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Abstract

An approach to solving the Riemann Hypothesis is revisited within
the framework of the special properties of Θ (theta) functions, and the
notion of CT invariance. The conjugation operation C amounts to complex
scaling transformations, and the T operation t → (1/t) amounts to the
reversal log(t)→ −log(t). A judicious scaling-like operator is constructed
whose spectrum Es = s(1−s) is real-valued, leading to s = 1

2
+ iρ, and/or

s = real. These values are the location of the non-trivial and trivial zeta
zeros, respectively. A thorough analysis of the one-to-one correspondence
among the zeta zeros, and the orthogonality conditions among pairs of
eigenfunctions, reveals that no zeros exist off the critical line. The role of
the C, T transformations, and the properties of the Mellin transform of Θ
functions were essential in our construction.

Keywords: Quantum Mechanics, Dirac Operators, Riemann Hypothesis, Hilbert-
Polya conjecture, Modularity.

Riemann’s outstanding hypothesis (RH) [1] that the non-trivial complex
zeros of the zeta-function ζ(s) must be of the form sn = 1/2 ± iρn, is one of
most important open problems in pure mathematics. The zeta-function has a
relation with the number of prime numbers less than a given quantity and the
zeros of zeta are deeply connected with the distribution of primes [1]. References
[2] are devoted to the mathematical properties of the zeta-function. The RH
has also been studied from the point of view of mathematics and physics by
[7], [13], [19], [23], [10], [24], [8], [9], [25], [12], [22], [27], [18], [28], among many
others . And most recently by [29], [14] and [15].

Let us begin with the one-dimensional differential operators [21], [16]

D1 = − d

d ln t
+

dV

d ln t
+ k. (1.1)
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where k is an arbitrary parameter. The eigenvalues s can be complex-valued in
general, and its eigenfunctions are

ψs(t) = t−s+keV (t). (1.2a)

D1 is not self-adjoint since it is an operator that does not admit an adjoint exten-
sion to the whole real line characterized by the real variable t. The parameter k
is also real-valued. For this reason the eigenvalues of D1 can be complex valued
numbers s. The conjugation operation C acting on the eigenfunctions is defined
as

ψs(t) = t−s+keV (t) → ψs∗(t) = t−s
∗+keV (t) = t−s

∗+s ψs(t). (1.2b)

one learns that the conjugation operation C can also be recast as a scaling
transformation of ψs(t) by t-dependent (local) scaling factors

t−s
∗+s = e(−s

∗+s) (ln t) = e 2 i Im(s) (ln t) = eiθs(t) (1.2c)

which amounts to a t-dependent phase rotation θs(t) which is proportional to
the imaginary part of s and to ln t.

We also define the “mirror” operator to D1 as follows,

D2 =
d

d ln t
− dV (1/t)

d ln t
+ k. (1.3)

that is related to D1 by the substitution t→ 1/t and by noticing that

dV (1/t)

d ln(1/t)
= −dV (1/t)

d ln t
. (1.4)

where V (1/t) is not equal to V (t) and D2 is not self-adjoint either. The eigen-
functions of the D2 operator are Ψs(

1
t ), with the same eigenvalue s

D2 Ψs(
1

t
) = s Ψs(

1

t
) (1.5)

A “Wick rotation” of variables t = iz furnishes z → −(1/z) which is a truly
modular SL(2, Z) transformation z → (az + b/cz + d) with unit determinant
ad− bc = 1.

Out of the infinity of possible choices for V (t), one may choose V (t) which
is related to the Bernoulli string spectral counting function, and given by the
Jacobi theta series as follows

e2V (t) =

∞∑
n=−∞

e−πn
2tl = 2ω(tl) + 1. (1.6)

where l is another real parameter introduced corresponding to the scaling ex-
ponent tl in eq-(1.6).
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The related theta function defined by Gauss is given by

G(1/x) =

∞∑
n=−∞

e−πn
2/x = 2ω(1/x) + 1. (1.7)

where ω(x) =
∞∑
n=1

e−πn
2x. The Gauss-Jacobi series obeys the relation

G(
1

x
) =

√
x G(x). (1.8)

resulting from the Poisson re-summation formula.
After setting e2V (t) = G(tl) = G(x), where x ≡ tl, by recurring to the

properties of the Gauss-Jacobi theta series under the x→ 1/x transformations
(1.8), and when the parameters l, k are constrained to obey the condition l =
4(2k−1), one can show that the eigenfunctions of the D2 operator Ψs(

1
t ), satisfy

the key relation Ψ1−s(t) = Ψs(
1
t ) [16], [21].

A little algebra reveals that the pair of mirror “Hamiltonians” HA = D2D1

and HB = D1D2, when l = 4(2k − 1) have for eigenvalues and eigenfunctions
the following

HA Ψs(t) = s(1− s)Ψs(t). HB Ψs(
1

t
) = s(1− s)Ψs(

1

t
). (1.9)

due to the relation Ψs(1/t) = Ψ1−s(t) based on the modular properties of the
Gauss-Jacobi series, G( 1

x ) =
√
x G(x). Therefore, despite that HA, HB are not

Hermitian they have the same spectrum s(1 − s) which is real-valued only in
the critical line and in the real line. Eq-(1.9) is the one-dimensional version of
the eigenfunctions of the two-dimensional hyperbolic Laplacian given in terms
of the Eisenstein’s series.

The inner product is defined as follows 1

〈f |g〉 =

∞∫
0

f∗g
dt

t
.

Based on this definition, the inner product of two eigenfunctions of D1 is

〈ψs1 |ψs2〉 =

∞∫
0

e2V t−s12+2k−1 dt; s12 ≡ s∗1 + s2 (1.10a)

A regularization of the integral (1.10a) can be attained by removing the
zero n = 0 mode of the Gauss-Jacobi series. Upon doing so and performing the
change of variables x = tl, it leads to

2

l

∞∫
0

e2V x
2(−s12+2k)

2l −1 dx =
2

l
Z

[
2

l
(2k − s12)

]
=

2

l
Z[s] (1.10b)

1At the moment we are not concerned if one has a Banach or a Hilbert space

3



where we have denoted s12 = s∗1 + s2 = x1 + x2 + i(y2 − y1), and s = 2
l (−s12 +

2k). The completed zeta function Z[s] results from the evaluation of the Mellin
transform as shown next. It is known that the completed zeta function Z[s] can
be expressed in terms of the Jacobi theta series, ω(x) defined by eqs-(1.6, 1.7)
as the integral [2]

∞∫
0

∞∑
n=1

e−πn
2xxs/2−1dx =

∫ ∞
0

xs/2−1ω(x)dx

=
1

s(s− 1)
+

∫ ∞
1

[xs/2−1 + x(1−s)/2−1] ω(x)dx

= Z(s) = Z(1− s),

.

(1.11)
where the completed zeta function is defined as

Z(s) ≡ π−s/2 Γ(
s

2
) ζ(s). (1.12)

and which obeys the functional relation Z(s) = Z(1− s).
To sum up, a family of scaling-like operators D1, D2 in one dimension allows

to evaluate the inner product of their eigenfunctions Ψs(t) (after removing the
zero mode of the Gauss-Jacobi theta series) giving (2/l)Z [ 2l (2k − s∗ − s)],
where Z(s) is the Riemann completed zeta function and the l, k parameters are
constrained to obey l = 4(2k−1) in order to have the relation Ψs(1/t) = Ψ1−s(t).
Hence, by using the properties of the Gauss-Jacobi series G( 1

x ) =
√
x G(x) it

follows that under the log-time reversal T operation lnt→ −lnt (equivalent to
t→ 1

t ) the eigenfunctions Ψs(t) behave as

T Ψs(t) = Ψs(
1

t
) = Ψ1−s(t). (1.13)

In order to avoid the removal of the zero mode n = 0 of the Gauss-Jacobi
theta series and evaluate the integrals appearing in the inner products, in [16]
we proposed a family of theta series where no regularization is needed in the
construction of the inner products. There is a two-parameter family of theta
series Θj,m(t) that yield well defined inner products without the need to extract
the zero mode n = 0 divergent contribution. We found that the two parameter
family of theta series related to a different choice for V (t) is given by

e2Vj,m(t) = Θj,m(tl) ≡
n=∞∑
n=−∞

n2m H2j(n
√

2πtl) e−πn
2tl , m = 1, 2, . . . ; j = 0, 1, 2, . . .

(1.14)
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Due to the weighted theta series in eq-(1.14) the zero mode n = 0 does not
contribute to the sum in eq-(1.14), since m is a positive integer, and the Mellin
transform of Θj,m(tl) = Θj,m(x) (x = tl) after exploiting the symmetry of the
even-degree Hermite polynomials, is given by [5], [6]∫ ∞

0

[
2

l

n=∞∑
n=1

n2m H2j(n
√

2πx) e−πn
2x ] xs/2−1 dx =

− 2

l
(8π)j Pj(s) π

−s/2 Γ(
s

2
) ζ(s−2m); Re s > 1+2m, m = 1, 2, .... (1.15)

The polynomial pre-factor in (1.15) is given in terms of a terminating Hy-
pergeometric series [6]

Pj(s) = (8π)−j(−1)j
(2j)!

j!
2F1(−j, s

2
;

1

2
; 2). (1.16)

The polynomial Pj(s) has simple zeros on the critical line Re s = 1
2 , obeys

the functional relation Pj(s) = (−1)jPj(1− s) and in particular Pj(s = 1
2 ) = 0

when j = odd [6]. It is only when j = even that Pj(s = 1
2 ) 6= 0. In order to find

the analytical continuation of the Mellin transform (1.15) for all values of s in
the complex plane we must use the analytical continuation of ζ(s) as found by
Riemann in his celebrated paper. A Poisson re-summation formula for Θj,m(x)
(1.14) leads to the important relation

(−1)j√
x

Θj,m(
1

x
) = Θj,m(x). (1.17)

which allows us to show that only when j = even one can implement the T
transformations of the new eigenfunctions Ψj,m

s (t) = t−s+k eVj,m(t) of D1, and
corresponding to the weighted theta series Θj,m(tl) of eq-(1.14), giving

T Ψj,m
s (t) = Ψj,m

s (
1

t
) = Ψj,m

1−s(t) (1.18)

this relationship requires that one must have

j = even, l = 4(2k − 1) (1.19)

Therefore, the eigenfunctions and eigenvalues of the pair of “Hamiltonians”
is

HAΨj,m
s (t) = s(1− s) Ψj,m

s (t), HBΨj,m
s (

1

t
) = s(1− s)Ψj,m

s (
1

t
) (1.20)

subjected to the conditions in eq-(1.18).
We explicitly inserted the superscripts j,m in Ψj,m

s (t) = t−s+k eVj,m(t) to
denote the j,m dependence in the definition of V (t) given by eq-(1.14).

In what follows we shall omit the superscripts j,m for convenience. Defining
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ΨCTs (t) ≡ C T Ψs(t) = C Ψs(
1

t
) = C Ψ1−s(t) = Ψ1−s∗(t) (1.21)

one finds that it is also an eigenfunction of HA with an eigenvalue s∗(1− s∗) :

HA | ΨCTs (t) > = HA CT | Ψs(t) > = HA | Ψ1−s∗(t) > =

s∗(1− s∗) | Ψ1−s∗(t) > = s∗(1− s∗) CT | Ψs(t) > = (Es)
∗ | ΨCTs (t) > .

(1.22)
where we have defined (Es)

∗ = s∗(1− s∗).
If the CT action on s(1−s) Ψs is linear : CT s(1−s) Ψs = s(1−s) CT Ψs,

instead of antilinear : CT s(1− s) Ψs = s∗(1− s∗) CT Ψs, and if

< Ψs | [HA, CT ] | Ψs > = 0 ⇒

< Ψs | HA CT | Ψs > − < Ψs | CT HA | Ψs > =

(Es)
∗ < Ψs | CT | Ψs > − Es < Ψs | CT | Ψs > =

(E∗s − Es) < Ψs | CT | Ψs > = 0. (1.23)

Similar results follow for the HB operator. From eq-(1.23) one has two cases to
consider.
• Case A : If the pseudo-norm is null

< Ψs | CT | Ψs > = 0 ⇒ (Es − E∗s ) 6= 0 (1.24)

then the complex eigenvalues Es = s(1 − s) and E∗s = s∗(1 − s∗) are complex
conjugates of each other. In this case one cannot prove the RH, and there exists
the possibility that there are quartets of non-trivial Riemann zeta zeros (off the
critical line) given by sn, 1− sn, s∗n, 1− s∗n.
• Case B : If the pseudo-norm is not null :

< Ψs | CT | Ψs > 6= 0 ⇒ (Es − E∗s ) = 0 (1.25)

then the eigenvalues are real given by Es = s(1 − s) = E∗s = s∗(1 − s∗) and
which implies that s = real (location of the trivial zeta zeros) and/or s = 1

2 + iρ
(location of the non-trivial zeta zeros). In this case the RH would be true and
the non-trivial Riemann zeta zeros are given by sn = 1

2 + iρn and 1 − sn =
s∗n = 1

2 − iρn. We are going to prove next why Case A does and cannot occur,
therefore the RH is true because we are left with case B. 2

Therefore one has now at our disposal a well defined inner product of the
states Ψj,m

s (t) (without the need to regularize the integrals by extracting out
the zero n = 0 mode of the theta series). In particular, from eq-(1.15) one learns

2The authors [4] were the first to my knowledge who explored the possibility that PT
symmetry might be relevant to the RH. It was their work which inspired us.
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that the inner product of the states Ψj,m
s (t) with the states Ψ 1

2+2m(t), where
m = 1, 2, ...., is given by

< Ψj,m
1
2+2m

(t) | Ψj,m
s (t) > = − 2

l
(8π)j Pj(s+2m) π−(s+2m)/2 Γ(

s+ 2m

2
) ζ(s).

(1.26)
to arrive at this result above requires performing the change of variables tl = x,
and fixing uniquely the values l = −2; k = 1

4 obeying the required constraint
l = 4(2k− 1) in eq-(1.18). Therefore, the non-trivial zeta zeros sn = 1

2 ± ρn are
in a one-to-one correspondence with the states Ψj,m

sn (t) orthogonal to the states

Ψj,m
1
2+2m

(t) in eq-(1.26) :

< Ψj,m
1
2+2m

(t) | Ψj,m
sn (t) > =

− 2

l
(8π)j Pj(sn + 2m) π−(sn+2m)/2 Γ(

sn + 2m

2
) ζ(sn) = 0; m = 1, 2, 3, .....

(1.27)
It remains to prove, when l = −2, k = 1

4 , tl = x, and s12 = s∗1 + s2 =
s∗1 + (1− s∗1) = 1, that

< Ψj,m
s (t) | CT | Ψj,m

s (t) > = < Ψj,m
s (t) || Ψj,m

1−s∗(t) > =∫ ∞
0

[
2

l

n=∞∑
n=1

n2m H2j(n
√

2πx) e−πn
2x ] x

2(−s12+2k)

2l −1 dx =

− 2

l
(8π)j Pj(s =

1

2
) π−1/4 Γ(

1

4
) ζ(

1

2
− 2m) 6= 0; j = even, m = 1, 2, 3, .....

(1.28)
Hence, one arrives at a definite solid conclusion in eq-(1.28). Because ζ( 1

2 −
2m) 6= 0 when m = 1, 2, ...., and Pj(

1
2 ) 6= 0 when j = even in eq-(1.28), then

< Ψs | CT | Ψs > 6= 0, and this rules out case A in eq-(1.24) , and singles out
case B in eq-(1.25) leading to the conclusion that Es = s(1− s) = real ⇒ s =
1
2 + iρ ( and/or s = real ), which is the location of the non-trivial zeta zeros (if
the RH is true) and trivial zeta zeros, respectively.

Armed with these findings that the eigenvalues s which define the eigen-
functions Ψs(t) must be real and/or reside in the critical line, we can proceed
further than we did back in [16] and gain more information about the location
of the zeta zeros. Let us analyze the scenario in case the RH were not true.
Given any real number s′ = 1

2 + ξ ∈ R, such that ξ > 2m, and s = 1
2 + iλ ∈ L

residing in the critical line, let us imagine that the inner product

< Ψj,m
s′ (t) | Ψj,m

s (t) > = < Ψj,m
1
2+ξ

(t) | Ψj,m
s (t) > =

− 2

l
(8π)j Pj(s+ ξ) π−(s+ξ)/2 Γ(

s+ ξ

2
) ζ(s+ ξ − 2m) = 0 (1.29)

and its complex conjugate
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< Ψj,m
s′ (t) | Ψj,m

s∗ (t) > = < Ψj,m
1
2+ξ

(t) | Ψj,m
s∗ (t) > =

− 2

l
(8π)j Pj(s

∗ + ξ) π−(s
∗+ξ)/2 Γ(

s∗ + ξ

2
) ζ(s∗ + ξ − 2m) = 0 (1.30)

generate other nontrivial zeros off the critical line given by z ≡ s+ξ−2m; z∗ ≡
s∗ + ξ − 2m, respectively. Then, by symmetry, 1 − z∗ = s − ξ + 2m, and
1−z = s∗− ξ+ 2m should also be another pair of complex conjugate (putative)
zeros off the critical line since the number of zeros off the critical line must
appear in quartets resulting from the symmetry property of the completed zeta
function Z(s) = Z(1− s).

However, due to the fact that the numbers m are positive integers, and
from inspection of the fundamental integral in eq-(1.15), one can infer that this
latter pair of complex conjugate zeros s − ξ + 2m, and s∗ − ξ + 2m, cannot
be obtained from an orthogonality condition among the Ψjm

s (t) and Ψjm
s′ (t), for

any s located in the critical line, and s′ = 1
2 +ξ located in the real line (ξ > 2m).

Consequently, if there were zeros off the critical line, only half of those could be
obtained from imposing the orthogonality conditions. The only way one could
generate all the (non-trivial) zeros from the orthogonality conditions is when
all of them reside in the critical line and which is consistent with the RH.

It is true that one could have the following inner products

< Ψj,m
1
2+ξ

′(t) |Ψj,m
s (t) > = − 2

l
(8π)j Pj(s+ξ

′) π−(s+ξ
′)/2 Γ(

s+ ξ′

2
)ζ(s+ξ′−2m)

(1.31)
of the states Ψj,m

s (t) with another state Ψj,m
1
2+ξ

′(t) associated to a different

value of ξ′ 6= ξ, such that

ζ(s+ ξ′ − 2m) = ζ(s− ξ + 2m) = 0 (1.32)

namely, one could perform the identification

s+ξ′−2m = s−ξ+2m ⇒ ξ + ξ′ = 4m, ξ > 2m > 0, 0 < ξ′ < 2m (1.33)

and claim that one has found the sought-after pair of orthogonal states Ψjm
1
2+ξ

′(t), Ψjm
s (t)

which generates the putative zero off the critical line given by s− ξ + 2m.
But in this case one would have to choose two different “ground” states,

Ψjm
1
2+ξ

(t), Ψjm
1
2+ξ

′(t) in order to evaluate the inner products with the states

Ψj,m
s (t). The eigenvalues s(1 − s) associated with the latter two “ground ”

states are 1
4 − ξ

2, 1
4 − (ξ′)2, respectively. However, the fact that these eigenval-

ues are not the same is problematic if one wishes to label these states as the two
degenerate “ground” states which are both orthogonal to the states Ψjm

s (t).

Another possibility is to look at the inner products Ψjm′

s (t) with Ψjm′

1
2+ξ

′(t).

The orthogonality condition yields in this case the relation
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s+ξ′−2m′ = s−ξ+2m ⇒ ξ + ξ′ = 2m + 2m′; ξ > 2m > 0, 0 < ξ′ < 2m′

(1.34)

However, in this case one would be choosing eigenfunctions Ψjm′

s (t),Ψjm′

1
2+ξ

′(t)

of another different operator D′1 resulting from the different value of m′ 6= m,
and which leads to a different weighted theta series in eq-(1.14).

Therefore, in order to generate the quartets of putative zeros off the critical
line one would be forced to look at the orthogonality conditions of Ψjm

s (t) with
respect to two different “ground” states, or involving eigenfunctions of many
different operators D1, D

′
1, D

′′
1 , · · · associated with many different functions

Vj,m(t), Vj,m′(t), Vj,m′′(t), · · ·, instead of focusing on the orthogonality conditions
involving eigenfunctions Ψj,m

s (t) of only one operator D1, associated to only one
function Vj,m(t), and with respect to only one “ground” state.

The above arguments are reminiscent of our prior physical interpretation of
the location of the nontrivial Riemann zeta zeros. These locations corresponded
to the presence of tachyonic-resonances/tachyonic-condensates in bosonic string
theory [11]. We found that if there were zeros off the critical line violating the
RH these zeros do not correspond to any poles of the string scattering amplitude.
We believe that complex scalings and logarithmic time reversal transformations
hold important clues as to why the Riemann hypothesis is true. The role of
the C, T transformations, and the properties of the Mellin transform [6] were
essential in our construction.
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