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0. Abstract

We have at our disposal a wide variety of discrete transforms for the 
discovery of "interesting" signals in discrete data sets in any number of 
dimensions, which are of particular utility when the default assumption is that
the set is mundane. SETI, the Search for Extraterrestrial Intelligence, is the 
archetypical case, although problems in drug discovery, malware detection, 
financial arbitrage, geologic exploration, forensic analysis, and other diverse 
fields are perpetual clients of such tools. Fundamentally, these include the 
Fourier, wavelet, curvelet, wave atom, contourlet, brushlet, etc. transforms 
which have churned out of math departments with increasing frequency since
the days of Joseph Fourier. A mountain of optimized applications has been 
built on top of them, for example the Fastest Fourier Transform in the 
West[1] and the Wave Atom Toolbox[2].

Such transforms excel at discovering particular classes of signals. So much so
that the return on investment in new math would appear to be approaching 
zero. What's missing, however, is efficiency: the question must be asked as to



when such transforms are computationally justifiable.

Herein we investigate a preprocessing technique, abstractly known as an 
"entropy transform", which, in a wide variety of practical applications, can 
discern in essentially real time whether or not an "interesting" signal exists 
within a particular data set. (Entropy transforms say nothing as to the nature 
of the signal, but merely how interesting a particular subset of the data 
appears to be.) Entropy transforms have the added advantage that they can 
also be tuned to behave as crude classifiers -- not as good as their deep 
learning counterparts, but requiring orders of magnitude less processing 
power. In applications where identifying many targets with moderate 
accuracy is more important than identifying a few targets with excellent 
accuracy, entropy transforms could bridge the gap to product viability.

It would be fair to say that in the realm of signal detection, discrete 
transforms should be the tool of choice because they tend to produce the most
accurate and well characterized results. But processor power and execution 
time are not free! Particularly when, as in the case of SETI, the bottleneck is 
the rate at which newly acquired data can be processed, a more productive 
approach would be use to cheap but reasonably accurate O(N) transforms to 
filter out all but the most surprising subsets of the data. This would reserve 
processing capacity for those rare weird cases more deserving of closer 
inspection.

I published Agnentro[3], an open-source toolkit for signal search and 
comparison. The reason, first and foremost, was to support these broad and 
rather unintuitive assertions with numerical evidence. The goal of this paper 
is to formalize the underlying math.

1. Prerequisite Knowledge

To begin with, the reader is presumed to be familiar with the terminology of 
mask lists[4] and the math behind agnentropy[5]. A knowledge of logfreedom
and dyspoissonism[6] would also be helpful because it provdes an intuitive 
sense of how it's possible to generalize the notion of "interesting" signals 
floating in a sea of noise.



2. The Semantics of Entropy

For our purposes here, "entropy" is simply a measure of information content. 
It can have units of bits, although for the sake of compuational accuracy it's 
preferable to work in nats (bits times (ln 2)). We'll follow that convention 
here.

"Entrometry", then, is the use of entropy metrics to study various phenomena,
whether physical or purely mathematical in nature.

Some physicists will no doubt be offended by this etymology, as "entropy" 
has a specific thermodynamic definition which resolves only indirectly to a 
vague notion of information content. Sorry, but it just wastes too much time 
to repetitively refer to "information content" when we could just as easily 
refer to "entropy" and expect to be understood.

The most important thing to understand about entropy is that it only has 
meaning from the perspective of a probability model for the distribution of 
data sets which could possibly occur in the wild, to we which we refer as the 
"generator" in the agnentropy context. To be clear, there is no absolute level 
of entropy. Rather, the entropy of a set is just the negative of the log to some 
base (2 or e in the case of bits or nats, respectively) of the probability of the 
set in question actually occurring, as implied by said model. For example, if 
we expect ones and zeroes to occur with equal probability, and have no 
further assumptions, then the entropy in bits of any bitstring is ostensibly the 
just number of bits it contains -- but merely ostensibly because there is 
information in the number of bits itself, which must be conveyed in a so-
called "universal code". And furthermore there's entropy in the assumption 
that said code precedes the bitstring, as opposed to being located elsewhere. 
We could continue indefinitely, but the bottom line is unavoidable: the 
definition of entropy depends on the expectations, whether implicit or 
explicit, of the machine seeking to measure it. In other words, entropy is in 
the eye of the beholder!

By the way, as I mentioned in [5], "metric" is used in the qualitative sense of 



something that measuring something -- entropy, in this case. Mathematical 
purists will rightly point out that the formulae discussed herein are generally 
"divegences" because they violate the triangle inequality and thus do not fit 
the formal definition of a metric. By the more mathematical jargon one uses, 
the less likely one is to find an audience for one's ideas among engineers.

3. Sweep Transforms and the Windowing Problem

The aforementioned discrete transforms are all biased in the sense that they're
optimized for perfectly aligned principal components of specific 
wavelengths, be they sine waves, Haar wavelets, curvelets, or whatever. Their
tremendous success derives from the fact that, if properly applied to an 
amenable class of data sets, said components are nevertheless likely to 
resonate with similar counterparts in the sets. This is why, for instance, the 
JPEG compression algo seems to be able to compress just about any photo 
using the discrete cosine transform, despite the fact that the physical world is 
not composed of cosine wavelets.

But therein lies the problem: all discrete transforms suffer from so-called 
"windowing" or "filtering" problems. This refers to the inaccuracy induced in
the transition from the analog world of calculus to the discrete world of 
integers. In particular, the continuum of amplitudes and wavelengths 
representable in the former yield to quantized approximations of themselves 
in the latter.

"Sweep transforms" seek to eliminate the alignment windowing problem to 
the maximum extent possible, in particular by sliding a window of some 
particular width across the data, one mask (sample) at a time. The 
wavelength windowing problem remains. However, entropy in all its 
manifestations explored herein has no sense of wavelength; the mask is the 
fundamental unit of analysis, and all that matters is their relative rates of 
occurrence ("frequency", which is an unfortunate term of art having nothing 
at all to do with the reciprocal of wavelength).

All entropy transforms are sweep transforms. Let's first define the latter.



3.1. Haystack, Needle, and Sweep

The "haystack" is the name we give to the data set itself (which must consist 
of at least one mask) in the sense of "something to be searched for something 
else". That "something else" is the "needle" -- a second data set, the size of 
which is also nonzero but otherwise unrestricted. It might seem 
counterintuitive to have a needle larger than the haystack which is to be 
searched for it, but the concepts are qualitative in the sense, for instance, that 
we might search a school photo for a face which happens to have been 
scanned a much higher resolution and therefore consists of more masks 
(pixels, in this case) than the former.

The "sweep" is simply the nonzero number of masks in the "sweep window" 
which moves from start to end of the haystack one mask at a time, such that 
the window always covers a contiguous and uniformally sized subset of 
haystack. Inside this window, some particular function is evaluated. In this 
case, but not in the general case, that function is an entropy metric.

There are 3 basic "sweep modes": haystack, fixed, and needle. In haystcak 
mode, the sweep equals the number of masks in the haystack; the window 
doesn't slide because it has no space to do so. In fixed mode, the sweep is a 
natural number (positive integer), which again cannot exceed the number of 
masks in the haystack. This is probably best conveyed graphically:



Notice that the output consists of at most as many masks as the haystack 
because (sweep minus one) masks are missing on account of the requirement 
that the sweep window be of uniform width. (This is why the output is visibly
shorter than the haystack in the graphic.)

In needle mode, finally, which is only valid with "bivalent" sweep transforms
such as the diventropy transform discussed later, the sweep is equal to the 
number of masks in the needle; this mode is only valid if the needle size 
doesn't exceed the haystack size.

3.2. The Sweep Transform Formula

Formally, then, if we have a haystack mask list H={H0, H1,... HQ-1} consisting
of Q whole numbers less than Z, then the "output list" Y of a sweep transform
wherein a "sweep function" X is applied to the sweep window of width S 
starting at each zero-based "sweep base index" J, where (J<=(Q-S)), then

Y≡{Y 0, Y 1,... Y Q−S}

where



Y J≡X ({H J , H J +1, ...H J+S−1})

Furthermore, to the extent that X is commutative, the quantity (YJ+S-YJ) is 
then purely a function of HJ, and HJ+S -- in other words, the mask next to leave
and next to enter sweep window, respectively. All of the entropy metrics 
presented herein adhere to this criterion, which is the fundamental reason 
why their complexity is asymptotically O(Q). But in the general case, there's 
no requirement that YJ be scalar or that the sweep function be linear, so one 
could for example imagine a "high accuracy" Fourier transform which 
consisted of a sweep transform of fast Fourier transforms.

3.3. Higher Dimensional Sweep Transforms

Sweep transforms are trivially extensible to higher dimensions. In D 
dimensions, Z remains a natural number; while J, Q and S generalize to D-
tuples of naturals such that the components of J and S are subject to the same 
constraint with respect to the corresponding components of Q. Furthermore, 
the D-sweep-window moves in each dimension by toggling a (D-1)-
hyperprism of constant geometry on each side, rather than a single mask.

In all respects but one, this generalization is so trivial as to discourage further
discussion. That one respect is the path of traversal of the D-haystack. 
Notionally, the path is left to right, then down by one, then left to right, etc. 
through all D dimensions. But in practice, this is likely to be inefficient due 
to cache thrashing. For better performance, consider walking the sweep base 
index vectors in the order of their equivalent Hilbert curve[7] coordinates, 
assuming a curve of infinite length. This practice will reduce cache misses.

4.0. Entropy Transforms

Again, an entropy transform is a sweep transform in which the sweep 
function is an entropy metric. Those discussed here are defined for use in one
dimension, but they generalize to D dimensions in the aforementioned 
manner.

The output list of an entropy transform consists of a set of real numbers 



representing the entropy of the corresponding sweep window at each step. 
For its part, the Agnentro toolkit uses interval math to calculate entropy 
values, so the output is a list of "fractervals", which are rational fraction 
subintervals of [0, 1]. It also supports the computation of all entropy metrics 
presented herein. The use of interval arithmetic of one form or another is 
strongly encouraged, as entropy transforms involve repetitive feedback of 
previously generated results, which taxes numerical precision.

Generally, the sweep windows found to have the greatest, or the least, 
entropy are the most interesting in practice. However, particularly insofar as 
classification tasks are concerned, it often seems to be the case that similar 
objects will exhibit similar entropy when analyzed at the same scale. This 
facilitates "bandgap entrometry", which is the classification of phenomena 
depending upon the region into which their entropy falls. There are 
normalization methods which allow phenomena manifesting on various 
scales to be compared as though they manifest on the same scale, which we'll
discuss later.

4.1 Monovalent Entropy Transforms

These transforms have only a haystack and a sweep as inputs, as the point is 
to compute some particular entropy parameter of all possible sweeps, then 
sort them in order to find the most surprising information. ("Monovalent" 
means "one face", which refers to the haystack.)

4.1.1. The Shannon Entropy Transform

The Shannon entropy E of a haystack H consisting of Q masks on the interval
[0, Z-1] is given by

E≡(Q ln Q)−∑
M=0

Z−1

F H( M ) ln F H (M)

where FH(M) is the frequency of mask M in the haystack:



FH (M )≡∑
K =0

Q−1

(H K=M)

where (HK=M) is one if HK equals M, else zero.

Now, technically, E is the "compromised" Shannon entropy discussed in [5] 
-- not the true (analog) Shannon entropy. Regardless of this, it fails to account
for the cost of conveying the frequency information itself (because it's an 
asymptotic metric unsuitable for "small" sets).

We can then define YJ, which is the Shannon entropy of a sweep window of 
width S based at zero-based index J, (J<=(Q-S)):

Y J≡(S ln S)− ∑
K =J

J +S−1

ln F S(J ,H K)

where we've broken out the log product terms into individual subtrahends and
FS(J, HK) is the frequency of HK inside the sweep window:

FS(J , M)≡ ∑
K =J

J+ S−1

(H K=M )

We could compute all (Q-S) values of YJ in order to fully populate Y. 
However, there is a faster, if more serialized and thus numerically taxing 
way: after computing Y0 as above, compute the "entropy delta" ΔYJ, defined 
as (YJ+S-YJ), at each step starting with (J=0), then add it to the previous 
entropy:

ΔY J≡( ∑
K =J +1

J+S

ln FS(J , HK))−( ∑
K=J

J+ S−1

ln FS(J , HK ))

If (HJ=HJ+S), then, as with all entropy transforms, ΔYJ is zero, so we can just 
set YJ+1 to YJ, then move on to the next step. Otherwise things get 
complicated because a change in the frequency of a single mask may affect 
the log terms corresponding to many other copies of that mask within the 
sweep window. Fortunately, after accounting for those changes, the resulting 
expression for ΔYJ is relatively inexpensive to compute:



ΔY J≡FS (J , H J) ln(FS (J , H J))

+FS(J , H J +S) ln(FS(J , H J +S))

−(FS(J , H J )−1) ln(FS(J , H J )−1)

−(FS(J , H J +S)+1) ln(FS(J , H J +S)+1)

which can be rapidly computed, given a lazily populated table of logs (and, 
for enhanced efficiency, the differences between logs of successive whole 
numbers). (If it occurs, (0 ln 0) must be treated as zero.) What this formula is 
saying, essentially, is that the entropy is changing by an amount which 
reflects the loss of HJ and the addition of HJ+S. In the rare case that FS(J, HJ) is
initially equal to (FS(J, HJ+S)+1), ΔYJ will vanish to zero; this fact can be 
exploited to reduce the unnecessary loss of numerical precision.

4.1.2. The Agnentropy Transform

Similarly to Shannon entropy, the agnentropy E of a haystack given by

E≡logΓ (Q+Z)−logΓ (Z )−∑
M=0

Z−1

logΓ (FH (M)+1)

gives rise to the following in a sweep context:

Y J≡ln((Q+Z−1)!)−ln((Z−1)!)−∑
M=0

Z −1

ln(FS(J ,M )!)

where FS(J, M) is the frequency of mask M within the sweep window, and  
we've recast the loggamma terms as sums of logs . This in turn implies that

ΔY J≡ ln FS (J ,H J)−ln(FS(J , H J +S)+1)

which is, of all the entropy transforms herein, by far the fastest to compute 
and least numerically taxing. (A simple lookup table would suffice for the 
logs.) And as in the Shannon case, ΔYJ is zero and move on if in fact FS(J, HJ)
is initially equal to (FS(J, HJ+S)+1). Moreover, because it implicitly accounts 
for the cost of encoding the frequency list, agnentropy is also more accurate 
than Shannon entropy, to the extent that all Z masks are actually possible.



4.1.3. The Obtuse Variance Transform

To be sure, variance isn't considered an entropy metric, but we can use it that 
way, as it turns out to be quite sensitive to faint sinosoidal signals shrouded in
Gaussian noise. The variance E of a haystack is given by:

E≡
1
Q
∑
J =0

Q−1

(H J−U )
2

where U is the mean (average) of the haystack H. Which in a sweep context 
gives rise to

Y J≡
1
S
∑
K=J

J+ S−1

( HK−U )
2

provided that we make the "obtuse mean approximation" that U is the same 
in all sweep windows. (If we don't, then complexity explodes to O(QS) due 
to the fact that a change in the mean affects all addends of the above sum in a
nonlinear manner.) This assumption facilitates rapid computation of the 
entropy delta:

ΔY J≡
(H J+S−U )

2
−(H J−U )

2

S

wherein the division by S can be deferred until and unless necessary (because
in practice most results rank too low to be deemed interesting, and are thus 
discarded), leaving us with a simple difference-of-squares in most cases, the 
minuend and subtrahend of which could be cached in a lazily populated table 
of size O(Z).

For comparative analysis purposes, and to the extent that our assumption 
about the mean is accurate, the obtuse variance transform is equivalent to a 
standard deviation sweep transform because variance is monotonic with the 
latter. This assumption starts to fall apart under high noise regimes, however, 
in which agnentropy is an empirically superior metric.



4.1.4. The Obtuse Kurtosis Transform

We can similarly define an entropy metric E as the kurtosis of H:

E≡

Q∑
J=0

Q−1

(H J−U )
4

(∑
J=0

Q−1

(H J−U )
2
)

2

which in a sweep context, and under the same obtuse mean approximation, 
gives rise to

Y J≡

S ∑
K =J

J+S−1

(H K−U)
4

( ∑
K=J

J +S−1

(HK−U )
2
)

2

which implies that

ΔY J≡S { ∑
K =J +1

J+S (H K−U )
4

((H K−U)
2
)

2
− ∑

K=J

J+ S−1 (HK−U )
4

((HK−U )
2
)

2 }

which demonstrates exactly why the obtuse kurtosis transform is so 
expensive: it's cheaper just to evaluate YJ from scratch on every step, at best 
deferring the multiplication by S until and unless necessary.

Insofar as the detection of sinusoidal waves is concerned, obtuse kurtosis 
appears to be "obtuse" indeed, in the sense that it's empirically much less 
sensitive than other entropy metrics. Nevertheless it's included here because 
in theory it might excel in other regimes known to exhibit nongaussian 
kurtosis, such as asset price streams.

4.1.5. The Logfreedom Transform

The logfreedom formula[8] in "eubits" (the word I invented for nats, before I 
knew the latter) is:



L≡lnQ!+ ln Z!−ln H [0]!−∑
F=1

K

ln H [F ]!−∑
F=1

K

H [F ] ln F!

where K is the maximum value of frequency F having nonzero population. 
We can recast this formula in the style of the foregoing entropy metrics:

E≡ln Q!+ ln Z!−∑
F=0

Q

(ln PH(F )!+PH (F) ln F!)

where PH(F) is H[F] in the former, simply because we've already assigned H 
to be the haystack. (We also change brackets to parentheses and subsume the 
(H[0]!) term into the sum, bearing in mind that zero factorial is one). For the 
sake of simplicity, we're summing over all possible values of F, the 
populations of most of which being zero. This formula applies 
straightforwardly to a sweep window:

Y J≡ln Q!+ ln Z!−∑
F=0

S

( ln PS(J , F )!+PS(J , F ) ln F!)

where

PS(J , F)≡∑
M=0

Z−1

(FS(J ,M )=F)

meaning that PS(J, F) is the population of frequency F within the sweep 
window with base index J. This yields

ΔY J≡ln PS(J ,FS (J ,H J))+ln(FS (J ,H J)!)−ln (PS(J , FS(J , H J )−1)+1)−ln(FS(J , H J )−1)!

+ln PS (J ,FS(J , H J +S))+ ln F S(J ,H J+S)!−ln(PS(J ,FS (J ,H J+S)+1)+1)−ln(FS(J , H J +S)+1)!

which must be computed in the following order:

1. Compute all terms involving HJ.

2. Decrement PS(J, FS(J, HJ)).

3. Increment PS(J, FS(J, HJ)-1).



4. Decrement FS(J, HJ).

5. Compute all terms involving HJ+S, yielding ΔYJ.

6. Decrement PS(J, FS(J, HJ+S)).

7. Increment PS(J, FS(J, HJ+S)+1).

8. Increment FS(J, HJ+S).

This ordering is necessary to avoid the possibility of colliding population 
updates.

Despite appearances, no log operand can actually be zero because: (1) PS(J, 
FS(J, HJ)) is nonzero because this term is evaluated before FS(J, HJ) is 
decremented. (2) (PS(J, FS(J, HJ)-1)+1) and (PS(J, FS(J, HJ+S)+1)+1) are 
nonzero because populatin is by definition whole, and we're adding one to it. 
(3) PS(J, FS(J, HJ+S)) is nonzero because if FS(J, HJ+S) zero, then PS(J, 0) is 
nonzero because at least one mask is missing from the sweep window; 
otherwise if FS(J, HJ+S) is nonzero then it must appear in the sweep window 
already, in which case its frequency and thus the population of its frequency 
is by definition nonzero.

Further simplification yields

ΔY J≡ ln PS(J ,FS (J , H J))−ln(PS(J , FS(J , H J )−1)+1)+ ln FS(J , H J )

+ln PS (J ,FS(J , H J +S))−ln (PS(J , FS(J , H J+S)+1)+1)−ln (FS (J ,H J+ S)+1)

where the same order of operations applies and it's still impossible to 
generate a (ln 0) term. By the way, it often occurs that FS(J, HJ) equals (FS(J, 
HJ+S)+1), in which case ΔYJ is simply zero, which can be exploited to thwart 
precision erosion.

For its part, PS(J, F) is best implemented via a sparsely populated list 
mapping frequency F to its population in the sweep window, which must be 
on [0, S]. But this can be unweildy if S is much larger than the hardware 
cache. So to save space, a Poisson cache of the sort used by Agnentro Scan 



(via the included Poissocache library) would be useful.

4.1.6. The Exoentropy Transform

"Exoentropy" is short for "exotic entropy", which is a measure of how unlike 
the surrounding data the sweep window actually is. More precisely, it's the 
amount of information which would be required to losslessly encode the 
sweep window, given only Q, Z, and the mask probability distribution 
implied by the agnostic frequencies of all masks in the "exosweep", which is 
the haystack excluding the sweep window. This method is optimized for use 
in the search for anomalous signals of unforeseeable geometry. Indeed, in 
tests of signal discovery performance under high noise conditions, it 
outperformed every other entropy transform except for exoelasticity, a 
conceptual derivative of exoentropy which we'll discuss later.

Recalling from [5] that agnostic frequency is simply frequency plus one, it 
follows that the exoentropy of an entire haystack is simply its "raw entropy", 
because the implied probabilities of all masks are equal:

E≡Q ln Z

But if, as is the usual case, the sweep window is smaller than the haystack, 
then the exoentropy becomes the Shannon entropy implied by the agnostic 
frequencies of the other subset of the haystack:

Y J≡S ln(Q+Z−S )− ∑
K= J

J +S−1

ln(FE(J , H K)+1)

where the "exofrequency" FE(J, HK) is given by:

FE(J , HK)≡∑
K =0

Q−1

(H K=M )−FS(J ,H K)

so that

ΔY J≡FS(J ,H J ) ln(FE (J ,H J)+1)−(FS(J , H J )−1) ln(FE(J , H J )+2)
+FS(J ,H J +S) ln (FE (J ,H J+ S)+1)−(FS(J , H J +S)+1) ln FE(J , H J +S)



ΔY J≡ ln(FE(J , H J )+1)−(FS (J ,H J)−1)( ln(FE(J , H J )+2)−ln(F E(J , H J )+1))
+FS (J ,H J+S)( ln(FE(J , H J +S)+1)−ln FE(J , H J +S))−ln FE(J , H J +S)

ΔY J≡ ln(FE(J , H J )+1)−(FS (J , H J)−1) Δln(FE (J , H J)+1)

+FS(J , H J +S) Δln F E(J , H J +S)−ln FE(J , H J +S)

where "Δln" denotes the "logdelta" function, which is easily cached for reuse:

Δln(F)≡ln(F+1)−ln F ,(F>0)

Note that there's no way that any of the terms of ΔYJ will result in (ln 0), in 
particalar because FE(J, HJ+S) is at least one because this mask is known to be 
present in the haystack at index (J+S), which is outside the sweep window 
and is therefore counted in the exofrequency list.

4.2 Bivalent Entropy Transforms

These transforms have a haystack, a sweep, and also a needle as inputs. As 
with monovalent entropy transforms, the point is to compute some particular 
entropy parameter of all possible sweeps, all of which involving the entire 
needle as well, then sort them in order to find the most useful information. 
("Bivalent" means "2 faces", which refers to the haystack and the needle.)

4.2.1. The Diventropy Transform

"Diventropy" is short for "divergent entropy", which measures how much a 
pair of data sets resemble one another. More precisely, it's the amount of 
information which would be required to losslessly encode the needle, given 
only Q, Z, and the mask probability distribution implied by the agnostic 
frequency list of the sweep window. So as the sweep window slides step by 
step, its changing agnostic frequency list is used to compute the Shannon 
entropy of the needle. The reason we use agnostic frequency is because 
there's no guarantee that all masks in the sweep window actually occur in the 
needle. The reason we use Shannon entropy instead of agnentropy is that, in 
the event that a strong match is found between the sweep window and the 
needle, it's assumed that the former already provides an accurate 



approximation of the generator which gave rise to both of them, so further 
agnostic calibration would be of little value relative to its complexity burden. 
(This isn't always a valid approximation, so some other more complicated 
transform could do better.)

This is particularly useful for identifying parts of the haystack which are most
like, or most unlike, the needle. A diventropy transform could also support a 
bandgap entrometry approach, in which objects are classified according to 
how similar to the needle they appear to be.

The diventropy E of a needle with mask frequencies FN, with respect to a 
haystack with mask frequencies FH, is given by:

E≡QN ln (QH +Z)−∑
M=0

Z −1

FN (M ) ln(FH (M )+1)

where the haystack and needle contain QH and QN masks on [0, Z-1], 
respectively; and where, as stated, FH involves the entire haystack without 
regard to a sweep window.

Granted, it seems as though the downside of this approach is that it may be 
possible to find or construct a mask list other than the haystack which, when 
used as a needle, results a lesser diventropy than the haystack itself. (Beware 
the potential security ramifications of the construction case, for example to 
fool a classifier.) In a weird way, this is a reasonable result because it reflects 
the uncertainty in the generator model implied by the finiteness of QH. In 
other words, we're not saying that "H is unequal to H"; rather, we're saying 
that, based on only QH masks, there are better approximations of the 
generator which gave rise to H, than H itself. This is in turn a consequence of
the agnostic assumptions given in [5].

Anyway, conceptually, the diventropy of a needle with respect a haystack is 
the Shannon entropy of the former as measured in terms of the agnostic 
frequency list of the latter. This similar to the Kullback-Leibler 
divergence[9], but lacks the singularities which can occur if a mask in the 
needle has frequency zero in the haystack (due to a lack of agnosticism).



Let's be clear about this: in the act of selecting Z, we're implying that all 
masks on [0, Z-1] are possible in both the haystack and the needle, in light of 
whatever scant prior knowledge we might have of the generator. (If the 
probabilities of some masks are zero in both, then a simple reassigment can 
"densify" the mask list, at the cost of some additional information required 
for invertibility. Fortunately, it's often possible to clip the range to minimum 
and maximum possible values, which requires much less information and 
thus introduces less error into the metric.) This doesn't mean that all such 
masks occur, however. The Kullback-Leibler approach presupposes that any 
mask which doesn't occur in the haystack can't occur in the needle. This 
makes sense in the limit of infinite haystacks, but we live in no such world, 
which is why it explodes with increasing probability as we examine 
progressively smaller haystacks. (Technically, it doesn't explode; it just isn't 
defined. Quoting Wikipedia: "The Kullback–Leibler divergence is defined 
only if [zero haystack probability] implies [zero needle probability]." Same 
difference.) Agnostic frequency has its own problems, in particular, the 
number of masks required for before a normalized agnostic frequency list 
accurately approximates the generator; we call this "agnostic drag". But, 
provided that Z is actually honest, we can do no better in practice than to start
with the assumption that all masks have occurred exactly once. (In theory, we
can do better, as explained in [5] -- "namely that the frequency of all masks is
initially (1/Z)" -- but it makes little practical sense.) Now, if Z is unbounded, 
then we enter the uncharted territory of superagnentropy, as discussed in the 
same; fortunately, this isn't likely to be a practical concern.

Now, when a sweep window is involved, we replace FH(M) with FS(J, M), 
which yields

Y J≡QN ln(S+Z)−∑
M=0

Z−1

FN( M) ln(FS(J , M)+1)

where S, as usual, is the sweep. Finally, this implies that

ΔY J≡FN (H J )( ln(FS(J , H J )+1)−ln FS (J ,H J))+FN(H J+ S)( ln(FS(J+S , H J +S)+1)−ln(FS (J ,H J+ S))+2)

ΔY J≡FN (H J ) Δln FS(J ,H J )−F N(H J +S) Δln(FS(J+S , H J +S)+1)



which is the diventropy delta due to sliding the sweep window from index J 
to (J+1).

The diventropy transform seems to be a viable means of searching a large 
data set for "something that looks like" a smaller one. Intuitively, however, 
we should be able to achieve more accuracy by taking a weighted average of 
the diventropy of the needle with respect to the haystack, and visa versa.

4.2.2. Why Diventropy is Tough to Beat

Diventropy treats all sweeps windows identically, even if we consider the 
same sweep applied to many different mask lists, as is the case in a file 
system search for a particular needle. The reason is that all sweep windows 
need to compete, in effect, to compress the needle by as much as possible. 
Those which best approximate the generator should be best able to do so, 
within the limits of agnostic drag, assuming that there was in fact some 
common generator which gave rise to both the needle and some particular 
sweep window. (We want (Q>>Z) for an accurate ranking of results.)

In practice, this seems to work quite well. For example, I have an album 
consisting of almost 3000 photos, all of which in TARGA format. This is an 
uncompressed format involving, in this case, 24-bit pixels having 8 bits each 
of blue, green, and red. The photos vary in size by a factor of 10 or so, and 
were acquired with a variety of scanners and cameras. The subject matter is 
widely variable, as one would naturally expect of an album spanning many 
years. There are people, animals, landscapes, vehicles, buildings, food, 
machines, works of art, and more. As a test, I used Agnentro Find to search 
for a photo of my late great cat, Scurry. (By the way, it employs 
"divcompressivity", which is the normalized equivalent of diventropy that 
we'll discuss later.) The photo has been inserted here in a somewhat lossfully 
compressed JPEG format:



As expected, the highest ranking result was the image itself. The second 
highest was a shot taken with minutes of the first, which in fact I'd long 
forgotten. It, too, had been scanned from a physical photo, resulting in 
entirely different data on the pixel level. Note the change in scale (and paw 
position):



And the third highest was a photo of Purrsy, another charming family cat who
passed away some years ago. After that, the images were not generally of 
cats.

Granted, there are several other photos of Scurry in the album, so it's likely 
that Purrsy ended up at #3 because Agnentro Find was zeroing in on his 
similar fur statistics, or perhaps the plush carpet beneath him. I did try a few 
other searches, and discovered that smooth, distinctly colored objects such as 
gray skyscrapers seem to produce the most consistent results in the top ranks.
For example, a photo of a dense urban area was selected as the needle. 
Agnentro Find then turned up some other shots of the same city, as well as 
similar areas in other cities. To be sure, this is nothing to compete with a 
human or a thoroughly trained deep learning system. But the point here is to 
search rapidly and without any training. Given those constraints, it's frankly 
surprising how robust diventropy turns out to be.

Bear in mind, Agnentro Find knows nothing of pixels, chromatic 
components, or even 2D data structures, let alone cats. It could, with some 
heavy modification, be morphed into a powerful photo search utility. (I 



would probably start by sorting the pixels in a photo by their Hilbert 
coordinates, then treating the result as a 1D mask list. This is a cheap trick to 
enhance accuracy without the overhead of a bona fide 2D diventropy 
transform.)

Again, it's reasonable to assume that by somehow combining the diventropy 
of the needle with respect to the haystack with diventropy from the opposite 
direction, we ought to be able to produce an even higher quality metric. 

I personally put tremendous effort into this quest. But the results never beat 
plain old diventropy for quality, and ended up being much slower as well. 
Part of the reason is that when the direction of diventropy is reversed, the 
objective of optimization is no longer constant, as we're now trying to 
compress the sweep window from the perspective of the needle, which 
implies that the target data set changes from one base index to another and 
one file to another. Even attempts to normalize the opposing diventropies 
relative to their Shannon entropy failed. I then combined them in a manner 
weighted by the square root of the number of masks in the agnostic frequency
list (for the sake of approximate proportionality to standard deviation), to no 
avail. But nevermind all that. Suffice to say, I've concluded that the 
unpredictability introduced by reversing the direction just overwhelms 
numerical stability, resulting in a persistently inferior metric. Perhaps 
someone else can improve upon the situation.

Meanwhile, diventropy is the only worthwhile bivalent entropy transform at 
out disposal.

5. Normalized Entropy Metrics

In the practical use of entropy transforms, there often arises the need to 
compare entropy metrics across various sweeps (as in, various sizes of sweep 
windows). For instance, if sweep windows X and Y are both remarkable in 
light of the entropy they contain, then which is more "interesting"? Perhaps Y
has higher entropy, so in that sense it's more interesting, but maybe that's 
unremarkable because it's also larger than X. A reasonable solution to this 
conundrum is the use of "normalized" entropy metrics.



Normalization in its simplest form involves dividing a particular entropy 
metric by (Q ln Z), which as explained in [5] is its raw entropy, that is, the 
amount of information (in nats) required to store the mask list in base Z if all 
masks are equally likely.

An entropy metric is "compressive" if it results in an amount of information 
less than (Q ln Z), "expansive" if it results in more information, or 
"conservative" if it results in precisely the same amount. Due to these 3 
distinct possibilities, we unfortunately can't always divide by the raw entropy
in order to normalize a particular entropy metric, as we'll see in the following
sections.

5.1. Dyspoissonism

As explained in [6], the dyspoissonism D of a mask list with logfreedom L 
and raw entropy (Q ln Z) is given by:

D≡1−
L

Q ln Z

recalling that we always assume (Z>1). In this case, normalization is 
straightforward because the numerator can never so much as equal the 
denominator. This is because the former excludes the information content of 
the population list. Without that list, one couldn't create an invertable code. 
(This is neverless a minor omission in comparison to Shannon entropy, which
excludes the information content of the frequency list.)

Like logfreedom, dyspoissonism is a randomness metric which for most 
practical purposes can be conveniently misappropriated as an entropy metric: 
the lower the dyspoissonism, the more random the mask list. (And hence the 
more its population list resembles what a Poisson distribution would imply -- 
not that Poisson distributions imply maximum randomness, which is a 
popular misconception of an analog object which is merely asymptotically 
accurate.) Randomness and entropy are substantially similar, except that the 
entropy of permutations is maximal whereas their randomness is not. For 
example, {0, 1, 2, 3, 4, 5} has more entropy but actually less randomness 



than {0, 1, 2, 3, 4, 4}. The reason is that an unbiased random number 
generator with (Z=6) would be more likely to generate the latter, even though
it contains less information from an agnostic perspective. Insofaras security is
concerned, it's more important to behave with maximum randomness than 
maximum entropy, if for no other reason than that systems exhibiting 
maximum entropy probably involve a highly ordered process buried within 
them (ironically). Apparently the designers of the AES encryption standard, 
for example, didn't understand this decades ago, which is certainly related to 
the inherent weaknesses which have since come to light. (Fortunately it 
remains "strong enough" for the moment, in our classical computing world.)

So the notion that more entropy means less order needs some rethinking. To 
put a finer point on it, the Kolmogorov complexity[10] of a counter is 
remarkably small, and yet its output has maximum Shannon entropy, 
maximum agnentropy, and almost maximum logfreedom.

To conclude, dyspoissonism is useful because it allows us to compare the 
randomness (entropy, roughly) of various mask lists of different Q and Z.

5.2. Shannonism

After the fashion of dyspoissonism, "shannonism" S of a mask list with 
Shannon entropy E and raw entropy (Q ln Z) is given by:

S≡1−
E

Q ln Z

Given some fixed Q and Z, just as mask lists with greater randomness have 
lesser dyspoissonism, lists with greater Shannon entropy have lesser 
shannonism. And likewise, shannonism can be used to compare the entropies 
of disparate mask lists in a normalized manner.

5.3. Compressivity

Similarly, lists with greater agnentropy have lesser "compressivity". But 
compressivity fundamentally differs from dyspoissonism and shannonism 



because unlike logfreedom and Shannon entropy, respectively, agnentropy 
isn't always compressive. Therefore we define compressivity C of a mask list 
with agnentropy E and raw entropy (Q ln Z) by the following "compressivity 
formula":

C≡1−
E

2(Q ln Z )
,(E≤(Q ln Z))

C≡
Q ln Z

2E
,((Q ln Z)<E)

such that C is differentiable on (0, 1) and continuous on [0, 1]. This 
expression can be tricky to compute with interval math, as both partitions 
may apply to subsets of the intervals in question, in which case piecewise 
computation would be necessary.

Of the normalization methods presented thus far, compressivity is the most 
accurate means of comparing the relative entropies of disparate mask lists, 
subject to agnostic drag, for the same reasons that make agnentropy itself 
more accurate.

5.4. Exocompressivity

Compressivity is to agnentropy as exocompressivity is to exoentropy. If we 
replace the agnentropy E in the compressivity formula with exoentropy, then 
the output C is the corresponding exocompressivity. Note that the 
exocompressivity of an entire haystack is always (1/2) because by definition 
the exoentropy thereof is just its raw entropy. Thus, like exoentropy, 
exocompressivity is only useful in the context of sweep windows.

5.5. Exoelasticity

Exoelasticity is an inherently normalized entropy metric, without any 
unnormalized counterpart. It outperforms every other entropy metric in the 
SETI signal injection simulation ("setidemo") included in the Agnentro 
toolkit. The exoelasticity of a haystack is just its Shannon entropy divided by 
its raw entropy, which is by definition just its shannonism. So, like 



exocompressivity, exoelasticity is only meaningful in a sweep window 
context:

Y J≡
Y SJ

Y EJ

meaning that the exoelasticity YJ of a sweep window based at index J is just 
the ratio of its Shannon entropy YSJ to its exoentropy YEJ. We could expand 
the numerator and denominator; unfortunately they don't simplify, although 
there are some similar log terms.

For maximum speed, it's best to keep a separate accounting of YSJ and YEJ, so 
that their respective deltas can be efficiently computed as previously shown, 
while the sweep window slides along.

The downside of exoelasticity is that it's about 10 times as computationally 
expensive as exocompressivity, which is about twice as expensive as 
Shannon entropy, which in turn is about twice as expensive as agnentropy. 
This is largely on account of the divide operation. Nevertheless, if sufficient 
computing power is available, it provides excellent sensitivity in certain 
cases. It's somewhat unclear what distinguishes those cases, but overall it 
appears as though it works best on highly anomalous but very short pulses; 
whereas exocompressivity works best on slightly anomalous but longer 
pulses. Exoelasticity could be just the thing for laser SETI!

5.6. Divcompressivity

Compressivity is to agnentropy as divcompressivity is to diventropy. If we 
replace the agnentropy E in the compressivity formula with the diventropy 
(of a needle with respect to some haystack or sweep window), then the output
C is the corresponding divcompressivity. Agnentro Find uses 
divcompressivity to great effect, in order to deliver "similar" files rapidly, as 
in the example previously presented.

6. Preprocessing Hacks



Getting the most out of entropy metrics, normalized or not, usually requires 
some preprocessing techniques. Those presented here are of O(Q) 
complexity, although more elaborate preprocessing could facilite higher 
dimensional searches, such as video search, without the burden of neural 
network training or expensive discrete transforms and convolutions. As 
always, it's a tradeoff among accuracy, energy, and latency.

6.1. Quantization and Entropy Contrast Optimization

Ostensibly, none of the entropy metrics presented herein apply to floating-
point numbers (floats) We could, in theory, consider each such number as its 
own mask, and measure total set entropy accordingly. However, considering 
that there are billions of 32-bit floats and about the square as many 64-bit 
floats, such a task would generally require unweildy amounts of data. A better
option is "quantization".

In its simplest form, quantization involves mapping a range of floats on the 
interval [X, Y] to a range of masks on [0, Z-1]. It's easy enough to discover X
and Y by inspection, although in general they should be the same for the 
entire data set under analysis, as otherwise we would end up with a distorted 
concept of the relative entropies of various files. The trick, however, is to 
select an optimal value of Z.

On the one extreme, if we set Z to its minimum allowed value of 2, then we 
would destroy the richness of the data set, collapsing all floats into a single 
bit. Such severe degradation would probably leave us with unacceptably large
uncertainty.

On the other extreme, we could set Z just high enough to ensure that different
floats always map to different masks. This would preserve the ordering 
information embedded in all of the floats. On the other hand, if we end up 
with a huge set of masks, none of which occurring more than once, then 
every subset would have maximum entropy, so nothing would stand out from
the crowd.

What we need to do here is select a value of Z which optimizes the "entropy 



contrast" of our search results. This refers to the ratio of the maximum 
entropy on the rank list to the minimum entropy on the same list. (The "rank 
list" is the "high score" list -- just like in sports or video games. For its part, a 
"score" could be greatest when entropy is least, or visa vera; it all depends on
the ranking rules, which are downstream of any entropy transforms.) To first 
approximation, we could discover an optimal value of Z via binary search on 
the interval [2, Q]. (Q is, in most practical cases, an upper bound for Z, 
although it's possible that much larger values would be required, depending 
on the "lumpiness" of the distribution of the particular floats involved.) This 
means we can potentially identify the most "interesting" sweep windows of a 
set of Q floats in O(Q ln Q) time, as compared to O(Q) time with integers. 
This is ostensibly sufficient time to do a full blown discrete transform such as
a wavelet transform, but in fact it's nowhere near sufficient in the limit of 
large Q, considering that such transforms suffer from poor cache efficiency, 
unlike entropy transforms generally. The point here is that we might well be 
able to accomplish for floats what we can demonstrably accomplish for 
integers (and cats!): rapid identification of interesting or relevant signals 
without the burdern of complicated transforms or neural networks.

6.2. Channelized Deltafication

"Deltafication" is simply the discrete equivalent of differentiation in calculus:
if we have the mask list {A, B, C, D}, then its "first delta" is {A, B-A, C-B, 
D-C}. Its 2nd delta is {A, B-2A, C-2B+A, D-2C+B}, and so on. 
Deltafication very often increases entropy contrast without modifying Z, 
simply because the first deltas of many real world data sets contain less 
entropy than the sets themselves. For example, the first delta of an 
uncompressed sound file is likely to compress better than the file itself. 
Which brings us to channelization.

Sound files typically have more than one speaker (for instance, left and right 
in the case of stereo). Uncompressed image files tend to have more than one 
color component (usually blue, green, and red). We could consider, say, the 
pair of 16-bit sound amplitude channels as a single 32-bit number. But this 
practice would probably result in poor entropy contrast because everything 
would appear to have high entropy. A much better approach would be to 



deltafy the channels separately. For example, suppose we have {8, 5, 2, 7, 4, 
1}, corresponding to 3 samples from 2 channels in alternation. The "2-
channelized" first delta would then be: {8, 5, 2-8, 7-5, 4-2, 1-7}, with 
negative numbers converted to their equivalent values modulo Z. We could 
iterate this indefinitely, always resulting in an invertible mask list. Pixel data 
would probably involve 3-channelization, unless for example it contained a 
fourth component, such as a zero high byte, in which case it would be best to 
discard that byte prior to deltafication.

All forms of deltafication suffer from one major drawback, which is that the 
Nth delta contains N atypical masks at the beginning of the resulting list. This
is a necessary side effect of the invertibility requirement. (These masks are 
analogous to constants of integration in calculus.) For better entropy contrast,
they could be deleted and Q adjusted appropriately. However, except in the 
case of a very small mask list, doing so would probably not affect the results 
in any meaningful way. It's important to be cognizant of this defficiency, 
however, for those cases in which it matters.

Agnentro Find and Agnentro Scan both support up to 3 serialized 
deltafications, with optional byte channelization of N-byte masks, where N is
up to 4.

6.3. Densification

Sometimes, and always if (Q<Z), there is a subset of possible masks which 
have frequency zero. In theory, this reduces entropy contrast and makes 
computations less precise as a result of the unnecessarily large integers 
involved. If this occurs, then densification may help.

The densification process maps a mask M to another mask M' in such a 
manner that (1) the ordering of masks is preserved (which is not always 
required, depending on the particular task) and (2) no mask M' has frequency 
zero. It therefore reduces Z to its minimum possible value. As a rule, 
densification takes place after deltafication, as it makes little sense to deltafy 
reassigned mask values.



By way of example, consider {1, 9, 0, 1, 7}. Its dense equivalent is {1, 3, 0, 
1, 2}.

A theoretical side benefit of densification is speed, on account of more 
efficient cache utilization. However, this must be weighed against the cost of 
densifying in the first place, or doing so lazily inside the entropy transform 
pipeline itself. (One could also just not densify, but still keep track of the 
minimally sufficient value of Z, then compensate the resulting entropy metric
accordingly.)

The point, in any case, is to improve entropy contrast. First of all, global 
densification, wherein Z is reduced to some minimally sufficient value which
is then applied to all mask lists under comparative analysis, is essentially 
useless. One reason is purely mathematical: as is evident from a study of their
respective formulae, the ordering of various mask lists by their Shannon 
entropy, agnentropy, or exoentropy is unaffected by densification; only 
logfreedom is affected, and usually in a minor way, on account of the 
population of frequency zero varying from one mask list to another. So 
despite an improvement in entropy contrast, the rank list is the same subject 
to the limits of numerical precision. But another reason is just that: precision.

The logs of smaller naturals require more terms to converge. Depending on 
the particular implementation of the Taylor series for the log (and related 
functions) with interval math, it may ironically turn out that greater operands 
produce more accurate results, up to some limit. So global densification ends 
up reducing the precision of the final result. Both caveats apply to local 
densification as well, which otherwise might prove beneficial.

Local densification involves minimizing Z on a per-file if not per-sweep-
window basis. It's important to realize that doing so distorts an entropy metric
in the sense that invertibility is lost, unless we somehow account for the cost 
of the information required to invert the new masks back to the old ones. But 
nevertheless this might be a useful exercise because it's very likely that Z is 
some convenient round number, such as 256, instead of a true representation 
of the number of masks which are are actually possible. Densification is a bet
that Z was chosen in this haphazard manner. The flipside, though, is that if Z 



was honest to begin with, then densification might result in a catastrophic 
underestimate of entropy, on account of the aforementioned discarded 
information. It's hard to predict, therefore, whether or not it will improve 
search quality in any particular case.

For its part, the Agnentro toolkit does not, as of this writing, support either 
form of densification. The reason is that while the local variety might help, it 
probably wouldn't help much, as the best entropy scanning metric appears to 
be exoentropy, which in the typical case of a large file results in a very 
accurate model of the generator, which probably would not be significantly 
improved by densification. And, frankly, the price of local densification in 
terms of speed and pipeline complexity doesn't seem to justify its benefits, if 
any. Nevertheless, there may be some applications wherein the opposite is 
true.

6.4. Mask Overlap

The entire point of diventropy is to crudely approximate the amount of 
information in a needle from the perspective of a haystack (or sweep 
window). To be sure, the approximation is quite precise, to the extent that Z 
is honest and the only statistical bias in either mask list is distributional, as 
opposed to contextual, in nature. (This distinction was discussed extensively 
in [5].)

Of course, reality is rife with contextually biased information, for example 
the words right here in this sentence. This means that the amount of 
information in the world is considerably less than we would conclude based 
on the foregoing assumptions. In theory, we could more accurately account 
for this deficit by trying to find some minimal representation of the needle in 
terms of the haystack. For example, one could better compress this paper by 
translating the word "haystack" into a couple of bytes, instead of 
decomposing it into its constituent letters. At a higher level of analysis, 
perhaps there are repeated phrases which would offer even more 
compression, and thus an even more accurate estimate of the entropy content 
herein, provided that sufficient information were saved in order to ensure 
invertibility back to this text.



The reason we don't measure entropy this way is because the discovery of 
such minimal representations is almost always computationally intractable. 
That said, one could rapidly derive a fairly accurate approximation. By way 
of proof, the history of lossless file compression dating back to the advent of 
the ZIP archive format has been based on such approximately minimal 
representations.

If someone were to recast a compression algo such as Lempel-Ziv-Welch into
an entropy transform, the result could be a major breakthrough in the field of 
signal analysis. However, such an approach would need to be mindful of 
computational complexity, because at a certain threshold, it would become 
more efficient (and perhaps more effective) to use established deep learning 
approaches instead. That said, neural networking in general appears to be 
overused in cases where a lighter entropy analysis approach would get more 
work done faster, so the climate is ripe for improvement on both fronts.

In the interim, we have a technique called "mask overlap", which is not 
formally part of the theory of entropy transforms, but seems to enhance 
entropy contrast nonetheless. It works like this:

Suppose we have a series of 3-byte pixels, say {{9, 2, 7}, {1, 0, 8}, {4, 5, 5}, 
{4, 3, 6}}. (Perhaps these aren't actually pixels, but rather the 3-channelized 
deltafication thereof. It doesn't matter insofar as this technique is concerned.) 
Conventionally, we would treat each triplet as its own mask. But we could 
also create new "virtual masks" out by shifting our "pixel window" by a byte 
at a time, asymptotically resulting in triple as many masks: {{9, 2, 7}, {2, 7, 
1}, {7, 1, 0}, {1, 0, 8}, {0, 8, 4}, {8, 4, 5}, {4, 5, 5}}. But how would this 
help?

Mask overlap is essentially a hack which causes contextual bias to manifest 
as distributional bias, so we can use a fast computational process for 
detecting the latter in order to detect the former. If in fact there is no 
contextual bias to be found, beyond what distributional bias would imply, 
then overlap will merely waste time and precision. But in cases such as DNA 
comparison, natural language analysis, and malware analysis, where context 



is of the utmost importance, it can make the difference between detection and
nondetection of a salient feature.

Agnentro Find and Agnentro Scan offer overlap as a mask list geometry 
option.

7. Remarks

The revolution in artificial intelligence has grown explosively on the broad 
utility of neural networking. As a result of this tidal wave of experimental 
success, comparatively little effort has been dedicated to the question of 
whether less computationally intensive methods might be appropriate for 
certain problem classes traditionally recognized as the domain of such 
networks. Likewise, not much investigation seems to have been directed at 
the question of whether there might exist more efficient or even more 
accurate methods of signal detection, comparison, or classification based on 
mathematical models which could not have evolved in nature as easily as 
multilayer nested weighting schemes. Entropy transforms are one family of 
methods which go some way toward addressing both questions while 
demonstrating economic utility.
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