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“It 1s the spirit that quickeneth; the flesh profiteth nothing: the words that I speak unto you, they are spirit, and they are
life.” - John 6:63.

ABSTRACT. In this paper, we demonstrate some limit’s formulae for gamma function and
binomial coefficient among other things.

1. INTRODUCTION

Each mathematician looks at a function and sees in his own way. Leonhard Euler (1707-1783)
contemplated the gamma function, and gave the infinite product expansion [1, p. 33|

F(Z)%li <1+%>Z<1+§)_1 (1)

which is valid in C, except for z € {0,—1,-2,...}.
Carl Friedrich Gauss (1777-1855) rewrote the Euler’s product as

Z.ml
I'(z) = lim N

n—ooz(z+1)(z4+2) ...-(z+n)’ (2)

see [2].
In 1854, Karl Weierstrass (1815-1897) gave the infinte product expansion for gamma function
[1, p. 34-35]

r(z):zevzﬁ <1+§>e—2/j, (3)

Jj=1

which is valid for all C.
Hence, the question: how do we see the gamma function? The answer: the wonderful limit’s

formula
s k "4k
F(nJrl)leHolo(nJrk) < k ),n' ()

From this formula, we derive the a proof for the representation of infinite product of the gamma
function and the binomial coefficient. In addition, we found the limit’s formula for the coefficient
binomial

)

(1) Ner)

n ) k- ¢ ¢
*(g+n)(5+n+1)

among other things, such as the new infinite product representation for binomial coefficient, given

by
o0
z z n—1 n—1
(n )Ejl:[l <1+j+n)<1+j+z)'

n—1
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2. SOME LEMMAS

Lemma 1. Ifn is an integer nonnegative, then

F(”“):kli“;(nik) ("Zk) !

where T'(z) denotes the gamma function.

Proof. In elementary calculus, we well-know the identity

{+ak

. a
Ry R (5)

The definition for gamma function [3], give us

r=1 r=1
Replaced a by r and b by 1 in (5)
l4+rk v

Substitute the left hand side of (7) in the right hand side of (6)

o btk bk k \"(n+k
—nl= — = VA
I(n+1)=n! Hklggof—i-k klggorﬂ btk kEHéO(”‘Fk)( k )n,

which is the desired result. O

Lemma 2. If n is an integer nonnegative, z € C and ¢ is any number, then

: E \'(¢ 14
on= i) (202 ) (50,
where (z)y, denotes the Pochhammer symbol.

Proof. The definition for Pochhammer symbol [3], give us

=TI (zmﬁ(ﬁ”). (8)
r=0 r=0

Replaced a by z+r and b by 1 in (5)

(
. A+ (z+r)kE 247
L )

Substitute the left hand side of (9) in the right hand side of (8)

n—1 n—1 n
_ A+ (z4r)k C+(z+m)k . k 1 14
=11 == i ==l ) (e )eet)
which is the desired result. O

Lemma 3. If n is an integer nonnegative, z € C and £ is any number, then

<Z ) i (£+z)(é+z+1)n_l

Ty [ ’
k— o0
(3+n)(5+n+1)

n—1

where ( z ) denotes the binomial coefficient.



Proof. The definition of the binomial coefficient [5], give us
2\ _(2n
( : ) G, (10)
Usint the limit’s formula of the Lemma 2 into (10), we obtain
. E \"(¢ ‘
( : ) klin;(m) (£+2)(+et1),

im () (5 0n) (5 nt1),

k— oo —1
(g+2)(5+2+1)

n) +n+1)

= lim
k— oo

?T|<§ wl&

which is the desired result. O

3. GAMMA FUNCTION: NEW PROOF FOR THE INFINITE PRODUCT

3.1. Infinite Product Representation for Gamma Function.
Theorem 4. (Euler, 1729) If ze C—{—1,-2,...}, then

i 04"

j=1

where T'(z) denotes the gamma function.

Proof. In [4], we have the infinite product for Pochhammer’s symbol

(;/:),,szo_o1 <1+%>n<1+j+z%)l. (11)

j
Replaced z by (n+k)/k in (11)

(), I 0+3) (o geitems)

j=1

Substitute the right hand side of (12) in the right hand side of the Lemma 1 and encounter
W“)JE&(nik)nﬁ (+5) (i)

1 (w5e) (viw) |

A ) )

replaced n by z and use the identity I'(z + 1) = 2I'(z), finding the desired result. O

4. BINOMIAL COEFFICIENT: NEW INFINITE PRODUCT REPRESENTATION

4.1. New Infinite Product Representation for Binomial Coefficient.
Theorem 5. If ze C—{-1,-2,...} and ne N then

()20 (e ih) (e nst),

j=1

where ( z ) denotes the binomial coefficient.
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Proof. In [4], we have the infinite product for Pochhammer’s symbol

(z)n:ﬁ <1+%>n<1+ﬂ%)_1. (13)

j=1
Replaced z by ¢/k+2z+1 and n by n—1 in (13)

¢ o 1\ ! (n—1Dk \7!
<z+z+1>n-1jlj[1 <1+3> <1+—jk+zk+£ (14)
and replaced z by £/k+mn+1 and n by n—1 in (13)
14 o 1\ ! (n—1k \!
— 1 = 1+= 1+——— . 15
<k+n+ >n—1 H( +]> ( +]k+nk+£ (15)
Substitute the right hand side of (14) and (15) in the right hand side of the Lemma 3 and
encounter
Y4 (n—1)k 1
z . (E+Z) 0 (1+jk12k+€)
n :klggo £ (n—1k \—1
(E""n)J:l (1+Jk+nk+e)
¢ (n— 1)k 71-|
> [(#Z) (1+jkn+T+l>
- khlgo ¢ ' (n—1)k -1
i=1 (£+n) (1+5552)
zZ 1 n—1 n—1
”]Ul< +J’+n>< +J’+z)’
which is the desired result. O

5. GAMMA FUNCTION: OTHER PROOF FOR THE INFINITE PRODUCT
5.1. Infinite Product Representation for Gamma Function.
Lemma 6. Ifa,beR and b+0, then

(k+2)(a+bk)
k+1 Ya+b+bk)

Proof. In previous paper [6] the first author proved the integral representation for natural loga-
rithm, for R(z) >0

In 2 o] k+1
zfli/o (z+:r 1+x Z/ (z+x) 1+:E)

(k+2)(k+2)
z—lz k:+1 Jk+z+1)

% (16)
(k+2)(k+2)

N 1H k:+1 Jk+z+1)

= (k+2)(k+2)
Inz=1
Tz nH k+1 Yk+2z+1)

The exponentiation of (16), give us

o E+2)(k+2)
Z_Ig(k—l—l)(k—i—z—i-l)' (17)

Replaced z by a /b in (17)

1"—"[ (k+2)(a+bk)

D +o+0k)



which is the desired result. O

Theorem 7. (Euler, 1729) If z€e C—{—1,-2,...}, then

=1 <1+ ) (+5)

j=1
where T'(z) denotes the gamma function.

Proof. Replaced a by r and b by 1 in the Lemma 6

.zfi((k+2Xr+k) (18)

1*k:0 k+1)(r+k+1)

Substitute the right hand side of (18) into the right hand side of (6)
Sorr (k+2)r+k) O (k+2)(r+k)
II]] k+& (r+k+1) IIII(k+1 Yr+k+1)

) ()
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replaced n by z, k by j and use the identity I'(z 4+ 1) = 2T'(2), finding the desired result. O
6. POCHHAMMER SYMBOL: OTHER PROOF FOR INFINITE PRODUCT REPRESENTATION

6.1. Other Proof for Infinite Product Representation for Pochhammer Symbol.

Theorem 8. (Guedes, 2016 [{]) If ze C—{-1,-2,...} and n€ N, then
o n —
1 n !
=T (1+5) ()
j=1
where (z)y, denotes the Pochhammer symbol.

Proof. The definition for Pochhammer symbol [3], give us

z)n:j:[:(z—i—r):h (Z—;T) (19)

Replaced a by z+r and b by 1 in the Lemma 6

z4r 11 (k+2)(z+7+k)
il | R ey (20)

Substitute the right hand side of (20) in the right hand side of the (19) and encounter

_ v (k+2)(z47+k)
(@”*IIII(k+D@+r+k+n

0 (k+2)(z+r+k)
_IIII(k+U@+r+k+n

_ﬁ k+2\"( k+z
B k+1 k+n+z
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replaced k by j, finding the desired result. O
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