New Proof of the Infinite Product Representation for Gamma Function and Pochhammer's Symbol and New Infinite Product Representation for Binomial Coefficient

By Edigles Guedes and Cícera Guedes

July 7, 2017

Abstract

"It is the spirit that quickeneth; the flesh profiteth nothing: the words that I speak unto you, they are spirit, and they are life." - John 6:63.

Abstract. In this paper, we demonstrate some limit's formulae for gamma function and binomial coefficient among other things.

1. Introduction

Each mathematician looks at a function and sees in his own way. Leonhard Euler (1707-1783) contemplated the gamma function, and gave the infinite product expansion [1, p. 33]

$$
\begin{equation*}
\Gamma(z)=\frac{1}{z} \prod_{j=1}^{\infty}\left(1+\frac{1}{j}\right)^{z}\left(1+\frac{z}{j}\right)^{-1} \tag{1}
\end{equation*}
$$

which is valid in \mathbb{C}, except for $z \in\{0,-1,-2, \ldots\}$.
Carl Friedrich Gauss (1777-1855) rewrote the Euler's product as

$$
\begin{equation*}
\Gamma(z)=\lim _{n \rightarrow \infty} \frac{n^{z} \cdot n!}{z(z+1)(z+2) \cdot \ldots \cdot(z+n)}, \tag{2}
\end{equation*}
$$

see [2].
In 1854, Karl Weierstrass (1815-1897) gave the infinte product expansion for gamma function [1, p. 34-35]

$$
\begin{equation*}
\Gamma(z)=z e^{\gamma z} \prod_{j=1}^{\infty}\left(1+\frac{z}{j}\right) e^{-z / j} \tag{3}
\end{equation*}
$$

which is valid for all \mathbb{C}.
Hence, the question: how do we see the gamma function? The answer: the wonderful limit's formula

$$
\begin{equation*}
\Gamma(n+1)=\lim _{k \rightarrow \infty}\left(\frac{k}{n+k}\right)^{n}\left(\frac{n+k}{k}\right)_{n} . \tag{4}
\end{equation*}
$$

From this formula, we derive the a proof for the representation of infinite product of the gamma function and the binomial coefficient. In addition, we found the limit's formula for the coefficient binomial

$$
\binom{z}{n}=\lim _{k \rightarrow \infty} \frac{\left(\frac{\ell}{k}+z\right)\left(\frac{\ell}{k}+z+1\right)_{n-1}}{\left(\frac{\ell}{k}+n\right)\left(\frac{\ell}{k}+n+1\right)_{n-1}}
$$

among other things, such as the new infinite product representation for binomial coefficient, given by

$$
\binom{z}{n}=\frac{z}{n} \prod_{j=1}^{\infty}\left(1+\frac{n-1}{j+n}\right)\left(1+\frac{n-1}{j+z}\right) .
$$

2. Some Lemmas

Lemma 1. If n is an integer nonnegative, then

$$
\Gamma(n+1)=\lim _{k \rightarrow \infty}\left(\frac{k}{n+k}\right)^{n}\left(\frac{n+k}{k}\right)_{n}
$$

where $\Gamma(z)$ denotes the gamma function.
Proof. In elementary calculus, we well-know the identity

$$
\begin{equation*}
\lim _{k \rightarrow \infty} \frac{\ell+a k}{\ell+b k}=\frac{a}{b} \tag{5}
\end{equation*}
$$

The definition for gamma function [3], give us

$$
\begin{equation*}
n!=\prod_{r=1}^{n} r=\prod_{r=1}^{n} \frac{r}{1} \tag{6}
\end{equation*}
$$

Replaced a by r and b by 1 in (5)

$$
\begin{equation*}
\lim _{k \rightarrow \infty} \frac{\ell+r k}{\ell+k}=\frac{r}{1} \tag{7}
\end{equation*}
$$

Substitute the left hand side of (7) in the right hand side of (6)

$$
\Gamma(n+1)=n!=\prod_{r=1}^{n} \lim _{k \rightarrow \infty} \frac{\ell+r k}{\ell+k}=\lim _{k \rightarrow \infty} \prod_{r=1}^{n} \frac{\ell+r k}{\ell+k}=\lim _{k \rightarrow \infty}\left(\frac{k}{n+k}\right)^{n}\left(\frac{n+k}{k}\right)_{n}
$$

which is the desired result.
Lemma 2. If n is an integer nonnegative, $z \in \mathbb{C}$ and ℓ is any number, then

$$
(z)_{n}=\lim _{k \rightarrow \infty}\left(\frac{k}{\ell+k}\right)^{n}\left(\frac{\ell}{k}+z\right)\left(\frac{\ell}{k}+z+1\right)_{n-1}
$$

where $(z)_{n}$ denotes the Pochhammer symbol.
Proof. The definition for Pochhammer symbol [3], give us

$$
\begin{equation*}
(z)_{n}=\prod_{r=0}^{n-1}(z+r)=\prod_{r=0}^{n-1}\left(\frac{z+r}{1}\right) \tag{8}
\end{equation*}
$$

Replaced a by $z+r$ and b by 1 in (5)

$$
\begin{equation*}
\lim _{k \rightarrow \infty} \frac{\ell+(z+r) k}{\ell+k}=\frac{z+r}{1} \tag{9}
\end{equation*}
$$

Substitute the left hand side of (9) in the right hand side of (8)

$$
(z)_{n}=\prod_{r=0}^{n-1} \lim _{k \rightarrow \infty} \frac{\ell+(z+r) k}{\ell+k}=\lim _{k \rightarrow \infty} \prod_{r=0}^{n-1} \frac{\ell+(z+r) k}{\ell+k}=\lim _{k \rightarrow \infty}\left(\frac{k}{\ell+k}\right)^{n}\left(\frac{\ell}{k}+z\right)\left(\frac{\ell}{k}+z+1\right)_{n-1}
$$

which is the desired result.
Lemma 3. If n is an integer nonnegative, $z \in \mathbb{C}$ and ℓ is any number, then

$$
\binom{z}{n}=\lim _{k \rightarrow \infty} \frac{\left(\frac{\ell}{k}+z\right)\left(\frac{\ell}{k}+z+1\right)_{n-1}}{\left(\frac{\ell}{k}+n\right)\left(\frac{\ell}{k}+n+1\right)_{n-1}}
$$

where $\binom{z}{n}$ denotes the binomial coefficient.

Proof. The definition of the binomial coefficient [5], give us

$$
\begin{equation*}
\binom{z}{n}=\frac{(z)_{n}}{(n)_{n}} \tag{10}
\end{equation*}
$$

Usint the limit's formula of the Lemma 2 into (10), we obtain

$$
\begin{aligned}
\binom{z}{n} & =\frac{\lim _{k \rightarrow \infty}\left(\frac{k}{\ell+k}\right)^{n}\left(\frac{\ell}{k}+z\right)\left(\frac{\ell}{k}+z+1\right)_{n-1}}{\lim _{k \rightarrow \infty}\left(\frac{k}{\ell+k}\right)^{n}\left(\frac{\ell}{k}+n\right)\left(\frac{\ell}{k}+n+1\right)_{n-1}} \\
& =\lim _{k \rightarrow \infty} \frac{\left(\frac{\ell}{k}+z\right)\left(\frac{\ell}{k}+z+1\right)_{n-1}}{\left(\frac{\ell}{k}+n\right)\left(\frac{\ell}{k}+n+1\right)_{n-1}}
\end{aligned}
$$

which is the desired result.

3. Gamma Function: New Proof for the Infinite Product

3.1. Infinite Product Representation for Gamma Function.

Theorem 4. (Euler, 1729) If $z \in \mathbb{C}-\{-1,-2, \ldots\}$, then

$$
\Gamma(z)=\frac{1}{z} \prod_{j=1}^{\infty}\left(1+\frac{1}{j}\right)^{z}\left(1+\frac{z}{j}\right)^{-1}
$$

where $\Gamma(z)$ denotes the gamma function.
Proof. In [4], we have the infinite product for Pochhammer's symbol

$$
\begin{equation*}
(z)_{n}=\prod_{j=1}^{\infty}\left(1+\frac{1}{j}\right)^{n}\left(1+\frac{n}{j+z-1}\right)^{-1} \tag{11}
\end{equation*}
$$

Replaced z by $(n+k) / k$ in (11)

$$
\begin{equation*}
\left(\frac{n+k}{k}\right)_{n}=\prod_{j=1}^{\infty}\left(1+\frac{1}{j}\right)^{n}\left(1+\frac{n k}{j k+n+k-k}\right)^{-1} . \tag{12}
\end{equation*}
$$

Substitute the right hand side of (12) in the right hand side of the Lemma 1 and encounter

$$
\begin{gathered}
\Gamma(n+1)=\lim _{k \rightarrow \infty}\left(\frac{k}{n+k}\right)^{n} \prod_{j=1}^{\infty}\left(1+\frac{1}{j}\right)^{n}\left(1+\frac{n k}{j k+n}\right)^{-1} \\
=\prod_{j=1}^{\infty}\left(1+\frac{1}{j}\right)^{n} \lim _{k \rightarrow \infty}\left[\left(\frac{k}{n+k}\right)^{n}\left(1+\frac{n k}{j k+n}\right)^{-1}\right] \\
=\prod_{j=1}^{\infty}\left(1+\frac{1}{j}\right)^{n}\left(\frac{j}{j+n}\right)=\prod_{j=1}^{\infty}\left(1+\frac{1}{j}\right)^{n}\left(1+\frac{n}{j}\right)^{-1}
\end{gathered}
$$

replaced n by z and use the identity $\Gamma(z+1)=z \Gamma(z)$, finding the desired result.

4. Binomial Coefficient: New Infinite Product Representation

4.1. New Infinite Product Representation for Binomial Coefficient.

Theorem 5. If $z \in \mathbb{C}-\{-1,-2, \ldots\}$ and $n \in \mathbb{N}^{+}$, then

$$
\binom{z}{n}=\frac{z}{n} \prod_{j=1}^{\infty}\left(1+\frac{n-1}{j+n}\right)\left(1+\frac{n-1}{j+z}\right)
$$

where $\binom{z}{n}$ denotes the binomial coefficient.

Proof. In [4], we have the infinite product for Pochhammer's symbol

$$
\begin{equation*}
(z)_{n}=\prod_{j=1}^{\infty}\left(1+\frac{1}{j}\right)^{n}\left(1+\frac{n}{j+z-1}\right)^{-1} \tag{13}
\end{equation*}
$$

Replaced z by $\ell / k+z+1$ and n by $n-1$ in (13)

$$
\begin{equation*}
\left(\frac{\ell}{k}+z+1\right)_{n-1}=\prod_{j=1}^{\infty}\left(1+\frac{1}{j}\right)^{n-1}\left(1+\frac{(n-1) k}{j k+z k+\ell}\right)^{-1} \tag{14}
\end{equation*}
$$

and replaced z by $\ell / k+n+1$ and n by $n-1$ in (13)

$$
\begin{equation*}
\left(\frac{\ell}{k}+n+1\right)_{n-1}=\prod_{j=1}^{\infty}\left(1+\frac{1}{j}\right)^{n-1}\left(1+\frac{(n-1) k}{j k+n k+\ell}\right)^{-1} . \tag{15}
\end{equation*}
$$

Substitute the right hand side of (14) and (15) in the right hand side of the Lemma 3 and encounter

$$
\begin{gathered}
\binom{z}{n}=\lim _{k \rightarrow \infty} \frac{\left(\frac{\ell}{k}+z\right)}{\left(\frac{\ell}{k}+n\right)} \prod_{j=1}^{\infty} \frac{\left(1+\frac{(n-1) k}{j k+z k+\ell}\right)^{-1}}{\left(1+\frac{(n-1) k}{j k+n k+\ell}\right)^{-1}} \\
=\prod_{j=1}^{\infty} \lim _{k \rightarrow \infty}\left[\frac{\left(\frac{\ell}{k}+z\right)}{\left(\frac{\ell}{k}+n\right)} \cdot \frac{\left(1+\frac{(n-1) k}{j k+z k+\ell}\right)^{-1}}{\left(1+\frac{(n-1) k}{j k+n k+\ell}\right)^{-1}}\right] \\
=\frac{z}{n} \prod_{j=1}^{\infty}\left(1+\frac{n-1}{j+n}\right)\left(1+\frac{n-1}{j+z}\right),
\end{gathered}
$$

which is the desired result.

5. Gamma Function: Other Proof for the Infinite Product

5.1. Infinite Product Representation for Gamma Function.

Lemma 6. If $a, b \in \mathbb{R}$ and $b \neq 0$, then

$$
\frac{a}{b}=\prod_{k=0}^{\infty} \frac{(k+2)(a+b k)}{(k+1)(a+b+b k)} .
$$

Proof. In previous paper [6] the first author proved the integral representation for natural logarithm, for $\mathfrak{R}(z)>0$,

$$
\begin{gather*}
\frac{\ln z}{z-1}=\int_{0}^{\infty} \frac{\mathrm{d} x}{(z+x)(1+x)}=\sum_{k=0}^{\infty} \int_{k}^{k+1} \frac{\mathrm{~d} x}{(z+x)(1+x)} \\
\quad=\frac{1}{z-1} \sum_{k=0}^{\infty} \ln \frac{(k+2)(k+z)}{(k+1)(k+z+1)} \\
\quad=\frac{1}{z-1} \ln \prod_{k=0}^{\infty} \frac{(k+2)(k+z)}{(k+1)(k+z+1)} \tag{16}\\
\quad \Rightarrow \ln z=\ln \prod_{k=0}^{\infty} \frac{(k+2)(k+z)}{(k+1)(k+z+1)}
\end{gather*}
$$

The exponentiation of (16), give us

$$
\begin{equation*}
z=\prod_{k=0}^{\infty} \frac{(k+2)(k+z)}{(k+1)(k+z+1)} \tag{17}
\end{equation*}
$$

Replaced z by a / b in (17)

$$
\frac{a}{b}=\prod_{k=0}^{\infty} \frac{(k+2)(a+b k)}{(k+1)(a+b+b k)},
$$

which is the desired result.
Theorem 7. (Euler, 1729) If $z \in \mathbb{C}-\{-1,-2, \ldots\}$, then

$$
\Gamma(z)=\frac{1}{z} \prod_{j=1}^{\infty}\left(1+\frac{1}{j}\right)^{z}\left(1+\frac{z}{j}\right)^{-1}
$$

where $\Gamma(z)$ denotes the gamma function.
Proof. Replaced a by r and b by 1 in the Lemma 6

$$
\begin{equation*}
\frac{r}{1}=\prod_{k=0}^{\infty} \frac{(k+2)(r+k)}{(k+1)(r+k+1)} . \tag{18}
\end{equation*}
$$

Substitute the right hand side of (18) into the right hand side of (6)

$$
\begin{gathered}
n!=\prod_{r=1}^{n} \prod_{k=0}^{\infty} \frac{(k+2)(r+k)}{(k+1)(r+k+1)}=\prod_{k=0}^{\infty} \prod_{r=1}^{n} \frac{(k+2)(r+k)}{(k+1)(r+k+1)} \\
=\prod_{k=0}^{\infty}\left(\frac{k+2}{k+1}\right)^{n}\left(\frac{1+k}{1+k+n}\right)=\prod_{k=1}^{\infty}\left(\frac{k+1}{k}\right)^{n}\left(\frac{k}{k+n}\right) \\
=\prod_{k=1}^{\infty}\left(1+\frac{1}{k}\right)^{n}\left(1+\frac{n}{k}\right)^{-1},
\end{gathered}
$$

replaced n by z, k by j and use the identity $\Gamma(z+1)=z \Gamma(z)$, finding the desired result.
6. Pochhammer Symbol: Other Proof for Infinite Product Representation

6.1. Other Proof for Infinite Product Representation for Pochhammer Symbol.

Theorem 8. (Guedes, 2016 [4]) If $z \in \mathbb{C}-\{-1,-2, \ldots\}$ and $n \in \mathbb{N}^{+}$, then

$$
(z)_{n}=\prod_{j=1}^{\infty}\left(1+\frac{1}{j}\right)^{n}\left(1+\frac{n}{j+z-1}\right)^{-1}
$$

where $(z)_{n}$ denotes the Pochhammer symbol.
Proof. The definition for Pochhammer symbol [3], give us

$$
\begin{equation*}
(z)_{n}=\prod_{r=0}^{n-1}(z+r)=\prod_{r=0}^{n-1}\left(\frac{z+r}{1}\right) . \tag{19}
\end{equation*}
$$

Replaced a by $z+r$ and b by 1 in the Lemma 6

$$
\begin{equation*}
\frac{z+r}{1}=\prod_{k=0}^{\infty} \frac{(k+2)(z+r+k)}{(k+1)(z+r+k+1)} \tag{20}
\end{equation*}
$$

Substitute the right hand side of (20) in the right hand side of the (19) and encounter

$$
\begin{aligned}
& (z)_{n}=\prod_{r=0}^{n-1} \prod_{k=0}^{\infty} \frac{(k+2)(z+r+k)}{(k+1)(z+r+k+1)} \\
& =\prod_{k=0}^{\infty} \prod_{r=0}^{n-1} \frac{(k+2)(z+r+k)}{(k+1)(z+r+k+1)} \\
& =\prod_{k=0}^{\infty}\left(\frac{k+2}{k+1}\right)^{n}\left(\frac{k+z}{k+n+z}\right) \\
& =\prod_{k=0}^{\infty}\left(1+\frac{1}{k+1}\right)^{n}\left(1+\frac{n}{k+z}\right)^{-1} \\
& =\prod_{k=1}^{\infty}\left(1+\frac{1}{k}\right)^{n}\left(1+\frac{n}{k+z-1}\right)^{-1},
\end{aligned}
$$

replaced k by j, finding the desired result.

References

[1] Remmert, Reinhold, Classical Topics in Complex Function, Graduate Texts in Mathematics, 172, Springer-Verlag, New York, 1998.
[2] en.wikipedia.org/wiki/Gamma_function, available in July 7, 2017.
[3] Blagouchine, Iaroslav V., Expansions of generalized Euler's constants into the series of polynomials in π^{-2} and into the formal enveloping series with rational coefficients only, arXiv:1501.00740v3 [math.NT], 7 Sep 2015.
[4] Guedes, Edigles, Infinite Product Representations for Binomial Coefficient, Pochhammer's Symbol, Newton's Binomial and Exponential Function, viXra:1611.0049.
[5] en.wikipedia.org/wiki/Binomial_coefficient, availabe in July 7, 2017.
[6] Guedes, Edigles, On the Natural Logarithm Function and its Applications, viXra:1503.0058.

