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Abstract— In this paper, the authors propose an extended 
version of Dijkstra’ algorithm for finding the shortest path on a 
network where the edge weights are characterized by an interval 
valued neutrosophic numbers. Finally, a numerical example is 
given to explain the proposed algorithm. 
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I. INTRODUCTION  

Smarandache [1] originally proposed the concept of a 
neutrosophic set from a philosophical point of view. The 
concept of the neutrosophic set (NS for short) has the ability 
to handle uncertain, incomplete, inconsistent, the 
indeterminate in a more accurate way. The theory of 
neutrosophic sets are a generalization of the theory of fuzzy 
sets [3], intuitionistic fuzzy sets [4] and interval- valued 
intuitionistic fuzzy sets [6]. The concept of the neutrosophic 
sets is expressed by a truth-membership degree (T), an 
indeterminacy-membership degree (I) and a falsity-
membreship degree (F) independently, which are within the 
real standard or nonstandard unit interval  ]−0,1+[. The concept 
of neutrosophic set is difficult to apply it real scientific and 
engineering areas. For this purpose. Smarandache [1] 
introduced the concept of SVNS, an instance of neutrosophic 
set, whose functions of truth, indeterminacy and falsity are 
within [0, 1]. In fact sometimes the degree of truth-
membership, indeterminacy-membership and falsity-
membership about a certain statement  can not be defined 
exactly in the real situations,  but expressed by several 
possible interval values.  So the interval valued neutrosophic 
set (IVNS) was required. For this purpose, Wang et al.[8] 
introduced the concept of interval valued neutrosophic set  
(IVNS for short), which is more  precise and more flexible 

than the single valued neutrosophic set. The interval valued 
neutrosophic sets (IVNS) is a generalization of the concept of 
single valued neutrosophic set, in which three membership 
functions are independent,  and their values belong to the unite 
interval  [0 , 1]. 
Some more literature about neutrosophic sets, interval valued 
neutrosophic sets and their applications in divers fields can be 
found in [9]. In addition, the operations on interval valued 
neutrosophic sets and their ranking methods are presented in [10-
11] 
The selection of shortest path problem (SPP) is one of classic 
problems in graph theory. Several algorithms have been 
proposed for solving the shortest path problem in a network. The 
shortest path problem appears in various disciplines such as 
transportation, road networks and other applications. The 
shortest path problems could be classified into three types 
[12]: 
 
 1) Problem of finding shortest path from a single source in 
which the aim is to find shortest path from source node to all 
other nodes around the graph.  
 2) Problem of finding shortest path to a single source in 
which the aim is to find the shortest path between each 
connected pair in the graph. 
 3)  Problem of finding shortest path between each two nodes 
in which the aim is to find shortest path between connected 
pair in the graph.  
In a network, the shortest path problem concentrates at finding 
the path from one source node to destination node with 
minimum weight. The edge length of the network may 
represent the real life quantities such as, cost, time, etc. In 
classical shortest path problem, it is assumed that decision 
maker is certain about the parameters (time, distance, etc) 
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between different nodes. But in real life situations, there 
always exist uncertainty about the parameters between 
different nodes. For this purpose, several algorithms have been 
developed the shortest path under different types of input data, 
including, fuzzy sets, interval valued fuzzy sets, interval 
valued intuitionistic fuzzy sets and vague sets [13-18]. One of 
the well- known algorithms in solving shortest path problem is 
Dijikstra algorithm [19]. Dijikstra ‘algorithm finds the shortest 
path from source node to other nodes in a graph, the so-called 
single source shortest path problem. 
Recently, several articles have been published on neutrosophic 
graph theory [20-28]. In addition, Broumi et al. [29-32] 
proposed some algorithms dealt with shortest path problem in 
a network where the edge weights are characterized by a 
neutrosophic numbers including single valued neutrosophic 
number, bipolar neutrosophic numbers and interval valued 
neutrosophic numbers. 
The main purpose of this article is to introduce an extended 
version of Dijkstra algorithm for solving shortest path problem 
on a network where the edge weights are characterized by an 
interval valued neutrosophic numbers. The decision maker can 
determine the shortest path and the shortest distance of each 
node from source node by using the proposed method. This 
method is more efficient due to the fact that the summing 
operation and the ranking of IVNNs can be done in an easy 
and straight manner.  
The article is organized as follows. Some basic concepts of 
neutrosophic sets, single valued neutrosophic set and interval 
valued neutrosophic sets are introduced in section 2. In section 
3, a network terminology is introduced. The extended version 
of Dijkstra’algorithm for solving the shortest path with 
connected edges in neutrosophic data is proposed in section 4. 
Section 5 illustrates a numerical example which is solved by 
the proposed method. Conclusions and further research are 
given in section 6. 

II. PRELIMINARIES 

In this section, we introduced some basic concepts and 
definitions of single valued neutrosophic sets and interval 
valued neutrosophic sets from the literature [ 1, 7, 8, 10, 11] 

Definition 2.1 [1].  Let X be an universe of discourse of points  
with generic elements in X denoted by x. Hence, the 
neutrosophic set A  ( NS A) is an object having the form A = 

{< x: ( )AT x , ( )AI x , ( )AF x >, x   X}, where the functions 

T, I, F: X→]−0,1+[  define respectively the truth-membership 
function, the indeterminacy- membership  and the falsity-
membership function of the element x   X to the set A with 
the condition:  
 

                   −0 ≤ ( )AT x + ( )AI x + ( )AF x ≤ 3+.              (1)   

           

The functions ( )AT x , ( )AI x  and ( )AF x  are real standard or 

non-standard subset of  ]−0,1+[. 
 Since it is difficult to apply NSs to practical problems, Wang 
et al. [ 7] introduced the concept  of  a SVNS, which is an  

instance of Neutrosophic set and can be utilized in real 
scientific and engineering applications. 
Definition 2. 2[7] Let X be an universe of discourse of points 
(objects) with generic elements in X denoted by x. the  single 
valued neutrosophic set A (SVNS A) is characterized by truth-

membership function ( )AT x , an indeterminacy-membership 

function ( )AI x , and a falsity-membership   function ( )AF x . 

For each point x in X, ( )AT x , ( )AI x , ( )AF x   [0, 1]. A  

SVNS A can be expressed as 

           A = {< x: ( )AT x , ( )AI x , ( )AF x >, x  X }       (2) 

Definition 2.3 [8].  Let X be an universe of discourse of 
points (object) with generic elements in X denoted by x.  An 
interval valued valued neutrosophic set A ( IVNS A) is 
characterized by an interval truth-membership function 

( ) ,L U
A A AT x T T    ,an interval indeterminacy-membership 

function ( ) , IL U
A A AI x I    , and an interval falsity 

membership function ( ) ,FL U
A A AF x F    .  For each point x 

in X ( )AT x , ( )AI x , ( )AF x   [0, 1]. An IVNS A can be 

expressed as  

   A=   {< x: ( )AT x , ( )AI x , ( )AF x >, x  X }        (3) 

 

Definition 2.4[11]. Let 1 1 1 1 1 1 1, , , I , ,FL U L U L UA T T I F           
 and 

2 2 2 2 2 2 2, , , I , ,FL U L U L UA T T I F           
 be two interval valued 

neutrosophic numbers. Then, the operations for IVNNs are 
defined as below: 
(i) 

, , , I , ,1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2
L L L L U U U U L L U U L L U UA A T T T T T T T T I I I F F F F                     

 

 
                                                                                             (4) 

(ii) 
1 2 1 2 1 2 1 2 1 2 1 2

1 2 1 2 1 2 1 2

1 2 , , , I ,

, F

L L U U L L L L U U U U

L L L L U U U U

T T T T I I I I I I I

F F F F F F F

A A     

    

        
 
 

 
 

                                                                                              (5) 
(iii) 

1 1 1 1 1 11 (1 ) ,1 (1 ) ) , (I ) , (I ) , ( ) , ( )L U L U L UA T T F F                          
      

                                                                                            (6) 
(iv) 

( ) ,( ) ) , 1 (1 ) ,1 (1 ) ) , 1 (1 ) ,1 (1 ) )1 1 1 1 1 1 1
L U L U L UA T T I I F F                              



 where 0   
                                                                                           (7) 
 
Definition  2.5 [8]. An interval valued neutrosophic number 

1 1 1 1 1 1 1, , , I , ,FL U L U L UA T T I F           
  is said to be empty if and 

only if  

1 1 1 10, 0, 1, 1,L U L UT T I I    and 1 11, F 1L UF   and  is 

denoted by  



                  0,  0 ,  1,  1 ,  1,  0 { x, : x X}1n              (7)                              

A convenient method for comparing two interval valued 
neutrosophic numbers is by use of score function. 

Definition 2.6 [10]. Let 1 1 1 1 1 1 1, , , I , ,FL U L U L UA T T I F           
  be 

an interval valued neutrosophic number. Then, the score 

function 1( )s A and accuracy function 1H( )A  of an IVNN are 

defined as follows: 

(i) 1 1 1 1 1 1 1
1

( ) 2 2 2
4

L U L U L Us A T T I I F F
              

   (8)                                                   

(ii) 1 1 1 1 1 1 1 1 1 1
1

(1 ) (1 ) (1 ) (1 )
H( )

2

L U U U L L U U L LT T I T I T F I F I
A

        
     

                                                                                             (9) 

Definition 2.7 [10]. Let  1 1 1 1 1 1 1, , , I , ,FL U L U L UA T T I F           
  

and 2 2 2 2 2 2 2, , , I , ,FL U L U L UA T T I F           
 are two interval valued 

neutrosophic numbers. Then, we define a ranking method as 
follows:  

i. If 1 2( ) ( )s A s A  ,then 1A  is greater than 2A ,that is, 

1A is superior to  2A , denoted by 1 2A A   

ii. If 1 2( ) ( )s A s A  , and 1 2( ) ( )H A H A  then 1A  is 

greater then 2A , that is , 1A is superior to  2A , 

denoted by 1 2A A  .                                    

III. NETWORK TERMINOLOGY 

In this subsection we consider a directed network G= ( V, E) 
where  V denotes a  finite set of nodes  V= { 1, 2, …,n}  and E 
denotes a set of m directed  edges  E V x V.  Each edge is 
denoted by an ordered pair (i, j) where i, j   V and  i j . In 

this network, two nodes denoted s (source) and t (target) are 
specified, which represent the source node and the destination 
node. The path is defined as sequence ijP = 

{i= 1i , 1 2( , )i i , 2i ,…, 1li  , 1( , )l li i , li =j} of alternating nodes and 

edges. The existence of at least one siP in G = (V, E) is 

supposed for every  i V-{s}. 

ijd  denotes an interval valued neutrosophic number assigned 

with the edge (i,j), corresponding to the length necessary to 
traverse (i, j) from i to j. In real problems, the lengths 
correspond to the time, the distance, the cost, etc. Hence, the 
interval valued neutrosophic distance along the path is denoted 
as d(P) and is expressed as follows:  

               D(P)= 
(i, j P)

ijd

                        (10) 

Remark: A node i is called predecessor of node j if  
(i) Node i  and  node j is connected directly. 
(ii) The direction of path connected the  node i and the node  
j is from i to j. 
 

IV.  INTERVAL VALUED NEUTROSOPHIC DIJKSTRA 

ALGORITHM 

In this subsection, we modified the fuzzy Dijkstra’s algorithm 
adapted from [33] for computing the shortest path on a 
network where the edge weights are characterized by an 
interval valued neutrosophic numbers. 
This algorithm finds the shortest path and the shortest distance 
between a source node and any other node in the network. The 
interval valued neutrosophic Dijikstra’ algorithm forwards 
from a node i  to an immediately successive node j using a 
neutrosophic labeling procedure. Let iu be the shortest 

distance from node 1 to node i and s ( ) 0ijd   be the length of 

(i, j) edge. Then, the neutrosophic label for node j is defined 
as: 

[ ju , i] =[ i iju d  , i].    S ( ) 0ijd  .                            (11) 

Here label [ ju , i] mean we are coming from nodes i after 

covering a distance ju  from the starting node. Dijikstra’ 

algorithm classified the nodes into two classes: temporary set 
(T) and permanent set (P). A temporary neutrosophic label can 
be changed into another temporary neutrosophic label, if 
shortest path to the same neutrosophic node is checked. If no 
better path can be found then, the status of temporary 
neutrosophic label is replaced to permanent status. 
In the following, we introduce the four steps of interval valued 
neutrosophic Dijkstra’ algorithm as follows: 
Step 1: Assign to source node (say node 1) the permanent 
label P [< [0, 0], [1, 1], [1, 1]>, -]. Set i=1.  
Making a node permanent means that it has been included in 
the short path. 
P denotes a permanent label, while – means that there is no 
sequence to the source node. 

Step 2: Determine the temporary neutrosophic  label [ i iju d  , 

i] for each node j that can be arrived from i, provided j is not 
permanently labeled. If node j is previously labeled as [ ju , k] 

through another node K, and if S( i iju d  ) < S( ju ) change  

[ ju , k] with [ i iju d  , i]. 

 
Step 3: When all the nodes are permanently labeled, the 
algorithm terminates. Otherwise, choose the label [ ru , s] with 

shortest distance ( ru ) from the list of temporary neutrosophic 

labels. Set i=r and repeat step 2. 
 
Step 4: Select the shortest path between source node 1 and the 
destination node j by tracing backward through the network 
using the label’s information. 
 
Remark: 
At each iteration among all temporary nodes, make those 
nodes permanent which have smallest distance. Note that at 
any iteration we can not move to permanent node, however, 



reverse is possible. After all the nodes have permanent labels 
and only one temporary node remains, make it permanent. 
After describing the interval valued neutrosophic Dijkstra’ 
algorithm, in next section a numerical example is given to 
explain the proposed algorithm. 
The flow diagram of interval valued neutrosophic Dijkstra 
algorithm is depicted in figure1 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 1. Flow diagram representing the interval valued 

neutrosophic Dijkstra algorithm. 

V. ILLUSTRATIVE  EXAMPLE 

 
In this subsection, an hypothetical example is used to verify 
the proposed approach. For this, we consider the network 
shown in figure2, then, we computed the shortest path from 
node  1 to node 6 where edges is represented by an interval 
valued neutrosophic numbers is computed. The extended 
Dijikstra algorithm is applied to the following network.  

 
 
 
 
 
 
 
 

 
 
 
 
 

Fig.2. A network with interval valued neutrosophic weights 
In this network each edge has been assigned to interval valued 
neutrosophic number as follows: 
 
                         Table 1.  Weights of the graphs  
 

Edges Interval valued neutrosophic 
distance 

1-2 < [0.1,0.2], [0.2, 0.3], [0.4, 0.5]> 
1-3 < [0.2,0.4], [0.3, 0.5], [0.1, 0.2]> 
2-3 <[0.3,0.4], [0.1, 0.2], [0.3,0.5]> 
2-5 <[0.1,0.3], [0.3, 0.4], [0.2, 0.3]> 
3-4 < [0.2, 0.3], [0.2, 0.5], [0.4, 0.5]> 
3-5 < [0.3, 0.6], [0.1, 0.2], [0.1, 0.4]> 
4-6 < [0.4, 0.6], [0.2, 0.4], [0.1, 0.3]> 
5-6 < [0.2, 0.3], [0.3, 0.4], [0.1, 0.5]> 

 
Following the interval valued neutrosophic Dijkstra’s 
algorithm, the details of calculations are defined below. 
Iteration 0:  Assign the permanent label [<[0, 0], [1, 1], [1, 
1]>, -] to node1 . 
Iteration 1: Node 2 and node 3 can be arrived from (the last 
permanently labeled) node 1.  Hence, the list of labeled nodes 
(Temporary and permanently) is available in the following 
table 
 

Nodes Label Status 

1 [<[0, 0], [1, 1], [1, 1]>, -] P 
2 [<[0.1, 0.2], [0.2, 0.3], [0.4, 0.5]>, 1] T 
3 [<[0.2, 0.4], [0.3, 0.5], [0.1, 0.2]>, 1] T 

 
In order to compare <[0.1, 0.2], [0.2, 0.3], [0.4, 0.5]>and  
<[0.2, 0.4], [0.3, 0.5], [0.1, 0.2]> we use Eq.8 
S (<[0.1, 0.2], [0.2, 0.3], [0.4, 0.5]>) =0.1 
S (<[0.2, 0.4], [0.3, 0.5], [0.1, 0.2]>)=0.175 
Since the rank of [<[0.1, 0.2], [0.2, 0.3], [0.4, 0.5]>, 1] is less 
than [<[0.2, 0.4], [0.3, 0.5], [0.1, 0.2]>, 1]. Hence,  the status 
of node 2 is replaced by the permanent status. 
 
 Iteration 2: Node 3 and node 5 can be arrived from node 2. 
Hence, the list of labeled nodes (temporary and permanent) is 
available in the following table 
 
 

Start 

Identify the source and destination node 

as 1v  and jv  

Set the node 1v  as permanent node 

 

Is the permanant 

node  jv  

Compute the temporary label from 1v  

to its neighbor and find its minimum 

distance node say jv  

Compute the distance d( 1v + jv )  and 

assign it as next permanent node in jv   

No 

Computation of shortest distance from 

1v  to jv  

End 

yes 

1

3 4

6

2

5 



 
 
Nodes Label Status 

1 [<[0, 0], [1, 1], [1, 1]>, -] P 
2 [<[0.1, 0.2], [0.2, 0.3], [0.4, 0.5]>, 1] P 
3 [<[0.2, 0.4], [0.3, 0.5], [0.1, 0.2]> , 1] or 

[<[0.37, 0.52], [0.02, 0.06], [0.12, 0.25]>, 2] 
T 

5 [<[0.19, 0.44], [0.06, 0.12], [0.08, 0.15]>, 2] T 

 
S ( <[0.37, 0.52], [0.02, 0.06], [0.12, 0.25] >) =0.59 
S ( <[0.19, 0.44], [0.06, 0.12], [0.08, 0.15]>) =0.51 
Among the temporary labels [<[0.2, 0.4], [0.3, 0.5], [0.1, 
0.2]>, 1] or [<[0.37, 0.52], [0.02, 0.06], [0.12, 0.25]>, 2], 
[<[0.19, 0.44], [0.06, 0.12], [0.08, 0.15]>, 2]  and since the 
rank of<[0.2, 0.4], [0.3, 0.5], [0.1, 0.2]>  is less than of <[0.37, 
0.52], [0.02, 0.06], [0.12, 0.25]> and <[0.19, 0.44], [0.06, 
0.12], [0.08, 0.15]>, So the status of node 3 is replaced by  a 
permanent status. 
 
 Iteration 3 : Node 4 and node 5 can be arrived from node 3. 
Hence, the list of labeled nodes (temporary and permanently) 
is available in the following table 
 
Nodes Label Status 

1 [<[0, 0], [1, 1], [1, 1]>, -] P 
2 [<[0.1, 0.2], [0.2, 0.3], [0.4, 0.5]>, 1] P 
3 [<[0.2, 0.4], [0.3, 0.5], [0.1, 0.2]> , 1] P 
4 [<[0.36, 0.58], [0.06, 0.25], [0.04, 0.1]> , 3] T 
5 [<[0.19, 0.44], [0.06, 0.12], [0.08, 0.15]> , 2] 

or 
[<[0.44, 0.76], [0.03, 0.1], [0.01, 0.08]>, 3]  

T 

 
S (< [0.36, 0.58], [0.06, 0.25], [0.04, 0.1]>) =0.54 
S (< [0.44, 0.76], [0.03, 0.1], [0.01, 0.08]>) =0.71 
Among the temporary labels [<[0.36, 0.58], [0.06, 0.25], 
[0.04, 0.1]> , 3] or [<[0.19, 0.44], [0.06, 0.12], [0.08, 0.15]>, 
2], [<[0.44, 0.76], [0.03, 0.1], [0.01, 0.08]>, 3]   and since the 
rank of <[0.19, 0.44], [0.06, 0.12], [0.08, 0.15]>,is less than of  
<[0.36, 0.58], [0.06, 0.25], [0.04, 0.1]> and <[0.44, 0.76], 
[0.03, 0.1], [0.01, 0.08]>. So the status of node 5 is replaced 
by a permanent status. 
 
Iteration 4:  Node 6 can be arrived from node 5. Hence, the 
list of labeled nodes (temporary and permanent) is available in 
the following table.  
 
Nodes Label Status 

1 [<[0, 0], [1, 1], [1, 1]>, -] P 
2 [<[0.1, 0.2], [0.2, 0.3], [0.4, 0.5]>, 1] P 
3 [<[0.2, 0.4], [0.3, 0.5], [0.1, 0.2]>, 1] P 
4 [<[0.36, 0.58], [0.06, 0.25], [0.04, 0.1]>, 3] T 
5 [<[0.19, 0.44], [0.06, 0.12], [0.08, 0.15]>, 2] P 
6 [<[0.35, 0.60], [0.01, 0.04], [0.008, 0.075]>, 5]  T 
 
 

Since, there exist one permanent node from where we can 
arrive at node 6. So, make temporary label [<[0.35, 0.60], 
[0.01, 0.04], [0.008, 0.075]>, 5]  as permanent. 
 
Iteration 5: The only temporary node is 4, this node can be 
arrived from node 3 and node 6. Hence, the list of labeled 
nodes (temporary and permanent) is available in the following 
table 

Nodes label status 

1 [<[0, 0], [1, 1], [1, 1]>, -] P 
2 [<[0.1, 0.2], [0.2, 0.3], [0.4, 0.5]>, 1] P 
3 [<[0.2, 0.4], [0.3, 0.5], [0.1, 0.2]>, 1] P 
4 [<[0.36, 0.58], [0.06, 0.25], [0.04, 0.1]>, 3] 

or 
[<[0.61, 0.84, [0.002, 0.016], [0.01, 
0.023]>,  6] 
 

T 

5 [<[0.19, 0.44], [0.06, 0.12], [0.08, 0.15]>, 
2] 

P 

6 [<[0.35, 0.60], [0.01, 0.04], [0.008, 0.075]>, 5] P 
 
In order to compare <[0.36, 0.58], [0.06, 0.25], [0.04, 0.1]> 
and <[0.61, 0.48], [0.002, 0.016], [0.01, 0.023]> we use the  
Eq.8 
S ( <[0.36, 0.58], [0.06, 0.25], [0.04, 0.1]> ) =0.54 and  
S ( <[0.61, 0.84], [0.002, 0.016], [0.01, 0.023]> ) = 0.84  
Since the rank of [<[0.36, 0.58], [0.06, 0.25], [0.04, 0.1]>, 3] 
is less than [<[0.61, 0.84, [0.002, 0.016], [0.01, 0.023]>,  6].  
 
And the node 4 is the only one temporary node remains then,  
the status of node 4 is replaced by a permanent status. 
 

Nodes Label Status 

1 [<[0, 0], [1, 1], [1, 1]>, -] P 
2 [<[0.1, 0.2], [0.2, 0.3], [0.4, 0.5]>, 1] P 
3 [<[0.2, 0.4], [0.3, 0.5], [0.1, 0.2]>, 1] P 
4 [<[0.36, 0.58], [0.06, 0.25], [0.04, 0.1]>, 

3] 
T 

5 [<[0.19, 0.44], [0.06, 0.12], [0.08, 0.15]>, 
2] 

P 

6 [<[0.35, 0.60], [0.01, 0.04], [0.008,0.075]>, 5] P 
 
 Based on the step 4, the shortest path from node 1 to node 6 is 
determined using the following sequence.  
 
(6)  [< [0.35, 0.60], [0.01, 0.04], [0.008, 0.075]>, 5]  (5) 
 [<[0.19, 0.44], [0.06, 0.12], [0.08, 0.15]>, 2] 
 (2)  [ <[0.1, 0.2], [0.2, 0.3], [0.4, 0.5]>, 1] (1) 
Hence, the required shortest path is 1 2 5 6    
 
 
 
 
 
 
 
 
 



 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

Fig 3. Network with interval valued neutrosophic shortest 
distance of each node from node 1. 

 
Where, the  neutrosophic label of each node is: 
[a,  -]=   [< [0, 0], [1, 1], [1, 1] >, -] 
[b, 1 ]= [< [0.1, 0.2], [0.2, 0.3], [0.4, 0.5], 1] 
[c, 1 ]= [< [0.2, 0.4], [0.3, 0.5], [0.1, 0.2] >, 1] 
[d,  3]= [< [0.36, 0.58], [0.06, 0.25], [0.04, 0.1] >, 3] 
[e, 2 ]= [< [0.19, 0.44], [0.06, 0.12], [0.08, 0.15] >, 2] 
[f, 5] = [< [0.35, 0.60], [0.01, 0.04], [0, 0.075] >, 5] 
 

VI. CONCLUSION 
 

This paper extended the single valued neutrosophic Dijkstra’s 
algorithm for solving the shortest path problem of a network 
where the edge weights are characterized by an interval valued 
neutrosophic number. The use of interval valued neutrosophic 
numbers as weights in the graph express more precision than 
single valued neutrosophic numbers. Finally, a numerical 
example has been solved to check the efficiency of the 
proposed method. In future, we will research the application 
of this algorithm. 
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