
Introduction to Logplex Encoding

Binary universal codes of asymptotically optimal efficiency which
increase monotonically with their corresponding whole numbers.

Russell Leidich
https://agnentropy.blogspot.com

May 11, 2017

Keywords: logplex, universal, code, encoding, compression, discrete, whole,
integer, affine, infinite, recursive, Elias, omega, exponential, Golomb, Turing

0. Abstract

Logplex codes are universal codes, that is, bitstrings which map one-to-one
to the whole numbers, regardless of the bits which follow them in memory.
The codes are dense, in the sense that there is no finite series of bits which
does not map to at least one whole number. Their asymptotic efficiency (size
out divided by size in) is one, as with Elias omega codes[1], but they have
some convient features absent in the latter:

Given whole numbers M and N. If (M<N) then (logplex(M)<logplex(N)).
This provides for more efficient searching and sorting, as such tasks can be
done without the need to allocate separate memory for the corresponding
decoded whole numbers.

For all nonzero M, M itself is encoded verbatim in the high bits of its
logplex. In all cases, the high (last) bit of a logplex is one.

Representation of all subparts of logplexes are bitwise little endian. This is in
contrast to Elias omega codes, the endianness of the subparts of which are
opposite to the expansion direction.

Finally, logplexes are scale-agnostic: there is no need to assume that (log2 M)
has any particular maximum value. This feature stems from their recursive
structure, which is analogous to that of Elias omega codes.

1. The Encoding Algo

Given whole number M. To logplex(M) using simple bitstring operations
starting from a null string, use the following algo. Note that "MSB" means
"most significant bit", which actually means the position of the highest one
bit, as opposed to an actual bit.

1. Set the bitstring to one.

2. If (M<=1), then goto 13.

3. Set B to the MSB of M.

4. Append all (B+1) bits of M to the bitstring, most significant first. Thus the
first bit stored will be a one.

5. Decrement B.

6. Set (M=B).

7. If (M<=1), then goto 12.

8. Set B to the MSB of M.

9. Clear bit B of M.

10. Append (B+1) bits of M to the bitstring, most significant first. Thus the
first bit stored will be a zero.

11. Goto 5.

12. Append a zero to the bitstring.

13. Append a single bit equal to M to the bitstring.

14. Reverse the order of all bits heretofore written to the bitstring. The result
is logplex(M).

2. Examples

The following table provides a series of logplexes and their equivalent Elias
omega codes (offset by one, as the omega scheme provides no encoding for
zero). The leftmost bit is stored at position zero in all cases. Spaces have been
inserted to distinguish subparts.

M logplex(M) elias_omega(M+1)

0 01 0

1 11 10 0

01 00 01 11 0

11 00 11 10 100 0

001 10 001 10 101 0

101 10 101 10 110 0

011 10 011 10 111 0

111 10 111 11 1000 0

0001 00 00 0001 11 1001 0

1001 00 00 1001 11 1010 0

0101 00 00 0101 11 1011 0

1101 00 00 1101 11 1100 0

0011 00 00 0011 11 1101 0

1011 00 00 1011 11 1110 0

0111 00 00 0111 11 1111 0

1111 00 00 1111 10 100 10000 0

00001 00 10 00001 10 100 10001 0

10001 00 10 10001 10 100 10010 0

...

1001011 10 100 1001011 10 110 1101001 0

11011101 10 010 11011101 10 111 10111011 0

3. Asymptotic Behavior

The asymptotic size of logplex(M) has ratio one with respect to the following
series:

log2 M + log2 (log2 M) + log2 (log2 (log2 M)) + ...

Thus as expected the ratio of the logplex size to the size of M itself also
approaches one.

4. The Decoding Algo

A bitstring in memory can be decoded to a whole number M by the following
algo:

1. Load the first 2 bits. Set M to the low (first) bit. If the next bit is one, then
stop. Otherwise, set (B=M+1).

2. Set M to the next (B+1) bits of the bitstring.

3. If the high bit of M is one, then stop.

4. Set bit B of M.

5. Increment M.

6. Goto 2.

Bibliography

[1] https://en.wikipedia.org/wiki/Elias_omega_coding

