generalized
backward substitution, can be streamlined to avoid intense searching of the non-zero
entries before performing the sought non-trivial calculations. Rather, the non-zero
elements can be found together and ready for fast calculation, provided a preliminary
factorization was performed to define the sparse structure and including needed row-
column permutations. Second, even when L (or M) is a large matrix, only one column of

L L LF + F -Diag{ F } need be available during step-k with L completely stored in memory,T

Lletting the entire F be computed with no additional random-access memory.

L M LWith F turned F computed when BD(L,F ,N) returns, all first derivatives are evaluated
by the following.

14

6. Second Derivatives by Backward Differentiation

Following the tradition of Smith (1995a), two rounds of backward differentiation is
presented below, rather than an alternative combination of forward and backward
differentiation. To accomplish this, the algorithms presented in Sections 3 and 5 are
strung out in outline form from start to finish, and the backward sweep is then revealed
by proceeding with the Rules for Backward Differentiation from the end of the list back to

kthe beginning. Some definitions are needed. Firstly, the work vector v used in

L KBD(L,F ,N) is to be replaced with a direct reference to F: i.e., the i-th element of v is

ik kiassigned to F (if i$k) or F (if i<k). It is also necessary to introduce two new arrays, S

kand Q, to keep track of intermediate calculation within GBS(L,v ,k,N) that involve L and

ij ij ij ijF, respectively: make the following correspondences, S :L and Q :F .

The outline of factorization and one round of backward differentiation is presented in
Display 10.

Display 10. Recursion list for the bordering method and its backward derivatives.

15

By going through the above list of Display 10 in reverse, and applying the Rule of
Backward Differentiation, the recursive operations presented in Display 11 are
generated. These calculations depend on the elements of S being initialized to zero.

Display 11. Symbolic backward derivatives of the Display 10 recursions.

Some important observations can now be made with the Display 11 protocol for
calculating second derivatives. Firstly, the impact of) is limited to Step 2, and this
adjustment is remarkably trivial and mirrors what was found for the first derivative
calculation. Secondly, the array Q can be calculated separately in Step 3, and then with
Q already calculated the array S can be computed. Thirdly, if it where not for the
factored out matrix), the calculation of Q is the forward differentiation calculation (Smith

k2000). More importantly, the calculation of Q is a nested application of the GFS(L,v ,k,N)

kalgorithm, where k varies between 1 and N and where v is the k-th column of

16

Q+Q -Diag(Q) in the process of computation. All the above can now be rewritten is aT

form that’s ready for application, and presented in Display 12.

Display 12. Protocol for calculating second derivatives.

In terms of the permutation order.9

17

The algorithm shown in Display 12 has the desirable property where Q can be computed
one row or column at a time, with L stored in memory. And with Q and F fully computed,
and k-th row-column of each of these can be read into memory one at a time, to
compute S that is now fully stored in memory.

7. Conclusion

All the algorithms presented in this paper where successfully confirmed by comparing
calculated values to known quantities.

The bordering method proved to be a good candidate for the backward differentiation
exercises presented in this paper. Not only can the bordering method itself be optimized
for efficient applications involving, for example, vector processing, blocking strategies
and sparse-matrix manipulation, the key modules needed for the first and second
derivatives also lend themselves to optimization. To review, those modules are: GFS or
a generalized forward substitution for the Q matrix or what is otherwise forward
differentiation; GBS or a generalized backward substitution for the F matrix or what is
otherwise backward differentiation; and Step 3B (of Display 12) for calculating the S
matrix that is needed for second derivatives. Everything else is a plug-in application of
modules, including the appropriate treatment for indefinite matrices (or)); i.e., a
treatment that fell from being a big challenge and became a minor triviality.

It is helpful to understand the steps involved in factorizing a matrix, or an indefinite
matrix, in the large sparse-matrix application. First the matrix) is specified, it never
changes, and it defines the negative and positive partitions of a matrix M that is to be
subjected to factorization. The rows and columns must be permuted to permit
factorization. This can only be done dynamically using actual floating point numbers and
their associated calculations involving the Cholesky decomposition. Unlike the case
when M is positive definite, a purely symbolic minimum-degree factorization cannot be
performed. Factorization with dynamic permutations uses a double linked-list and the
outer-product form. Fortunately, this expensive step is done only once. With the
permutation order and sparse structure defined, the application turns to repetitive
factorization of the matrix M evaluated for different parameters, and ths includes
repetitive derivative calculations involving functions of L (where L) L =M). TheT

repetitive steps are meant to utilize optimized software involving the bordering method
and its derivatives.

With the permutation order and the sparse structure defined, two integer arrays can be
set up that contain this same information. In one array, non-zero elements in the sparse
structure are arranged sequentially in column order, before moving to the next row of9

column identities. In the second array, non-zero elements in the sparse structure are

In particular, Step 3B can mirror the same matrix addressing used for GFS while10

holding the vector f in a hash table, rather than q as needed in GFS.

The restricted maximum likelihood (REML) applications, in particular.11

18

arranged sequentially in row order, before moving to the next column of row identities.
The column-arranged array contains the details of column indexes and pointers to the
array containing the floating point numbers. The row-arranged array contains the details
of row indexes and pointers to the array containing the floating point numbers. It is
possible to read through these arrays to perform factorization by the bordering method.
Every element encountered in a sequential read corresponds to a non-trivial calculation
within the sparse structure. Gone now is any need to search though a linked-list to locate
positions in the sparse structure where a calculation applies, as encountered when
factorization is by the outer-product form (Ng and Peyton, 1993). The expectation is that
these same advantages can be transferred to GFS, GBS and Step 3B of Display 12.10

Many statistical applications are found when M is positive definite. The factorization by11

the outer-product form and the calculation of backward derivatives (worked out in 1995)
has performed good enough for most cases given today’s computer hardware. However,
it is always possible to find examples that challenge today’s computers, and in which
case there is a need to improve the software. An example of a challenging problem is
the genetic dominance model (Smith and Mäki-Tanila 1990), and the associated
parameter estimation problem. The model is challenging enough to abandon
Henderson’s (1973) mixed model equations that are popular in animal breeding studies,
in preference for a refashioned model that follows Siegel’s (1965) equations that have
improved sparse-matrix handling properties. For a test example involving egg-laying
hens, the parameter estimation problem comes with a very large and sparse M matrix of
order 330,000; M is now indefinite. A permutation order and sparse structure was found
using the outer-product form and a double linked-list. The sparse structure ended up
containing 24,000,000 non-zero elements. That initial step required 250 minutes of
computing time on a desktop computer. Fortunately, with the permutation order and the
sparse structure computed, a single application of the bordering algorithm only required
13 minutes of computing time. Work is now continuing to estimate the genetic
parameters using the methods described in this paper.

References
De Hoog, R.F., R.S. Anderssen and M.A. Lukas (2011), Differentiation of matrix
Functionals using triangular factorization, Mathematics of Computation, January, 1-15.

Griewank, A. (1989), On automatic differentiation, in Mathematical Programming:
Recent Developments and Applications, eds. M. Iri and K. Tanabe, Kluwer Academic
Publishers, Dordrecht, pp. 83-108.

Griewank, A. (1992), Achieving Logarithmic Growth of Temporal and Spatial Complexity

19

in Reverse Automatic Differentiation, Optimization Methods and Software, 1, 35-54.

Griewank, A, 2000, Evaluating Derivatives: Principles and Techniques of Algorithmic
Differentiation, SIAM, Philadelphia, PA

Henderson, C.R., 1973, Sire Evaluation and Genetic Trends, In Proceeding of the
Animal Breeding and Genetics Symposium in Honor of Dr Jay L. Lush, ASAS and
ADSA, Champaign, Illinois, 10-41.

Koerber, P. (2015), Adjoint algorithmic differentiation and the derivatives of the Cholesky
decomposition.

Murray, I. (2016), Differentiation of the Cholesky decomposition, arXiv archived.

Ng, E.G. and B.W. Peyton, 1993, Block spare Cholesky algorithms on advanced
uniprocessor computers, SIAM Journal of Scientific Computing, 14, 1034-1055.

Siegel, I.H., 1965, Deferment of Computation in the Method of Least Squares,
Mathematics of Computation, 19 (90): 329-331.

Smith, J.R., M. Nikolic and S.P. Smith, 2012, Hunting the Higgs Boson using the
Cholesky Decomposition of an Indefinite Matrix, memo, vixRa archived.

Smith, S.P. (1995a), Differentiation of the Cholesky algorithm, Journal of Computational
and Graphical Statistics, 4, 134-147.

Smith, S.P., (1995b), The Cholesky decomposition and its derivatives, memo.

Smith, S.P. (2000), A tutorial on simplicity and computational differentiation for
statisticians, memo, vixRa archived.

Smith, S.P., 2001a, Factorability of Symmetric Matrices, Linear Algebra and Its
Application, 335: 63-80.

Smith, S.P., 2001b, Likelihood-Based Analysis of Linear State-Space Models Using the
Cholesky Decomposition, Journal of Computational and Graphical Statistics, 10 (2): 350-
369.

Smith, S.P., 2017, The Bordering Method of the Cholesky Decomposition and Its
Backward Differentiation, memo, vixRa archived.

Smith, S.P, and A. Mäki-Tanila, 1990, Genotypic Covariances Matrices and their Inverse
for Models Allowing Dominance and Inbreeding, Genetics Selection Evolution, 22, 65-
91.

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19

