I search to obtain a dynamics for a probabilistic system: a system with a finite number of variables $P_{i} \geq 0$ such that $\sum_{i} P_{i}=1$.

The dynamics of the probabilistic system is on a a face of a octahedron, but it is complex to require a dynamics on one face (the general solutions $\frac{d P_{i}}{d t}=F\left(P_{1}, \cdots, P_{n}\right)$ tend to cover the whole octahedron faces).

I simplify the problem using the probability amplitude f_{i} such that $P_{i}=$ f_{i}^{2}, so that the probabilities are defined as positive.

The dynamics of the system is:

$$
\frac{d f_{i}}{d t}=a_{i}+\sum_{i} a_{i j} f_{j}+\sum_{i} a_{i j k} f_{j} f_{k}+\cdots
$$

so that it is simple to obtain the normalization:

$$
0=\frac{1}{2} \frac{d}{d t} \sum_{i} P_{i}=\frac{1}{2} \frac{d}{d t} \sum_{i} f_{i}^{2}=\sum_{i} f_{i} \frac{d f_{i}}{d t}=\sum_{i} a_{i} f_{i}+\sum_{i j} a_{i j} f_{i} f_{j}+\sum_{i j k} a_{i j k} f_{i} f_{j} f_{k}+\cdots
$$

for each arbitrary values of the amplitudes this polynomial must be zero (even for points near the octahedron surfaces), so that

$$
\begin{aligned}
& a_{i}=0 \\
& a_{i j}+a_{j i}=0 \\
& a_{i i j}+a_{i j i}+a_{j i i}=0 \\
& a_{i j k}+a_{i k j}+a_{j i k}+a_{k i j}+a_{j k i}+a_{k j i}=0
\end{aligned}
$$

so that $\sum_{P} a_{P(i, j, k, \cdots)}=0$, so that the sum of the coefficients with the permutation of the indices is null.

The amplitudes dynamics is on a sphere, and if the initial amplitude is on a unitary sphere, then the probability dynamics is normalized to one.

It is possible to use more complex dynamics, for example $P_{i}=f_{i}^{2 n}$, or $P_{i}=f_{i} f_{i}^{*}$ (using a quantum mechanics analogy).

The quantum analogy contain the Schrödinger equation (I use the Einstein notation, so that summation is applied when a index appear twice in a single term):

$$
\frac{d f_{i}}{d t}=a^{i}+a_{j}^{i} f_{j}+a^{i j} f_{j}^{*}+a_{j k}^{i} f_{j} f_{k}+a_{k}^{i j} f_{j}^{*} f_{k}+a^{i j k} f_{j}^{*} f_{k}^{*}+\cdots
$$

and

$$
\frac{d f_{i}^{*}}{d t}=\left(a^{i}\right)^{*}+\left(a_{j}^{i}\right)^{*} f_{j}^{*}+\left(a^{i j}\right)^{*} f_{j}+\left(a_{j k}^{i}\right)^{*} f_{j}^{*} f_{k}^{*}+\left(a_{k}^{i j}\right)^{*} f_{j} f_{k}^{*}+\left(a^{i j k}\right)^{*} f_{j} f_{k}+\cdots
$$

the normalization condition is:

$$
0=\frac{d}{d t} \sum_{i} P_{i}=f_{i} \frac{d f_{i}^{*}}{d t}+\frac{d f_{i}}{d t} f_{i}^{*}=a^{i} f_{i}^{*}+\left(a^{i}\right)^{*} f_{i}+a^{i j} f_{i}^{*} f_{j}^{*}+\left(a^{i j}\right)^{*} f_{i} f_{j}+\cdots
$$

the upper, and the lower, indices behaves as the ususal dynamics:

$$
\begin{aligned}
& a_{i}=0 \\
& a^{i j}+a^{j i}=0 \\
& a_{j}^{i}+\left(a_{i}^{j}\right)^{*}=0 \\
& a_{j k}^{i}+\left(a_{i}^{k j}\right)^{*}=0 \\
& a^{i j k}+a^{i k j}+a^{j i k}+a^{k i j}+a^{j k i}+a^{k j i}=0
\end{aligned}
$$

the lower not zero terms seem the elements of the Hamiltonian matrix, when one use the equation $i \frac{d f}{d t}=H f$ instead of $\frac{d f}{d t}=H f$. This is the general differential equation for a quantum system that is normalizable (the f_{i} can be the f_{x} amplitude, where x is a discrete coodinate in a three-dimensional space, and $a_{i j}$ can be an interaction betweeen two coordinate points).

