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�It is the spirit that quickeneth; the �esh pro�teth nothing: the words that I speak unto you, they are spirit, and they are
life.� - John 6:63.

Abstract. In this paper, we demonstrate some limit's formulae for gamma function and
binomial coe�cient among other things.

1. Introduction

Each mathematician looks at a function and sees in his own way. Leonhard Euler (1707-1783)
contemplated the gamma function, and gave the in�nite product expansion [1, p. 33]
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which is valid in C, except for z 2f0;¡1;¡2; :::g.
Carl Friedrich Gauss (1777-1855) rewrote the Euler's product as
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see [2].
In 1854, Karl Weierstrass (1815-1897) gave the in�nte product expansion for gamma function

[1, p. 34-35]
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which is valid for all C.
Hence, the question: how do we see the gamma function? The answer: the wonderful limit's

formula
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From this formula, we derive the a proof for the representation of in�nite product of the gamma
function and the binomial coe�cient. In addition, we found the limit's formula for the coe�cient
binomial �
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among other things, such as the new in�nite product representation for binomial coe�cient, given
by �
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2. Some Lemmas

Lemma 1. If n is an integer nonnegative, then

¡(n+1)= lim
k!1

�
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k

�
n

;

where ¡(z) denotes the gamma function.

Proof. In elementary calculus, we well-know the identity

lim
k!1

`+ ak
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= a
b
; (5)

The de�nition for gamma function [3], give us
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Replaced a by r and b by 1 in (5)
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Substitute the left hand side of (7) in the right hand side of (6)
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which is the desired result. �

Lemma 2. If n is an integer nonnegative, z 2C and ` is any number, then
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where (z)n denotes the Pochhammer symbol.

Proof. The de�nition for Pochhammer symbol [3], give us
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Replaced a by z+ r and b by 1 in (5)
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Substitute the left hand side of (9) in the right hand side of (8)
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which is the desired result. �

Lemma 3. If n is an integer nonnegative, z 2C and ` is any number, then
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where
�
z
n

�
denotes the binomial coe�cient.
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Proof. The de�nition of the binomial coe�cient [5], give us�
z
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: (10)

Usint the limit's formula of the Lemma 2 into (10), we obtain
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which is the desired result. �

3. Gamma Function: New Proof for the Infinite Product

3.1. In�nite Product Representation for Gamma Function.

Theorem 4. (Euler, 1729) If z 2C¡f¡1;¡2; :::g, then
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where ¡(z) denotes the gamma function.

Proof. In [4], we have the in�nite product for Pochhammer's symbol
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Substitute the right hand side of (12) in the right hand side of the Lemma 1 and encounter
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replaced n by z and use the identity ¡(z+1)= z¡(z), �nding the desired result. �

4. Binomial Coefficient: New Infinite Product Representation

4.1. New In�nite Product Representation for Binomial Coe�cient.

Theorem 5. If z 2C¡f¡1;¡2; :::g and n2N+ , then�
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denotes the binomial coe�cient.
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Proof. In [4], we have the in�nite product for Pochhammer's symbol
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Substitute the right hand side of (14) and (15) in the right hand side of the Lemma 3 and
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which is the desired result. �

5. Gamma Function: Other Proof for the Infinite Product

5.1. In�nite Product Representation for Gamma Function.

Lemma 6. If a; b2R and b=/ 0, then

a
b
=

Y
k=0

1
(k+2)(a+ bk)

(k+1)(a+ b+ bk)
:

Proof. In previous paper [6] the �rst author proved the integral representation for natural loga-
rithm, for R(z)> 0,

ln z
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The exponentiation of (16), give us
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which is the desired result. �

Theorem 7. (Euler, 1729) If z 2C¡f¡1;¡2; :::g, then
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where ¡(z) denotes the gamma function.

Proof. Replaced a by r and b by 1 in the Lemma 6
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replaced n by z, k by j and use the identity ¡(z+1)= z¡(z), �nding the desired result. �

6. Pochhammer Symbol: Other Proof for Infinite Product Representation

6.1. Other Proof for In�nite Product Representation for Pochhammer Symbol.

Theorem 8. (Guedes, 2016 [4]) If z 2C¡f¡1;¡2; :::g and n2N+ , then
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where (z)n denotes the Pochhammer symbol.

Proof. The de�nition for Pochhammer symbol [3], give us
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Substitute the right hand side of (20) in the right hand side of the (19) and encounter

(z)n=
Y
r=0

n¡1 Y
k=0

1
(k+2)(z+ r+ k)

(k+1)(z+ r+ k+1)

=
Y
k=0

1 Y
r=0

n¡1
(k+2)(z+ r+ k)

(k+1)(z+ r+ k+1)

=
Y
k=0

1 �
k+2
k+1

�n�
k+ z

k+n+ z

�
=
Y
k=0

1 �
1+ 1

k+1

�n�
1+ n

k+ z

�¡1
=
Y
k=1

1 �
1+ 1

k

�n�
1+ n

k+ z¡ 1

�¡1
;

5



replaced k by j, �nding the desired result. �
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