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Abstract—In the Part I of Line-Surface formulation of the 

ElectroMagnetic-Power-based Characteristic Mode Theory for 

Metal-Material combined objects (LS-MM-EMP-CMT), the 

relevant fundamental principle had been established, and some 

very valuable complements and improvements are done in this 

Part II. 

In this Part II, the traditional surface equivalent principle for a 

homogeneous material body whose boundary is only constructed 

by a closed surface is generalized to the line-surface equivalent 

principle of a homogeneous material body whose boundary can 

include some lines and open surfaces besides a closed surface; a 

new line-surface formulation of the input/output power operator 

for metal-material combined objects is given, and the new 

formulation is more advantageous than the formulation given in 

Part I; some more detailed formulations for establishing 

LS-MM-EMP-CMT are explicitly provided here, such as the 

formulations corresponding to the decompositions for currents 

and their domains and the formulations corresponding to variable 

unification. 

In addition, a new concept intrinsic resonance is introduced in 

this paper, and then a new Characteristic Mode (CM) set, 

intrinsic resonant CM set, is introduced into the EMP-CMT 

family. 

 

 
Index Terms—Characteristic mode (CM), electromagnetic 

power, input power, interaction, intrinsic resonance, line-surface 

equivalent principle, metal-material combined object, output 

power, surface equivalent principle, the conservation law of 

energy, the decompositions for currents and their domains, 

variable unification. 

 

 

I. INTRODUCTION 

HE fundamental principle of the ElectroMagnetic-Power- 

based Characteristic Mode Theory (EMP-CMT) for 

Metal-Material combined object (MM-EMP-CMT) was 

established in [1]-[2], and the object was constructed by metal 

line, metal surface, metal volume, and material body. The line 
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and surface electric currents on metal line, metal surface, and 

the boundary of metal volume were utilized to express the 

various fields and powers related to metal part in [1]-[2], and 

the total field on material body and the equivalent surface 

currents on material boundary were utilized to express the 

various fields and powers related to material part in [1] and [2] 

respectively, so the formulations provided in [1] included line, 

surface, and volume variables, but only the line and surface 

currents appeared in [2]. Based on this, the [1] and [2] can be 

respectively called as the Line-Surface-Volume formulation of 

MM-EMP-CMT (LSV-MM-EMP-CMT) and the Line-Surface 

formulation of MM-EMP-CMT (LS-MM-EMP-CMT). 

For LS-MM-EMP-CMT, the fundamental principles to 

decompose various currents and the domains on where currents 

exist, to select basic variables and unify variables, and to 

discretize input/output power operator and construct 

Input/Output-power-based Characteristic Mode (InpCM/ 

OutCM) set had been carefully discussed in [2] (The definitions 

for the terminologies “basic variables” and “to unify variables / 

variable unification” can be found in [3]). However, some other 

valuable topics related to LS-MM-EMP-CMT were not 

carefully considered in [2], for example, 

1) the formulations corresponding to variable unification 

were not explicitly provided in [2]; 

2) the case that the metal line is completely or partially 

submerged into the material body was not included in [2]; 

3) when the material boundary includes some lines and open 

surfaces besides a closed surface, the equivalent-current-based 

source-field relationships were not explicitly given in [2]; 

4) the arguments of the input/output power operator used in 

[2] are only line and surface currents, but there are some 

volume integrals in the operator. It is still a valuable topic how 

to obtain an input/output power operator which only includes 

line and surface currents and integrals but does not include any 

volume integral (i.e., how to establish a “real” 

LS-MM-EMP-CMT). 

As a further supplement to the previous Part I of 

LS-MM-EMP-CMT, this Part II mainly focuses on completing 

and improving the Part I from the aspects mentioned above. At 

the same time, the traditional surface equivalent principle for a 

homogeneous material body whose boundary is a closed 
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surface is generalized to the line-surface equivalent principle 

for a homogeneous material body whose boundary can include 

some lines and open surfaces besides a closed surface. In 

addition, a new concept intrinsic resonance is introduced in this 

paper, and then a new CM set, intrinsic resonant CM set, is 

introduced into the EMP-CMT family. 

This paper is organized as follows. For a general 

metal-material combined object illustrated in Fig. 1, the 

decompositions for currents and their domains and the 

line-surface equivalent principle are provided in Sec. II; the 

selection for basic variables and the source-field relationships 

are discussed in Sec. III; a new and “real” line-surface 

formulation of input/output power operator is provided in Sec. 

IV; the various power-based CM sets are constructed in Sec. V; 

in Sec. VI, the intrinsic resonance and the relevant concepts are 

introduced. In Sec. VII, the general formulations provided in 

Secs. II-V are specialized to the special forms corresponding to 

some typical examples, and some valuable engineering 

applications corresponding to these typical examples are 

simply discussed. Sec. VIII concludes this paper. 

In what follows, the j te   convention is used throughout, and 

the metal-material combined object is simply called as 

scatterer. 
 
 

II. TO DECOMPOSE CURRENTS AND THEIR DOMAINS AND TO 

GENERALIZE SURFACE EQUIVALENT PRINCIPLE TO 

LINE-SURFACE EQUIVALENT PRINCIPLE 

The scatterer focused on by this paper is constructed by the 

metal line part metL , the metal surface part metS , the metal 

volume part metV , and the material volume part matV , and their 

boundaries are respectively denoted as metL , metS , metV , and 
matV , and a typical example is illustrated in Fig. 1. 

When an external excitation incF  incidents on the scatterer, 

the line electric current lJ , the surface electric current ,

s

met surfJ , 

and the surface electric current ,

s

met volJ  will be excited on the 
metL , metS , and metV  respectively; the volume electric current 
vopJ  and the volume magnetic current vmM  will be excited on 

the matV . The summation of ,

s

met surfJ  and ,

s

met volJ  is simply 

denoted as sJ , i.e., , ,

s s s

met surf met volJ J J  . These scattering 

currents  ,l sJ J  and  ,vop vmJ M  will generate scattering field 
scaF , and the summation of incF  and scaF  is total field totF , i.e., 
tot inc scaF F F  . In fact, the scaF  can be divided into two parts, 

the sca

metF  generated by metal-based currents  ,l sJ J  and the 
sca

matF  generated by material-based currents  ,vop vmJ M , and 
sca sca sca

met matF F F   based on superposition principle [4]. For the 

convenience of this paper, the field tot sca

matF F  on int matV  is 

denoted as inc

intf , i.e.,      inc tot sca

int matf r F r F r   for any 

int matr V , here ,F E H  and correspondingly ,f e h , and 

the symbol “ int matV ” represents the interior of domain matV  

[5]. 

A. Some restrictions for metL , metS , and metV , from a 

practical point of view 

From a purely mathematical point of view, clmet metL L , and 

clmet metS S , and clmet metV V , here the symbol “ cl ” 

represents the closure of set [5]. However, from a practical 

point of view it is restricted in this paper that 

 

 Restrction for : clmet met metL L L  (1.1) 

 Restrction for : clmet met metS S S  (1.2) 

 Restrction for : clmet met metV V V  (1.3) 

 

and these restrictions can be vividly understood as that there 

does not exist any “point-type hole” on metL , “point-type hole 

and line-type hole” on metS , and “point-type hole, line-type 

hole, and surface-type hole” on metV . In addition, the 

restrictions (1.1) and (1.2) imply that met metL L  , and 
met metS S   in three-dimensional Euclidean space 3 . Based 

on the same consideration, it is also restricted in this paper that 

 

 Restrction for : cl \mat mat mat mat met met metV V V V L S V    (1.4) 

 

and the restriction (1.4) can be vividly understood as that there 

does not exist any air-filled “point-type hole, line-type hole, 

and surface-type hole” on matV ; the “line-type hole” on matV  

originates from the submergence of metL  into matV , and the 

“surface-type hole” on matV  originates from the submergence 

of metS  into matV . In summary, the “holes” on matV , which is 

illustrated in Fig. 1, are metal-filled instead of being air-filled. 

In addition, it is also restricted in this paper that 

 

   Restrction for : cl \met met met met metL L L S V  (1.1') 

  Restrction for : cl \met met met metS S S V  (1.2') 

 

The restriction (1.1') is equivalent to saying that the intersection 

between metL  and met metS V  can only be some discrete points, 

and cannot be any line; the restriction (1.2') is equivalent to 

saying that the intersection between metS  and metV  can only be 

some discrete points or lines, and cannot be any surface. The 

rationality of restrictions (1.1') and (1.2') had been carefully 

explained in [2], and it will not be repeated here. 
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Fig. 1. The metal-material combined object considered in this paper, and the 

decomposition for its boundary. 
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In the following Secs. II-B and II-C, the decompositions for 

currents and their domains are done to prepare for the variable 

unification in Sec. III-A. 

B. The decompositions for domains metL , metS , and metV  and 

the decompositions for currents lJ  and sJ  

The metL , metS , and metV  can be respectively decomposed 

as follows [1]-[2] 

 

 0

met met metL L L  (2) 

 0

met met metS S S  (3) 

 0

met met metV V V     (4) 

 

here the 0

metL  and metL  are defined as 

 

  0 \ intmet met met matL L L V  (5.1) 

  intmet met met matL L L V  (5.2) 

 

and the 0

metS  and metS  are defined as 

 

  0 \ intmet met met matS S S V  (6.1) 

  intmet met met matS S S V  (6.2) 

 

and the 0

metV  and metV  are defined as 

 

  0 \ intmet met met matV V V V   (7.1) 

  intmet met met matV V V V   (7.2) 

 

The 0

metL  and metL  can be vividly understood as the part which is 

not submerged into matV  and the part which is submerged into 
matV , and the 0

metS  and metS  can be similarly explained; the 

0

metV  and metV  can be vividly understood as the part which 

contacts with air and the part which contacts with material body. 

In addition, it is obvious that 

 

 0

met metL L    (8) 

 0

met metS S    (9) 

 0

met metV V     (10) 

 

Based on (2)-(4) and (8)-(10), the scattering electric currents 
lJ  and sJ  can be correspondingly decomposed as follows 

 

        0 ,l l l metJ r J r J r r L    (11) 

        0 ,s s s met metJ r J r J r r S V     (12) 

 

here the 
0

lJ  and lJ  are defined as 
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0

,

0 ,

l met

l

met
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J r
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 (13.1) 
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 (13.2) 

 

and the 
0

sJ  and sJ  are defined as 

 

  
   

 
0 0

0

,

0 ,

s met met

s

met met

J r r S V
J r

r S V

  


 
 (14.1) 

  
 

   
0 00 ,

,

met met

s

s met met

r S V
J r

J r r S V

 


 
 (14.2) 

 

C. The decomposition for matV  and the line-surface 

equivalent principle for a homogeneous material body whose 

boundary includes some lines and open surfaces besides a 

closed surface 

As pointed out in (1), there does not exist any air-filled 

“point-type hole, line-type hole, and surface-type hole” on matV , 

so the matV  can be decomposed into the following four parts 

 

Boundary Point Part : mat

pointV    (15.1) 

Boundary Line Part : mat met

lineV L   (15.2) 

Boundary Open Surface Part : mat met

open surfV S   (15.3) 

 Boundary Closed Surface Part : \mat mat met met

closed surfV V L S    (15.4) 

 

It is obvious that the above four parts are pairwise disjoint, and 

that 

 (a) the boundary point part (i.e., the metal-filled “point-type 

hole” on matV ) does not exist on matV , based on the restrictions 

in (1); 

(b) the boundary line part (i.e., the metal-filled “line-type 

hole” on matV ) originates from the submergence of metal line 

into material body, and it is constituted by some lines only, and 

it does not include any surface and discrete point; 

(c) the boundary open surface part (i.e., the metal-filled 

“surface-type hole” on matV ) originates from the submergence 

of metal surface into material body, and it is constituted by 

some open surfaces only, and it does not include any line, 

closed surface, and discrete point; 

(d) the boundary closed surface part originates from the 

contact between material body and air, the contact between 

material body and metal line (the metal line is not submerged 

into material body), the contact between material body and 

metal surface (the metal surface is not submerged into material 

body), the contact between material body and metal body. The 

boundary closed surface part does not include any line, open 

surface, and discrete point. In fact, the boundary closed surface 

part mat

closed surfV  can be further decomposed as follows 

 

 
0

mat mat met

closed surfV V V     (16) 

 

here the metV  is defined as (7.2), and the 0

matV  is defined as 

follows 

 

   

 

0 \

\ \

\

mat mat met

closed surf

mat met met met

mat met met met

V V V

V L S V

V L S V

  

  

  

 (17) 
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If the union of mat

open surfV  and mat

closed surfV  is denoted as mat

surfV  (i.e., 

the whole material boundary surface part is 
mat mat mat

surf open surf closed surfV V V    ), the whole material boundary 
matV  can be detailedly decomposed as follows 

 

 0

matmatmat
surflinepoint

mat mat
open surf closed surf

VVV

mat met met met mat

V V

V L S V V



 

      (18) 

 

 1) the equivalent surface currents on  mat

closed surfV  (i.e., on 

 mat met
V V0 ) 

The equivalent surface currents  ,SE SE

closed surf closed surfJ M  on 

boundary closed surface part mat

closed surfV  are as follows  

 

        0 ,met

SE SE SE mat

closed surf closed surfV
J r J r J r r V


    (19.1) 

        0 ,met

SE SE SE mat

closed surf closed surfV
M r M r M r r V


    (19.2) 

 

in which the  0 0,SE SEJ M  are defined as [3], [6]-[8] 

 

        0 0
ˆ ,SE tot mat

mat r r
J r n r H r r V 

     (20.1) 

        0 0
ˆ ,SE tot mat

mat r r
M r E r n r r V 

      (20.2) 

 

and the  ,met met

SE SE

V V
J M
 

 are defined as [2] 

 

        ˆ ,met

SE tot met

matV r r
J r n r H r r V 

     (21.1) 

        ˆ ,met

SE tot met

matV r r
M r E r n r r V 

      (21.2) 

 

here int matr V , and r  approaches to r  as illustrated in the 

subscripts in (20)-(21); ˆ
matn  is the direction vector pointing to 

int matV . It should be emphasized that the equivalent surface 

currents defined in [6] equal to the  0 0,SE SEJ M  , because the 

direction vector used in [6] is ˆ
matn  instead of ˆ

matn . 

 2) the equivalent surface currents on  mat

open surfV  (i.e., on 
met

S ) 

The equivalent surface currents on boundary open surface 

part metS  can be defined as follows [2] 

 

        ˆ ,SE tot met

r r
J r n r H r r S


  


     (22.1) 

        ˆ ,SE tot met

r r
M r E r n r r S


  


     (22.2) 

 

here , int matr r V   , and r  and r  respectively approach to r  

from the plus and minus sides of metS  [2]. The  ,SE SEJ M   and 

 ,SE SEJ M   can be more detailedly illustrated as the Fig. 2. 

Because of superposition principle [4], the fields generated 

by both  ,SE SEJ M 
 and  ,SE SEJ M 

 are identical to the fields 

generated by  ,SE SE SE SEJ J M M     , and then the 

 ,SE SE SE SEJ J M M      is treated as a whole in this paper. In 

addition, considering of that both the domain of  ,SE SEJ M 
 and 

the domain of  ,SE SEJ M 
 are metS  and that    ˆ ˆn r n r

 
   for 

any metr S , the surface equivalent currents on the boundary 

open surface part metS  can be defined as follows 

 

 
     

       
,

ˆ ,

SE SE SE

open surf

tot tot met

r r r

J r J r J r

n r H r H r r S
 

 

  




     

 (23.1) 

 
     

       
,

ˆ ,

SE SE SE

open surf

tot tot met

r r r

M r M r M r

E r E r n r r S
 

 

  




     

 (23.2) 

 

3) the equivalent line currents on  mat

lineV  (i.e., on met
L ) 

To efficiently introduce the equivalent line currents 

 ,LE LEJ M  on the boundary line part metL , we firstly consider 

the example as illustrated in Fig. 3 (a) (i.e., a metal cylinder 
met

cylinderV  is completely submerged into the material body), and 

then the metL  illustrated in Fig. 3 (b) is viewed as the limitation 

of met

cylinderV  when the radius of met

cylinderV  approaches to zero. 

The boundary of met

cylinderV  is denoted as met

cylinderV , and the 

surface scattering electric current on met

cylinderV  is denoted as 
s

cylinderJ . Obviously, the met

cylinderV  is a part of material boundary, 

and the material-based equivalent surface currents on met

cylinderV  

are denoted as  ,met met
cylinder cylinder

SE SE

V V
J M
 

. If the radius of metal cylinder is 

denoted as met

cylinderR , the following limitations exist 

 

 
0

lim
met
cylinder

met met

cylinder
R

V L

   (24) 

 
0

lim
met
cylinder

s l

cylinder
R

J J


  (25) 

 
0

lim met
met cylinder
cylinder

SE LE

V
R

J J



  (26.1) 

 
0

lim met
met cylinder
cylinder

SE LE

V
R

M M



  (26.2) 

 

and then the equivalent line currents  ,LE LEJ M  on the 

boundary line part metL  can be defined as follows 

 

    
 

 lim ,LE tot met

r r
C r

J r H r dl r L




    (27.1) 

 intmet met met matS S S V

0

matV

,SE SEJ M ,SE SEJ M 

n̂

n̂

0 0,SE SEJ Mˆ
matn

 
 
Fig. 2. The sectional view of the part metS , and the equivalent surface currents 

 ,SE SEJ M   and  ,SE SEJ M  . 

0met

cylinderR 

(a)                                                             (b)
 

 
Fig. 3. (a) A metal cylinder is completely submerged into material body; (b) a 

metal line is completely submerged into material body. 
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 lim ,LE tot met

r r
C r

M r E r dl r L




     (27.2) 

 

here the integral path  C r  is a circle constructed by the points 

r  which are in the set int matV  and approach to the point r . 

4) Summary  

In summary, the whole material boundary matV  can be 

decomposed into four parts as (15) or more detailedly 

decomposed into five parts as (18), and then the equivalent 

currents on matV  can be correspondingly defined as (20), (21), 

(23), and (27). For simplifying the symbolic system of the 

following parts of this paper, the summation of met

SE

V
C


 and 

SE

open surfC  is denoted as SEC  (because met

SE

V
C


 and SE

open surfC  exist on 

the intersection between matV  and met metV S ), and the 

summation of SE

closed surfC  and SE

open surfC  is denoted as SEC  (because 
SE

closed surfC  and SE

open surfC  constitute the whole of equivalent surface 

currents), i.e., 

 

,met

SE

SE SE

open s

C

urfV
C C

 0Equivalent Currents on : , , ,

SE

SE
closed surf

met

C

C

mat LE SE SE SE

open surfV
V C C C C


  (28) 

 

here ,C J M . 

In addition, it is obvious that the traditional surface 

equivalent principle [6] for the material body whose boundary 

is a closed surface can be viewed as the special case of the 

line-surface equivalent principle provided in this paper (when 

,met metL S   , i.e., mat mat

closed surfV V   ). The source-field 

relationships corresponding to traditional surface equivalent 

principle can be found in [6] and the appendixes of [3] and [7]; 

the source-field relationships corresponding to line-surface 

equivalent principle are explicitly given in the following Sec. 

III-B. 

 

 

III. BASIC VARIABLES AND SOURCE-FIELD RELATIONSHIPS 

As illustrated in [1]-[3] and [7]-[8], the selection for basic 

variables is an indispensable preprocessing step for 

constructing various power-based CM sets, and it is done in the 

following Sec. III-A, and then the basic-variables-based 

source-field relationships of a metal-material combined object 

are provided in the following Sec. III-B. 

A. Basic variables 

Based on the above discussions, all the currents (except the 

volume scattering currents  ,vop vmJ M  on matV ) of a 

metal-material combined object are as follows 

 

, ,t

SE

me

SE SE SE

V

J

J J J 

equivalent on material boundary

scattering on metal boundary

0 0 0Electric Currents : , , , , , , , ,

SE

SE SE
l s closed surf open surf

met

J

JJ

J JJ J

l l s s LE SE SE SE SE

V
J J J J J J J J J  

 (29.1) 

 
, ,t

SE

me

SE E

V

M

S SEM M M  

equivalent on material boundary

0Magnetic Currents : , , , ,

SE

SE SE
closed surf open surf

met

M

M

M M

LE SE SE SE SE

V
M M M M M 

 (29.2) 

 

Due to the tangential boundary conditions of totH  and totE  

on met metS V , it has been pointed out in [2] that 

 

    
   

   

,

,met

SE met

open surf
s SE

SE met

V

J r r S
J r J r

J r r V


 
  



 (30.1) 

  
   

   

,
0

,met

SE met

open surf
SE

SE met

V

M r r S
M r

M r r V


 
  



 (30.2) 

 

In fact, it can be further proven that    0SE SEM r M r    for 

any metr S , if the surface metS  is viewed as the limitation of a 

thick metal slab. 

Due to the same reasons to derive the second lines in (30.1) 

and (30.2), the following relations for the currents defined in 

Sec. II-C 3) can be derived 

 

      ,SE s met

cylinder cylinder cylinderJ r J r r V   (31.1) 

    0 ,SE met

cylinder cylinderM r r V   (31.2) 

 

and then 

 

      ,LE l metJ r J r r L   (32.1) 

    0 ,LE metM r r L   (32.2) 

 

because of (25)-(26). 

Based on the extinction theorem, the  ,LE SEJ J  and 

 ,LE SEM M  can be related to each other [3], [7], so the basic 

variables of the metal-material combined object in Fig. 1 can be 

selected as follows 

 

  0 0 0Basic Variables : , , , ,l l s s SEJ J J J J  (33.1) 

 

or equivalently selected as follows 

 

  0 0 0Basic Variables : , , , ,l l s s SEJ J J J M  (33.2) 

 

because of the (30) and (32). It should be clearly pointed out 

that the above selection for the basic variables on metS  is 

equivalent to the selection in [2], though they are different in 

form. 

B. Source-field relationships 

The inc

intf  on int matV  can be expressed in terms of the 

function of  0 0, , ,LE SE SE SEJ J J M  and the function of 

 0 0, , ,l s SE SEJ J J M  as follows [3], [7]-[8] 
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0 0

0 0

,0 ,0 ,

,0 ,0 ,

inc inc LE inc SE inc SE SE

int int int int

inc l inc s inc SE SE

int int int

f r J J J M

J J J M

  

  

f f f

f f f
 (34) 

 

for any int matr V , here the second equality is due to (30.1) and 

(32.1), and 

 

      1 2 0 0 1 0 2,inc

int X X j X X  e  (35.1) 

      1 2 0 0 2 0 1,inc

int X X j X X  h  (35.2) 

 

The totF  on int matV  can be expressed in terms of the function 

of  0 0, , ,LE SE SE SEJ J J M  and the function of  0 0, , ,l s SE SEJ J J M  as 

follows [3], [6]-[8] 

 

 
       

     

0 0

0 0

,0 ,0 ,

,0 ,0 ,

tot tot LE tot SE tot SE SE

int int int

tot l tot s tot SE SE

int int int

F r J J J M

J J J M

  

  
 (36) 

 

for any int matr V , and 

 

      1 2 1 2,tot

int m mX X j X X    (37.1) 

      1 2 2 1,tot

int c m mX X j X X    (37.2) 

 

The sca

matF  on int matV  can be expressed in terms of the function 

of  0 0, , ,LE SE SE SEJ J J M  and the function of  0 0, , ,l s SE SEJ J J M  as 

follows [3], [7]-[8] 

 

 

     

     

     

     

   

0 0

0 0

0 0

,0 ,0 ,

,0 ,0 ,

,0 ,0 ,

,0 ,0

sca tot inc

mat int

tot LE tot SE tot SE SE

int int int

inc LE inc SE inc SE SE

int int int

tot l tot s tot SE SE

int int int

inc l inc s

int int

F r F r f r

J J J M

J J J M

J J J M

J J

 

  

  

  

 

f f f

f f  0 0,inc SE SE

int J M f

 (38) 

 

for any int matr V . The sca

matF  on ext matV  can be expressed as 

the function of  0 0, , ,LE SE SE SEJ J J M  and the function of 

 0 0, , ,l s SE SEJ J J M  as follows [3], [6]-[8] 

 

 
       

     

0 0

0 0

,0 ,0 ,

,0 ,0 ,

sca sca LE sca SE sca SE SE

mat ext ext ext

sca l sca s sca SE SE

ext ext ext

F r J J J M

J J J M

  

  
 (39) 

 

for any ext matr V , and 

 

      1 2 0 0 1 0 2,sca

ext X X j X X   (40.1) 

      1 2 0 0 2 0 1,sca

ext X X j X X   (40.2) 

 

here the symbol “ ext matV ” represents the exterior of domain 
matV  [3]. 

The operators 0 , 0 , m , and m  in (35), (37), and (40) 

are as follows [3], [6]-[9] 

 

      0 02

0

1
1 ,m m

m

X G r r X r d
k



 
      

 
 

  (41.1) 

      0 0 ,m mX G r r X r d


         (41.2) 

 

here the integral domain   is the region where X  exists, and 

0 0 0k    , and m ck   , and 

 

   0

0

1
,

4

mjk r r

mG r r e
r r

 
 


 (42) 

 

In addition, it is well known that [9] 

 

 

     

   

       

0 0

0 0

sca sca l sca s

met met met

sca l l sca s s

met met

sca l sca l sca s sca s

met met met met

F r J J

J J J J

J J J J

 

   

   

 (43) 

 

for any  3 \ met met metr L S V  , and 

 

    0 0

sca

met X j X   (44.1) 

    0

sca

met X X  (44.2) 

 

 

IV. A NEW AND “REAL” LINE-SURFACE FORMULATION OF 

INPUT/OUTPUT POWER OPERATOR 

In this section, the power operator of metal-material 

combined objects is expressed in terms of various currents 

mentioned in above sections. 

For the metal-material combined object in Fig. 1, the input 

power inpP  (the power done by incident field on scattering 

currents) and the output power outP  are as follows [1]-[2] 

 

 
 

   

1 2 ,

1 2 , 1 2 ,

met met met

mat mat

out inp l s inc

L S V

vop inc inc vm

V V

P P J J E

J E H M


  

 
 (45) 

 

here the inner product is defined as ,f g f g d




    , and 

the superscript “ ” represents the complex conjugate, and the 

operator “ ” is defined as 

 

 , , ,A B C A C B C
  

   (46.1) 

 , , ,A B C A B A C
  

   (46.2) 

 

and the reason to utilize symbol “ ” instead of “  ” is that the 

dimensions of line current lJ  and surface current sJ  are 

different. The first equality in (45) is due to the conservation 

law of energy [4], and the outP  can also be written into a more 

convenient form as follows [1]-[2] 
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3 30 0

1 1
,

2 2

1 1
2 , ,

4 4

1 1
, ,

4 4

mat

mat mat

out sca sca tot tot

V
S

sca sca sca sca

tot tot tot tot

V V

P E H dS E E

j H H E E

H H E E



  

 



    
  

  
   

 

 
     
  



 (47) 

 

here the integral domain S  is a spherical surface at infinity. 

Because inc tot sca sca inc sca

mat met int metF F F F f F      on int matV , and 

tan tan tan

inc sca sca sca

mat metE E E E                on met met metL S V  

(here the subscripts “ tan ” represent the tangential components 

of fields), the inpP  in (45) can be rewritten as follows 

 

 

 

   

   

1 2 ,

1 2 , 1 2 ,

1 2 , 1 2 ,

met met met

mat mat

mat mat

inp l s sca sca

met mat
L S V

vop sca sca vm

met met
V V

vop inc inc vm

int int
V V

P J J E E

J E H M

J e h M


   

  
 

  
 

 (48) 

 

In addition, based on the conclusions given in [3] and [8] and 

the discussions given in the Sec. II-C of this paper, the 

following relations exist 

 

   

0

0

0
0

0 0

0
0

0 0

1 2 , 1 2 ,

1 1
, ,

2 2

1 1
, ,

2 2

mat mat

mat mat

mat mat

vop sca sca vm

met met
V V

LE SE sca SE scac
met met

V V
c

LE SE sca SE scac
met met

V V
c c

J E H M

J J E M H

J J E M H

  

   

  

    



  

 

 



 
   

  

 
   

  

 (49) 

 

and 

 

   

0

0

0
0

0 0

0
0

0 0

1 2 , 1 2 ,

1 1
, ,

2 2

1 1
, ,

2 2

mat mat

mat mat

mat mat

vop inc inc vm

int int
V V

LE SE inc SE incc
int int

V V
c

LE SE inc SE incc
int int

V V
c c

J e h M

J J e M h

J J e M h

  

   

  

    



  



 



 
   

  

 
   

  

 (50) 

 

Inserting the (49)-(50) into (48) and considering of that 

(34)-(44), the inpP  in (48) can also be rewritten as (51).  

Based on (30.1), (32.1), (35), (40), and (44), it is obvious that 

   , ,0 ,
met met met met met met

l s sca l l s sca l

ext met
L S V L S V

J J J J J J
 

     (52.1) 

   , ,0 ,
met met met met met met

l s sca s l s sca s

ext met
L S V L S V

J J J J J J
 

     (52.2) 

 

and 

 

    , ,0 ,
mat mat

LE SE inc l LE SE sca l

int met
V V

J J J J J J
 

  e  (53.1) 

    , ,0 ,
mat mat

LE SE inc s LE SE sca s

int met
V V

J J J J J J
 

  e  (53.2) 

    
0 0

0 0, ,0 ,
mat mat

SE inc l SE sca l

int met
V V

M J M J
 

h  (53.3) 

    
0 0

0 0, ,0 ,
mat mat

SE inc s SE sca s

int met
V V

M J M J
 

h  (53.4) 

 

Inserting the (52)-(53) into (51) and utilizing the (30.1) and 

(32.1), the inpP  in (51) can be further simplified into the (54). In 

the following Sec. V, the operator (54) is transformed into its 

matrix form, and then the power-based CM sets are derived.  

 

 

V. POWER-BASED CHARACTERISTIC MODE SETS 

In this section, the power-based CM sets of the 

metal-material combined object illustrated in Fig. 1 are 

constructed. 

A. From current space to expansion vector space 

The currents  0 ,l lJ J ,  0 ,s sJ J , and  0 0,SE SEJ M  can be 

expanded as follows 

 

     
0

0 0 0 0

0 0

1

,

lJ

l l l lJ J J Jl metJ r a b r B a r L 






     (55) 

     
0

0 0 0 0

0 0 0

1

,

sJ

s s s sJ J J Js met metJ r a b r B a r S V 






      (56) 

     
0

0 0 0 0

0 0

1

,

SEC

SE SE SE SEC C C CSE matC r a b r B a r V 






     (57) 

 

in which ,C J M , and 

 

 
1 2, , , Y

Y Y Y YB b b b


   
 (58.1) 

 1 2, , , Y

T
Y Y Y Ya a a a


     (58.2) 

 

  

         

       

 

0 0

0 0

0

0 0

1 2 ,

1 2 , ,0 , ,0

1
,

2

met met met

met met met

inp l s sca l sca l sca s sca s

met met met met
L S V

l s sca l sca SE SE sca s

ext ext ext
L S V

LE SE sca l scac
met met

c

P J J J J J J

J J J J M J

J J J
 

  









     

   

 
   

             

       

0

0
0 0 0 0

0
0 0 0

0 0

1
,

2

1 1
, ,

2 2

mat mat

mat

l sca s sca s SE sca l sca l sca s sca s

met met met met met met
V V

LE SE sca l sca l sca s sca s SE scc
met met met met met

V
c c

J J J M J J J J

J J J J J J M





  

    

 






      




     

 
       

           

0

0

0 0

0
0 0 0 0 0

0 0

1 1
, ,0 , ,0 , ,0 , ,0

2 2

mat

mat mat

a l sca l sca s sca s

met met met
V

LE SE inc l inc SE SE inc s SE inc l inc SE SE inc sc
int int int int int int

V V
c

J J J J

J J J J M J M J J M J
  

   








 


   



  
         



e e e h h h

           
0

0
0 0 0 0 0

0 0

1 1
, ,0 , ,0 , ,0 , ,0

2 2mat mat

LE SE inc l inc SE SE inc s SE inc l inc SE SE inc sc
int int int int int int

V V
c c

J J J J M J M J J M J
  

    

 

 

 
       

e e e h h h

 (51) 
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for any 
0 0 0 0, , , , ,l l s s SE SEY J J J J J M . The superscript “ T ” in (58.2) 

represents the transpose of matrix. 

B. To unify variables in expansion vector space 

Based on the methods given in [3] and [7]-[8], the expansion 

vector 0
SEMa  can be expressed in terms of the expansion vectors 

 0 , ,
l sSE J JJa a a  and the expansion vector 0

SEJa  can be expressed 

in terms of the expansion vectors  0, ,
l s SEJ J Ma a a  as follows 

 

 
   0 0 00

, , , ,SE l s SE SE l sSE J J J M J J JMa T a


   (59) 

 
   0 0 00

, , , ,l s SE SE l s SESE J J M J J J MJa T a


   (60) 

 

here 

 

 
 

0

0 , ,

SE

SE l s l

s

J

J J J J

J

a

a a

a

 
 
 
 
 
 

 (61) 

 
 0

0

, ,

l

l s SE s

SE

J

J J M J

M

a

a a

a

 
 
 
 
 
 

 (62) 

 

and some different methods for obtaining the transformation 

matrices 
 0 0, ,SE l s SEJ J J M

T


 and 
 0 0, ,l s SE SEJ J M J

T


 can be found in [3] 

and [7]-[8], and two of them are specifically exhibited as 

follows 

 

 

 

 

0 0

0 00 0 0 0

, ,

1

SE l s SE

SE tot l SE tot sSE tot SE SE tot SE
int intint int

J J J M

Magnetic Extinction

M H J M H JM H M M H J

T




      
 

 (63) 

 

 

 

0 0

0 00 0 0 0

, ,

1

l s SE SE

SE tot l SE tot sSE tot SE SE tot SE
int intint int

J J M J

Electric Extinction

J E J J E JJ E J J E M

T




      
 

 (64) 

 

here the subscripts “ Magnetic Extinction ” and “ Electric Extinction ” in 

transformation matrices  0 0, ,SE l s SEJ J J M

Magnetic ExtinctionT


 and  0 0, ,l s SE SEJ J M J

Electric ExtinctionT


 mean 

that these two matrices are respectively derived from magnetic 

and electric extinction theorems [3], and the meanings of their 

superscripts are obvious, and the matrices and submatrices in 

(63)-(64) are as follows 

 

 0 0 0 0

0 0

SE tot SE SE tot SE
int int

SE SEM M

M H M M H M


 

  
 

 (65.1) 

 0 0 0 0

0 0

SE tot SE SE tot SE
int int

SE SEM J

M H J M H J


 

  
 

 (65.2) 

 0 0

0

SE tot l SE tot l
int int

lSE JM

M H J M H J


 

  
 

 (65.3) 

 0 0

0

SE tot s SE tot s
int int

sSE JM

M H J M H J


 

  
 

 (65.4) 

 

and 

 

 0 0 0 0

0 0

SE tot SE SE tot SE
int int

SE SEJ J

J E J J E J


 

  
 

 (66.1) 

 0 0

0

SE tot l SE tot l
int int

lSE JJ

J E J J E J


 

  
 

 (66.2) 

 0 0

0

SE tot s SE tot s
int int

sSE JJ

J E J J E J


 

  
 

 (66.3) 

 0 0 0 0

0 0

SE tot SE SE tot SE
int int

SE SEJ M

J E M J E M


 

  
 

 (66.4) 

 

The superscript “
0 0

SE tot SE

intM H M ” on matrix 0 0
SE tot SE

intM H M  means that 

the elements of this matrix is derived from testing the interior 

total magnetic field  00,
SEMtot

int b  by using magnetic current 

basis 0
SEMb , and the superscripts on the other matrices can be 

similarly explained. The elements in (65)-(66) can be computed 

as follows 

 

  0 0 0 0

0

,
SE tot SE SE SE

int

mat

M H M M M

c m
V

b j b   


   (67.1) 

 

 

 

0 0 0 0 0

0

0 0 0

0

ˆ,

1
ˆ, P.V.

2

SE tot SE SE SE SE
int

mat

SE SE SE

mat

M H J M J J

mat m
V

M J J

mat m

V

b n b b

b n b b

   

  

 






   

   

 (67.2) 

  0 0

0

,
SE tot l lSE

int

mat

M H J JM

m
V

b b  


   (67.3) 

  0 0

0

,
SE tot s sSE

int

mat

M H J JM

m
V

b b  


   (67.4) 

 

and 

 

  0 0 0 0

0

,
SE tot SE SE SE

int

mat

J E J J J

m
V

b j b   


   (68.1) 

  0 0

0

,
SE tot l lSE

int

mat

J E J JJ

m
V

b j b   


  (68.2) 

  0 0

0

,
SE tot s sSE

int

mat

J E J JJ

m
V

b j b   


  (68.3) 

 

 

         

       

     

0 0 0 0

0 0 0 0

0
0 0 0 0

0 0

1 2 ,

1 2 , ,

1 1
, ,

2 2

met met met

met met met

mat

inp l l s s sca l sca s

met met
L S V

l l s s sca SE SE

ext
L S V

l s SE sca l sca s SEc
met met m

V
c

P J J J J J J

J J J J J M

J J J J J M
  

   










     

   

 
     

   

         

   

0

0

0 0

0
0 0 0 0 0 0

0 0

0 0 0

0 0

1 1
, ,

2 2

1
, ,

2

mat

mat mat

mat

sca l sca s

et met
V

l s SE sca l sca s SE sca l sca sc
met met met met

V V
c c

l s SE inc SE SEc
int

V
c

J J

J J J J J M J J

J J J J M

  

    

  

  



 

 







 

  
        

 
    

e  

     

0

0

0
0 0 0

0
0 0 0 0 0 0

0 0

1
, ,

2

1 1
, , , ,

2 2

mat

mat mat

SE inc SE SE

int
V

l s SE inc SE SE SE inc SE SEc
int int

V V
c c

M J M

J J J J M M J M



  

    



 

 




  
      

h

e h

 (54) 
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0 0 0 0 0

0

0 0 0

0

ˆ,

1
ˆ, P.V.

2

SE tot SE SE SE SE
int

mat

SE SE SE

mat

J E M J M M

mat m
V

J M M

mat m

V

b n b b

b n b b

   

  

 






  

  

 (68.4) 

 

here the symbols “ P.V. ” in (67.2) and (68.4) represent the 

Cauchy principal value of integral. 

C. The input power operator in expansion vector space (The 

matrix form of input power operator) 

Inserting (55)-(57) into (54), the input power inpP  can be 

transformed into the following matrix form 
 

    
 0 0 0 0 0 0 0 0

0 0 0 0

, , , , , , , , , ,

, , , , ,

l s SE l s SE l s SE l s SE

l s SE l s SE

H
J J J J J M J J J J J Minp inp

J J J J J M
P a P a    (69) 

 

here the superscript “ H ” represents the transpose conjugate of 

matrix, and the symbol “  ” represents the matrix multiplication, 

and 
 

 

          

      

0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0

, , , , ,

, , , , , , , ,

, , ,
0

0 0

l s SE l s SE

l s l s sca l sca s l s l s sca SE SE
met met ext

SE l s sca l sca s SE sca
met met met

inp

J J J J J M

J J J J J J J J J J J M

J J J J J M J
c

c

P

P P

P P
  

   

 


 



  

 
  

    

           

   

0

0 0 0 0 0 0

0 0 0 0

,

, , , ,
0

0 0

, , ,
0

0 0

l sca s
met

SE l s sca l sca s SE sca l sca s
met met met met

SE l s inc SE SE SE inc
int int

J

H H
J J J J J M J J

c

c c

J J J J M M
c

c

P P

P P

  

    

  

   

 


 






      
           

 
  

e h  

      

0 0

0 0 0 0 0 0

,

, , , ,
0

0 0

SE SE

SE l s inc SE SE SE inc SE SE
int int

J M

H H
J J J J M M J M

c

c c

P P
  

    

 




              

e h

(70) 

 

and 
 

  
 

 

0

0 00

0 00

0 0 0 0

00

00

0

, , , , ,

, ,

, ,

l

l ls

s sSE

l s SE l s SE

SESE l sl

l s SEs SE

SE

J

J JJ

J JJ
J J J J J M

JJ J JJ

J J MJ M

M

a

a aa

a aa
a

aa a

a a a

a

 
 

    
    
    

      
    
    
        

 
 

 (71) 

 

The various matrices in (70) are as follows 
 

      

0 0 0 0

0 0 0 0

0 0 0 0

0 0

0 0

, , , ,

0 0 0 0

0 0 0 0

0 0 0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0 0 0

l sca l l sca s
met met

s sca l s sca s
met met

l s l s sca l sca s
met met

l sca l l sca s
met met

s sca l s sca s
met met

J E J J E J

J E J J E J

J J J J J J

J E J J E J

J E J J E J

P


  
 
  



 
 

 
 









 (72) 

   

0 0 0 0

0 0 0 0

0 0 0 0

0 0

0 0

, , , ,

0 0 0 0

0 0 0 0

0 0 0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0 0 0

l sca SE l sca SE
ext ext

s sca SE s sca SE
ext ext

l s l s sca SE SE
ext

l sca SE l sca SE
ext ext

s sca SE s sca SE
ext ext

J E J J E M

J E J J E M

J J J J J M

J E J J E M

J E J J E M

P


  

  



 
 


 













 (73) 

      
0 0 0 0

0 0 0

0 0

0 0

, , ,

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0 0 0

SE sca l SE sca s
met met

SE l s sca l sca s
met met

l sca l l sca s
met met

s sca l s sca s
met met

J E J J E J
J J J J J

J E J J E J

J E J J E J

P


 
 
 
  
 
  
 
  
 
  

 (74) 

    0 0 0

0 0 0 0

,

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0

SE sca l sca s
met met

SE sca l SE sca s
met met

M J J

M H J M H J

P


 
 
 
 
 
 
 
 
   

 (75) 

   
0 0 0 0

0 0 0

0 0

0 0

, , ,

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0 0 0

SE inc SE SE inc SE
int int

SE l s inc SE SE
int

l inc SE l inc SE
int int

s inc SE s inc SE
int int

J e J J e M

J J J J M

J e J J e M

J e J J e M

P


 
 
 
  
 
  
 
  
 
  

e
 (76) 

 0 0 0

0 0 0 0

,

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0

SE inc SE SE
int

SE inc SE SE inc SE
int int

M J M

M h J M h M

P


 
 
 
 
 
 
 
 
   

h
 (77) 

 

The submatrices in (72) are as follows 

 

 0 0 0 0

0 0

l sca l l sca l
met met

l lJ J

J E J J E J


 

  
 

 (78.1) 

 0 0 0 0

0 0

l sca s l sca s
met met

l sJ J

J E J J E J


 

  
 

 (78.2) 

 0 0 0 0

0 0

s sca l s sca l
met met

s lJ J

J E J J E J


 

  
 

 (78.3) 

 0 0 0 0

0 0

s sca s s sca s
met met

s sJ J

J E J J E J


 

  
 

 (78.4) 

 0 0

0

l sca l l sca l
met met

l lJ J

J E J J E J


 

  
 

 (78.5) 

 0 0

0

l sca s l sca s
met met

l sJ J

J E J J E J


 

  
 

 (78.6) 

 0 0

0

s sca l s sca l
met met

s lJ J

J E J J E J


 

  
 

 (78.7) 

 0 0

0

s sca s s sca s
met met

s sJ J

J E J J E J


 

  
 

 (78.8) 

 

and the submatrices in (73) are as follows 

 

 0 0 0 0

0 0

l sca SE l sca SE
ext ext

l SEJ J

J E J J E J


 

  
 

 (79.1) 

 0 0 0 0

0 0

l sca SE l sca SE
ext ext

l SEJ M

J E M J E M


 

  
 

 (79.2) 

 0 0 0 0

0 0

s sca SE s sca SE
ext ext

s SEJ J

J E J J E J


 

  
 

 (79.3) 

 0 0 0 0

0 0

s sca SE s sca SE
ext ext

s SEJ M

J E M J E M


 

  
 

 (79.4) 

 0 0

0

l sca SE l sca SE
ext ext

l SEJ J

J E J J E J


 

  
 

 (79.5) 
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 0 0

0

l sca SE l sca SE
ext ext

l SEJ M

J E M J E M


 

  
 

 (79.6) 

 0 0

0

s sca SE s sca SE
ext ext

s SEJ J

J E J J E J


 

  
 

 (79.7) 

 0 0

0

s sca SE s sca SE
ext ext

s SEJ M

J E M J E M


 

  
 

 (79.8) 

 

and the submatrices 0
l sca l

metJ E J
 , 0

l sca s
metJ E J

 , 0
s sca l

metJ E J
 , and 0

s sca s
metJ E J

  in 

(74) are given in the (78.5)-(78.8), and the other submatrices in 

(74) are as follows 

 

 0 0 0 0

0 0

SE sca l SE sca l
met met

SE lJ J

J E J J E J


 

  
 

 (80.1) 

 0 0 0 0

0 0

SE sca s SE sca s
met met

SE sJ J

J E J J E J


 

  
 

 (80.2) 

 

and the submatrices in (75) are as follows 

 

 0 0 0 0

0 0

SE sca l SE sca l
met met

SE lM J

M H J M H J


 

  
 

 (81.1) 

 0 0 0 0

0 0

SE sca s SE sca s
met met

SE sM J

M H J M H J


 

  
 

 (81.2) 

 

and the submatrices in (76) are as follows 

 

 0 0 0 0

0 0

SE inc SE SE inc SE
int int

SE SEJ J

J e J J e J


 

  
 

 (82.1) 

 0 0 0 0

0 0

SE inc SE SE inc SE
int int

SE SEJ M

J e M J e M


 

  
 

 (82.2) 

 0 0

0

l inc SE l inc SE
int int

l SEJ J

J e J J e J


 

  
 

 (82.3) 

 0 0

0

l inc SE l inc SE
int int

l SEJ M

J e M J e M


 

  
 

 (82.4) 

 0 0

0

s inc SE s inc SE
int int

s SEJ J

J e J J e J


 

  
 

 (82.5) 

 0 0

0

s inc SE s inc SE
int int

s SEJ M

J e M J e M


 

  
 

 (82.6) 

 

and the submatrices in (77) are as follows 

 

 0 0 0 0

0 0

SE inc SE SE inc SE
int int

SE SEM J

M h J M h J


 

  
 

 (83.1) 

 0 0 0 0

0 0

SE inc SE SE inc SE
int int

SE SEM M

M h M M h M


 

  
 

 (83.2) 

 

The elements in (78) are as follows 

 

    0 0 0 0

0

0 01 2 ,
l sca l l l

met

met

J E J J J

L

b j b      (84.1) 

    0 0 0 0

0

0 01 2 ,
l sca s l s

met

met

J E J J J

L

b j b      (84.2) 

    0 0 0 0

0 0

0 01 2 ,
s sca l s l

met

met met

J E J J J

S V

b j b   


   (84.3) 

    0 0 0 0

0 0

0 01 2 ,
s sca s s s

met

met met

J E J J J

S V

b j b   


   (84.4) 

    0 0

0 01 2 ,
l sca l l l

met

met

J E J J J

L

b j b      (84.5) 

    0 0

0 01 2 ,
l sca s l s

met

met

J E J J J

L

b j b      (84.6) 

    0 0

0 01 2 ,
s sca l s l

met

met met

J E J J J

S V

b j b   


   (84.7) 

    0 0

0 01 2 ,
s sca s s s

met

met met

J E J J J

S V

b j b   


   (84.8) 

and the elements in (79) are as follows 

 

    0 0 0 0

0

0 01 2 ,
l sca SE l SE

ext

met

J E J J J

L

b j b     (85.1) 

    0 0 0 0

0

01 2 ,
l sca SE l SE

ext

met

J E M J M

L

b b     (85.2) 

    0 0 0 0

0 0

0 01 2 ,
s sca SE s SE

ext

met met

J E J J J

S V

b j b   


  (85.3) 

    0 0 0 0

0 0

01 2 ,
s sca SE s SE

ext

met met

J E M J M

S V

b b  


  (85.4) 

    0 0

0 01 2 ,
l sca SE l SE

ext

met

J E J J J

L

b j b     (85.5) 

    0 0

01 2 ,
l sca SE l SE

ext

met

J E M J M

L

b b     (85.6) 

    0 0

0 01 2 ,
s sca SE s SE

ext

met met

J E J J J

S V

b j b   


  (85.7) 

    0 0

01 2 ,
s sca SE s SE

ext

met met

J E M J M

S V

b b  


  (85.8) 

 

and the elements 0
l sca l

metJ E J

 , 0
l sca s

metJ E J

 , 0
s sca l

metJ E J

 , and 0
s sca s

metJ E J

  in (80) 

are given in the (84.5)-(84.8), and the other elements in (80) are 

as follows 

 

    0 0 0 0

0

0 01 2 ,
SE sca l SE l

met

mat

J E J J J

V

b j b   


   (86.1) 

    0 0 0 0

0

0 01 2 ,
SE sca s SE s

met

mat

J E J J J

V

b j b   


   (86.2) 

 

and the elements in (81) are as follows 

 

    0 0 0 0

0

01 2 ,
SE sca l SE l

met

mat

M H J M J

V

b b  


  (87.1) 

    0 0 0 0

0

01 2 ,
SE sca s SE s

met

mat

M H J M J

V

b b  


  (87.2) 

 

and the elements in (82) are as follows 

 

   0 0 0 0

0

0 01 2 ,
SE inc SE SE SE

int

mat

J e J J J

V

b j b   


   (88.1) 

   

   

0 0 0 0

0

0 0 0

0

0

0

1 2 ,

1
ˆ1 2 , P.V.

2

SE inc SE SE SE
int

mat

SE SE SE

mat

J e M J M

V

J M M

mat

V

b b

b n b b

  

  








 

  

 (88.2) 

   0 0

0 01 2 ,
l inc SE l SE

int

met

J e J J J

L

b j b      (88.3) 

   0 0

01 2 ,
l inc SE l SE

int

met

J e M J M

L

b b      (88.4) 

   0 0

0 01 2 ,
s inc SE s SE

int

met met

J e J J J

S V

b j b   


   (88.5) 

   0 0

01 2 ,
s inc SE s SE

int

met met

J e M J M

S V

b b  


   (88.6) 

 

and the elements in (83) are as follows 

 

   

   

0 0 0 0

0

0 0 0

0

0

0

1 2 ,

1
ˆ1 2 , P.V.

2

SE inc SE SE SE
int

mat

SE SE SE

mat

M h J M J

V

M J J

mat

V

b b

b n b b

  

  










   

 (89.1) 
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    0 0 0 0

0

0 01 2 ,
SE inc SE SE SE

int

mat

M h M M M

V

b j b   


   (89.2) 

 

Employing (63) and (64), the (69) can be rewritten as follows 

 

 

    
 

    
 

0 0 0 0 0 0

0 0 0

0 0 0 0 0 0

0 0 0

, , , , , , , ,

, , , ,

, , , , , , , ,

, , , ,

l s SE l s l s SE l s

l s SE l s

l s l s SE l s l s SE

l s l s SE

H
J J J J J J J J J Jinp inp

J J J J J

H
J J J J M J J J J Minp

J J J J M

P a P a

a P a

  

  

 (90) 

 

here 

 

 

 

 

 

0 0 0

0 0 0 0

0 0 0 0

, , , ,

, , , , ,

, , , ,

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

l s SE l s

l s SE l s SE

SE l s SE SE l s SE

inp

J J J J J

H

inp

J J J J J M

J J J M J J J M

Magnetic Extinction Magnetic Extinction

P

I I

I I
P

I I

T T
 

   
   
   
     
   
  
  
   




 (91) 

 

     

0 0 0

0 0 0 00 0 0 0

, , , ,

, , , , ,, , , ,

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

l s l s SE

l s SE l s SEl s SE SE l s SE SE

inp

J J J J M

H

inp

J J J J J MJ J M J J J M J

Electric Extinction Electric Extinction

P

I I

I I
P

T T

I I

 

   
   
   
     
   
  
  
   




 (92) 

 

and 

 

 
 

 

0

00

0 0 0 00

0

, , , ,

, ,

l

ls

l s SE l s sSE

SE l sl

s

J

JJ

J J J J J JJ

J J JJ

J

a

aa

a aa

a a

a

 
 

  
  
   
  
    

 
  

 (93) 

 
 

 

0

00

0 0 0 0

0

0

, , , ,

, ,

l

ls

l s l s SE sl

l s SEs

SE

J

JJ

J J J J M JJ

J J MJ

M

a

aa

a aa

a a

a

 
 

  
  
   
  
    

 
  

 (94) 

 

The matrices I  in (91)-(92) are the identity matrices with 

suitable orders. 

D. To construct power-based CM sets in expansion vector 

space 

The matrix inp

BVP  can be decomposed into its Hermitian parts 

as follows 

 

 ; ;

inp inp inp

BV BV BVP P j P    (95) 

 

here  0 0 0, , , ,l s SE l sBV J J J J J  or  0 0 0, , , ,l s l s SEJ J J J M , and [1]-[3], 

[7]-[8], [10]-[11] 

 

  ;

1

2

H
inp inp inp

BV BV BVP P P

 
  

 
 (96.1) 

  ;

1

2

H
inp inp inp

BV BV BVP P P
j



 
  

 
 (96.2) 

 

Obviously, both the ;

inp

BVP   and ;

inp

BVP   are Hermitian [12]. 

Based on the discussions in [10]-[11], it can be concluded 

that the matrix ;

inp

BVP   is positive definite or semi-definite. When 

the matrix ;

inp

BVP   is positive definite at frequency f , the 

Input-power-based Characteristic Mode (InpCM) set can be 

derived from solving the following generalized characteristic 

equation [13] 

 

          ; ;

inp BV inp BV

BV BVP f a f f P f a f       (97) 

 

for any 1,2, ,   . In (97), 0 0 0
l sl s SE J JJ J J       , 

and 

 

  

 

 

 

 

 

0

0

0

l

s

SE

l

s

J

J

BV J

J

J

a f

a f

a f a f

a f

a f





 





 
 
 
 

  
 
 
 
  

 (98) 

  
 

 

 

 

0

0 00
, ,

SE

SE l s SE lSE

s

J

J J J M JM

Magnetic Extinction

J

a f

a f T a f

a f



 





 
 
  
 
 
 

 (99) 

 

if  0 0 0, , , ,l s SE l sBV J J J J J ; 0 0 0
l sl s SEJ JJ J M       , and 

 

  

 

 

 

 

 

0

0

0

l

s

l

s

SE

J

J

BV J

J

M

a f

a f

a f a f

a f

a f





 





 
 
 
 

  
 
 
 
  

 (100) 

  
 

 

 

 

0 00

0

, ,

l

l s SE SE sSE

SE

J

J J M J JJ

Electric Extinction

M

a f

a f T a f

a f



 





 
 
  
 
 
 

 (101) 

 

if  0 0 0, , , ,l s l s SEBV J J J J M . When the matrix ;

inp

BVP   is positive 

semi-definite at frequency 0f , the frequency 0f  can be 

determined by employing the modal impedance or admittance 

defined in [2] and by using frequency sweep technique depicted 

in [10]-[11]; after the frequency 0f  is determined, the 

characteristic values and vectors at 0f  can be obtained by using 

the following limitations [10]-[11] 

 

    
0

0 lim
f f

f f  


  (102) 

    
0

0 limBV BV

f f
a f a f 


  (103) 
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0

0 limY Y

f f
a f a f 


  (104) 

 

here 
0 0 0 0, , , , ,l s SE l s SEY J J J J J M . 

The characteristic currents  0; ;,l lJ J  ,  0; ;,s sJ J  , and 

 0; 0;,SE SEJ M   are as follows 

 

    0 0

0 ; 0,
l lJ Jl metJ r B a r L     (105) 

    0 0

0 ; 0 0,
s sJ Js met metJ r B a r S V      (106) 

    0 0

0; 0,
SE SEC CSE matC r B a r V     (107) 

 

here ,C J M , and ;

LE lJ J  , and ; ;

SE sJ J  , and 

 

        0; ; ,l l l metJ r J r J r r L      (108) 

        0; ; ,s s s met metJ r J r J r r S V       (109) 

        0; ; ,SE SE SE mat

surfJ r J r J r r V      (110) 

 

and then the characteristic fields are as follows 

 

       

       

; ; 0; 0;

; ; 0; 0;

,0 ,0 ,

,0 ,0 , , int

inc inc LE inc SE inc SE SE

int int int int

inc l inc s inc SE SE mat

int int int

f r J J J M

J J J M r V

    

   

  

   

f f f

f f f
 (111) 

       

       

; 0; 0;

; ; 0; 0;

,0 ,0 ,

,0 ,0 , , int

tot tot LE tot SE tot SE SE

int int int

tot l tot s tot SE SE mat

int int int

F r J J J M

J J J M r V

    

   

  

   
 (112) 

 
       

     

       

 

; 0; 0;

;

;

; ; 0; 0;

;

,0 ,0 , , ext

, int

,0 ,0 , , ext

sca LE sca SE sca SE SE mat

ext ext extsca

mat
tot inc mat

int

sca l sca s sca SE SE mat

ext ext ext

tot inc

int

J J J M r V
F r

F r f r r V

J J J M r V

F r f

   



 

   

 

   
 

 

  


    , int matr r V







 (113) 

     

         

;

3

0; ; 0; ; , \

sca sca l sca s

met met met

sca l sca l sca s sca s met

met met met met

F r J J

J J J J r D

  

   

 

     
 (114) 

 

here the domain metD  in (114) is the whole boundary of metal 

part, i.e., met met met metD L S V   . Then, the characteristic 

currents  ,vop vmJ M   and the characteristic scattering and 

incident fields are as follows 

 

      , intvop tot mat

cJ r j E r r V      (115.1) 

      , intvm tot matM r j H r r V      (115.2) 

 

and 

 

        3

; ; , \sca sca sca

mat metF r F r F r r D       (116) 

 

and 

 

      ;tan ;tanlim ,inc sca met

r r
E r E r r D 


    (117.1) 

        ; ; , intinc inc sca mat

int metF r f r F r r V      (117.2) 

 

here the c  and   in (115) are defined as 0c c    , and 

0    ; the domain D  in (116) is the union of metD  and 
matV , i.e., met mat met met met matD D V L S V V       ; the 

subscript “ tan ” in (117.1) represents the tangential component 

of field, and 3 \r D  . 

If the necessary orthogonalization is done for the degenerate 

modes, the characteristic currents and the characteristic fields 

satisfy the following input power orthogonality 

 

 
 

   

;tan1 2 ,

1 2 , 1 2 ,

met met met

mat mat

inp l s inc

L S V

vop inc inc vm

V V

P J J E

J E H M

    

   




 

 
 (118) 

 

and the following output power orthogonality 

 

   
1 1

Re ,
2 2

mat

out sca sca tot tot

V
S

P E H dS E E      



    
    (119.1) 

  3 30 0

1 1
Im 2 , ,

4 4

1 1
, ,

4 4
mat mat

out sca sca sca sca

tot tot tot tot

V V

P H H E E

H H E E

     

   

   

 

 
  

 

 
     
 

 (119.2) 

 

for any , 1,2, ,    , here the “  ” is Kronecker delta 

symbol; the  Re outP  and  Im outP  are the real and imaginary 

parts of outP . In addition, it is obvious that out inpP P  , i.e., the 

modal output power equals to the modal input power, because 

of the conservation law of energy [4]. 

The InpCM-based modal expansion formulation for 

metal-material combined object can be found in [1]-[2], and it 

is not repeated here. The other power-based CM sets, such as 

the Active power CM (ActCM) set, the Reactive power CM 

(ReactCM) set, and the Coupling power CM (CoupCM) set, 

can be constructed by using the methods given in [8] and 

[10]-[11], and they are not repeated here. The method to 

normalize various power-based CMs derived from 

LS-MM-EMP-CMT can be found in [2], and it is not repeated 

here. 

 

 

VI. INTRINSIC RESONANCE AND THE RELEVANT CONCEPTS 

In this section, a power-based modal classification method 

[13] is simply retrospected, and then a series of new concepts 

intrinsic resonance, intrinsic resonance equation/condition, 

intrinsic resonant mode, intrinsic resonance space, and 

intrinsic resonant CM set are introduced. 

A. Power-based modal classification 

If any operating state of scatterer is called as an operating 

mode (it is not restricted to the CM), the modes can be 

classified according to their modal powers. 

(a) According to modal active power: Because the matrix 

;

inp

BVP   is positive definite or semi-definite, then 

 

     ;Re 0
H

inp BV inp BV

BVP a P a     (120) 

 

for any operating state BVa . The modes corresponding to 

 Re 0inpP   are called as active modes, and the modes 
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corresponding to  Re 0inpP   are called as non-active modes. 

(b) According to modal radiated power [13]: It can be 

proven that the modal radiated power radP  is non-negative for 

any mode, here the modal radiated power radP  is as follows 

 

  
1

2

rad sca sca

S

P E H dS



   
    (121) 

 

The modes corresponding to 0radP   are called as radiative 

modes, and the modes corresponding to 0radP   are called as 

non-radiative modes. 

(c) According to modal reactive power [13]: The modal 

reactive power is as follows 

 

   

3 3

;

0 0

Im

1 1
2 , ,

4 4

1 1
, ,

4 4
mat mat

H
inp BV inp BV

BV

sca sca sca sca

tot tot tot tot

V V

P a P a

H H E E

H H E E

  

 

  

  
   

 

 
     
 

 (122) 

 

The matrix ;

inp

BVP   is indefinite. The modes corresponding to 

 Im 0inpP   are called as capacitive modes, and the modes 

corresponding to  Im 0inpP   are called as resonant modes, 

and the modes corresponding to  Im 0inpP   are called as 

inductive modes. 

B. Intrinsic resonance and the relevant concepts 

Because the matrix ;

inp

BVP   is positive definite or semi-definite, 

  ; 0
HBV inp BV

BVa P a    if and only if ; 0inp BV

BVP a    [12]. 

However,   ; 0
HBV inp BV

BVa P a    does not imply that 

; 0inp BV

BVP a   , though ; 0inp BV

BVP a    always implies that 

  ; 0
HBV inp BV

BVa P a   , because the matrix ;

inp

BVP   is indefinite. It 

is equivalent to saying that 

 

 
 ; ;0 0

Mode is non- active

H
inp BV BV inp BV

BV BV

BV

P a a P a

a

      


 (123) 

 

and 

 

 
; 0inp BV

BVP a

     ; 0

Mode is resonant

H
BV inp BV

BV

BV

a P a

a

  



 (124) 

 

In electromagnetic engineering society, the resonance is a 

very important concept, and the above (124) implies that the 

condition ; 0inp BV

BVP a    is a stronger condition than 

  ; 0
HBV inp BV

BVa P a    to guarantee resonance. Based on this, 

the equation ; 0inp BV

BVP a    can be called as intrinsic resonance 

equation/condition, if the equation   ; 0
HBV inp BV

BVa P a    is 

viewed as resonance equation/condition. 

Then, the modes satisfying intrinsic resonance equation are 

called as intrinsic resonant modes. Obviously, all intrinsic 

resonant modes constitute a space, and this space is just the null 

space of matrix ;

inp

BVP  , and it can be specifically called as 

intrinsic resonance space from the power-based point of view. 

However, it cannot be guaranteed that the set constituted by all 

resonant modes is a space. 

Due to the object-oriented feature of EMP-CMT [8], 

[10]-[11], this paper introduces a new CM set, intrinsic 

resonant CM set, and it is defined as the basis of intrinsic 

resonance space. The intrinsic resonant CM set can be 

efficiently derived from solving the intrinsic resonance 

equation ; 0inp BV

BVP a   . 

In addition, it is easy to prove that any intrinsic resonant 

mode BV

resa  (it is not necessarily the element of intrinsic resonant 

CM set) is orthogonal to any operating state BVa  of scatterer as 

follows 

 

 

 

3 3

;

0 0

0

1 1
2 , ,

4 4

1 1
, ,

4 4
mat mat

H
BV inp BV

res BV

sca sca sca sca

res res

tot tot tot tot

res res
V V

a P a

H H E E

H H E E

  

 

  

  
   

 

 
     
 

 (125.1) 

 

 

3 3

;

0 0

0

1 1
2 , ,

4 4

1 1
, ,

4 4
mat mat

H
BV inp BV

BV res

sca sca sca sca

res res

tot tot tot tot

res res
V V

a P a

H H E E

H H E E

  

 

  

  
   

 

 
     
 

 (125.2) 

 

Then,      ; ;

H HBV BV inp BV BV BV inp BV

res BV res BVa a P a a a P a         for 

any operating state BVa , if the BV

resa  is an intrinsic resonant 

mode. 

 

 

VII. SOME TYPICAL EXAMPLES 

In this section, the general formulations given in Sec. V are 

specialized to the special forms corresponding to some typical 

examples. 

A. Scatterer is constructed by one piece of metal line and one 

piece of material body, and the line partially contacts with the 

body, but any part of the line is not submerged into the body 

In this subsection, the scatterer illustrated in Fig. 4 is 

considered. Its metal part only includes one piece of line, and 

the line partially contacts with the material body, but any part of 

matV

0

met etmL L 

 

 0

in

\ int

tmet met mat me

met met met mat

t

L L L V

L L V L 



 
 
Fig. 4. A piece of metal line partially contacts with material body. 
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the line is not submerged into the material body. It is obvious 

that , ,met met metL S V   , so , 0l sJ J  , and then the basic 

variables can be selected as  0 0,l SEJ J  or equivalently selected 

as  0 0,l SEJ M . 

For this case, the input power operator (54) is specialized to 

the following (126) 
 

       

   

 

0 0

0 0

0

0 0 0 0 0

0
0 0 0 0

0 0

0
0 0 0 0

0 0

1 2 , 1 2 , ,

1 1
, ,

2 2

1 1
, ,

2 2

met met

mat mat

mat

inp

l sca l l sca SE SE

met ext
L L

SE sca l SE sca lc
met met

V V
c

SE sca l SE scac
met met

V
c c

P

J J J J M

J J M J

J J M J

  

   

  

    




 





  

  
    


 

 
 

   

   

0

0 0

0 0

0
0 0 0 0 0 0

0 0

0
0 0 0 0 0 0

0 0

1 1
, , , ,

2 2

1 1
, , , ,

2 2

mat

mat mat

mat mat

l

V

SE inc SE SE SE inc SE SEc
int int

V V
c

SE inc SE SE SE inc SE SEc
int int

V V
c c

J J M M J M

J J M M J M
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and the matrix form of (126) is as follows 
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In (128)-(129), 
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and 
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The various matrices in (132) are as follows 

 

 
 

0 0

0 0

0 0

0 0 0

0 0 0

l sca l
met

l sca l
met

J E J

J J
P



 
 

  
 
  

 (135) 

 
 

0 0 0 0

0 0 0,

0

0 0 0

0 0 0

l sca SE l sca SE
ext ext

l sca SE SE
ext

J E J J E M

J J M
P



  
 

  
 
  

 (136) 

 
 0 0 0 0

0 0 0
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0 0 0

0

SE inc SE SE
int

SE inc SE SE inc SE
int int

M J M

M h J M h M

P


 
 

  
 

  

h
 (140) 

 

The procedures to construct the power-based CM sets 

corresponding to the structure in Fig. 4 are completely similar 

to the procedures given in Sec. V, so they will not be repeated 

here. 

 In fact, the structure in Fig. 4 has many applications in 

electromagnetic engineering society, such as the probe-fed 

Dielectric Resonator Antennas (DRAs) in which the probes 

partially contact with the DRAs [14]. 

In addition, the structure in Fig. 4 can be further specialized 

to the structures in Fig. 5, and the formulations corresponding 

to the structures in Fig. 5 are identical to the ones given in this 

subsection. 
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Fig. 5. (a) A piece of metal line completely contacts with material body; (b) a 

piece of metal line completely does not contact with material body. 
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B. Scatterer is constructed by one piece of metal line and one 

piece of material body, and the line is partially submerged into 

the body 

In this subsection, the scatterer illustrated in Fig. 6 is 

considered. Its metal part only includes one piece of line, and 

the line is partially submerged into the material body. It is 

obvious that ,met metS V  , so 0sJ  , and then the basic 

variables can be selected as  0 0, ,l SE lJ J J  or equivalently 

selected as  0 0, ,l l SEJ J M . 

For this case, the input power operator (54) is specialized to 

the following (141) 
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and the matrix form of (141) is as follows 
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In (143)-(144), 
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and 
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The various matrices in (147) are as follows 
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Fig. 6. A piece of metal line is partially submerged into material body. 
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The procedures to construct the power-based CM sets 

corresponding to the structure in Fig. 6 are completely similar 

to the procedures given in Sec. V, so they will not be repeated 

here. 

 In fact, the structure in Fig. 6 has many applications in 

electromagnetic engineering society, such as the probe-fed 

DRAs in which the probes are partially submerged into the 

DRAs [14]. 

In addition, the structure in Fig. 6 can be further specialized 

to the structures in Fig. 7. The formulations corresponding to 

the structure in Fig. 7 (a) can be obtained by removing the terms 

corresponding to 
0

lJ  from the formulations given in this 

subsection; the formulations corresponding to the structure in 

Fig. 7 (b) can be obtained by removing the terms corresponding 

to lJ  from the formulations given in this subsection. 

C. Scatterer is constructed by one piece of metal surface and 

one piece of material body, and the surface partially contacts 

with the body, but any part of the surface is not submerged into 

the body 

In this subsection, the scatterer illustrated in Fig. 8 is 

considered. Its metal part only includes one piece of surface, 

and the surface partially contacts with the material body, but 

any part of the surface is not submerged into the material body. 

It is obvious that , ,met met metL S V   , so , 0l sJ J  , and then the 

basic variables can be selected as  0 0,s SEJ J  or equivalently 

selected as  0 0,s SEJ M . 

For this case, the input power operator (54) is specialized to 

the following (156) 
 

       

   

 

0 0

0 0

0

0 0 0 0 0

0
0 0 0 0

0 0

0
0 0 0 0

0 0

1 2 , 1 2 , ,

1 1
, ,

2 2

1 1
, ,

2 2

met met

mat mat

mat

inp

s sca s s sca SE SE

met ext
S S

SE sca s SE sca sc
met met

V V
c

SE sca s SE scac
met met

V
c c

P

J J J J M

J J M J

J J M J

  

   

  

    




 





  

  
    


 

 
 

   

   

0

0 0

0 0

0
0 0 0 0 0 0

0 0

0
0 0 0 0 0 0

0 0

1 1
, , , ,

2 2

1 1
, , , ,

2 2

mat

mat mat

mat mat

s

V

SE inc SE SE SE inc SE SEc
int int

V V
c

SE inc SE SE SE inc SE SEc
int int

V V
c c

J J M M J M

J J M M J M

  

   

  

    








 

 

 




 
    

 
   

e h

e h

 (156) 

 

Its matrix form is as follows 
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In (158)-(159), the matrices 0 0
SE SEJ M

Magnetic ExtinctionT   and 0 0
SE SEM J

Electric ExtinctionT   can 

be obtained as (133) and (134), and 
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Fig. 7. (a) a piece of metal line is completely submerged into material body; (b) 

a piece of metal line completely does not contact with material body. 
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Fig. 8. A piece of metal surface partially contacts with material body. 
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The various matrices in (162) are as follows 
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The procedures to construct the power-based CM sets 

corresponding to the structure in Fig. 8 are completely similar 

to the procedures given in Sec. V, so they will not be repeated 

here. 

 In fact, the structure in Fig. 8 has many applications in 

electromagnetic engineering society, such as the microstrip 

antennas [15] and the DRAs mounted on a metal plate [14], as 

illustrated in Fig. 9.  

In addition, the structure in Fig. 8 can be further specialized 

to the structures in Fig. 10, and the formulations corresponding 

to the structures in Fig. 10 are identical to the ones given in this 

subsection. 

D. Scatterer is constructed by one piece of metal surface and 

one piece of material body, and the surface is partially 

submerged into the body 

In this subsection, the scatterer illustrated in Fig. 11 is 

considered. Its metal part only includes one piece of surface, 

and the surface is partially submerged into the material body. It 

is obvious that ,met metL V  , so , 0met

l SE

V
J J


 , and then the 

basic variables can be selected as  0 0, ,s SE sJ J J  or equivalently 

selected as  0 0, ,s s SEJ J M , here s SE

open surfJ J . 

For this case, the input power operator (54) is specialized to 

the following (169) 
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and the matrix form of (169) is as follows 

 

 

    
 

    
 

0 0 0 0

0 0

0 0 0 0

0 0

, , , ,

, ,

, , , ,

, ,

s SE s s SE s

s SE s

s s SE s s SE

s s SE

H
J J J J J Jinp inp

J J J

H
J J M J J Minp

J J M

P a P a

a P a

  

  

 (170) 

 

here 

 

 
 

 
 

0 0 0 0 0

0 0 0 0

, , , , ,

, ,

0 0

0 0

0 0

s SE s s SE s SE

SE s SE SE s SE

H

inp inp

J J J J J J M

J J M J J M

Magnetic Extinction Magnetic Extinction

I I

P I P I

T T
 

   
   
     
   
   
   

 (171) 

 
 

 
 0 0 0 0

0 0 0 0 0

, ,

, , , , ,

0 0

0 0

0 0

s SE SE s SE SE

s s SE s SE s SE

H

J M J J M Jinp inp

Electric Extinction Electric ExtinctionJ J M J J J M

I I

P T P T

I I

 

   
   
     
   
   
      

 (172) (a)                                         (b)
 

 
Fig. 9. (a) A rectangular microstrip antenna; (b) a rectangular DRA mounted on 

a metal palate. 
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Fig. 10. (a) A piece of metal surface completely contacts with material body; 

(b) a piece of metal surface completely does not contact with material body. 
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Fig. 11. A piece of metal surface is partially submerged into material body. 
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and 
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In (171)-(172), 
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and 

 

 
   0 0 00 0 0 0

1
,SE s SE SE tot sSE tot SE SE tot SE

intint int
J J M M H JM H M M H J

Magnetic ExtinctionT


      
 

 (176) 

 
   0 0 00 0 0 0

1
,s SE SE SE tot sSE tot SE SE tot SE

intint int
J M J J E JJ E J J E M

Electric ExtinctionT


      
 

 (177) 

 

The various matrices in (175) are as follows 
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M J M
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The procedures to construct the power-based CM sets 

corresponding to the structure in Fig. 11 are completely similar 

to the procedures given in Sec. V, so they will not be repeated 

here. 

The structure in Fig. 11 can be further specialized to the 

structures in Fig. 12. The formulations corresponding to the 

structure in Fig. 12 (a) can be obtained by removing the terms 

corresponding to 
0

sJ  from the formulations given in this 

subsection; the formulations corresponding to the structure in 

Fig. 12 (b) can be obtained by removing the terms 

corresponding to sJ  from the formulations given in this 

subsection. 

E. Scatterer is constructed by one piece of metal body and one 

piece of material body, and the metal body is partially 

“contacted with / submerged into” the material body 

In this subsection, the scatterer illustrated in Fig. 13 is 

considered. Its metal part only includes one piece of body, and 

the metal body can be viewed as being partially contacted with 
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Fig. 12. (a) A piece of metal surface is completely submerged into material 

body; (b) a piece of metal surface completely does not contact with material 

body. 
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Fig. 13. A piece of metal body is partially contacted with a notched material 

body. 
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a notched material body, and also be viewed as being partially 

“submerged into” the material body. It is obvious that 

,met metL S  , so , 0l SE

open surfJ J  , and then the basic variables can 

be selected as  0 0, ,s SE sJ J J  or equivalently selected as 

 0 0, ,s s SEJ J M , here met

s SE

V
J J


 . 

For this case, the input power operator (54) is specialized to 

the following (184) 
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Its matrix expression is identical to the (170) in form. 

The procedures to construct the power-based CM sets 

corresponding to the structure in Fig. 13 are completely similar 

to the procedures given in Sec. V, so they will not be repeated 

here. 

In fact, the structure in Fig. 13 can be further specialized to 

the structures in Fig. 14. The formulations corresponding to the 

structure in Fig. 14 (a) can be obtained by removing the terms 

corresponding to 
0

sJ  from the formulations corresponding to 

the structure in Fig. 13; the formulations corresponding to the 

structures in Fig. 14 (b) and (c) are identical to the formulations 

corresponding to the structure in Fig. 13; the formulations 

corresponding to the structure in Fig. 14 (d) can be obtained by 

removing the terms corresponding to sJ  from the formulations 

corresponding to the structure in Fig. 13. 

 

 

VIII. CONCLUSIONS 

In this paper, a line-surface equivalent principle is 

established for the material body whose boundary includes 

some lines and open surfaces beside a closed surface. The 

traditional surface equivalent principle for the material body 

whose boundary is a closed surface can be viewed as the special 

case of the line-surface equivalent principle. 

The applicable range of this Part II is larger than the previous 

Part I, for example, the formulations given in this Part II is not 

only suitable for the case that the metal lines are not submerged 

into material body, but also suitable for the case that some 

metal lines are completely or partially submerged into material 

body. The formulations corresponding to variable unification in 

expansion vector space are explicitly provided in this Part II, 

and the styles of these formulations are consistent with the 

variable unification formulations in the previously established 

Surface formulations of the EMP-CMT for Material bodies 

(Surf-Mat-EMP-CMP) [3], [7]-[8]. The number of arguments 

in the new input/output power operator provided in this Part II 

is less than the previous Part I, because the surface equivalent 

currents  ,SE SEJ M   and  ,SE SEJ M   are separately treated in 

Part I, but they are treated as a whole in this Part II. In addition, 

the input/output power operator used in Part I includes some 

volume integrals besides some line and surface integrals, 

whereas there does not exist any volume integral in the new 

input/output power operator provided in this Part II, so this Part 

II is a “real” LS-MM-EMP-CMT. 

Due to the object-oriented feature of EMP-CMT, a new CM 

set, intrinsic resonant CM set, is introduced into the EMP-CMT 

family, and a series of new concepts related to intrinsic 

resonance are introduced. 

The LS-MM-EMP-CMT provided in the previous Part I and 

this Part II has many valuable applications in electromagnetic 

engineering society, especially the antenna engineering 

community, for example, it can be efficiently utilized to 

analyze and design the antennas with a metal-material 

combined structure, such as the microstrip antennas, the 

probe-fed DRAs, and the aperture-fed DRAs mounted on a 

metal plate, etc. 
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