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Abstract

Because the Einstein equation can’t uniquely determine the metric, it must be supplemented by additional
metric constraints. Since the Einstein equation can be derived in a purely special-relativistic context,
those constraints (which can’t be generally covariant) should be Lorentz-covariant; moreover, for the
effect of the constraints to be natural from the perspective of observational and empirical physical scien-
tists, they should also constrain the general coordinate transformations (which are compatible with the
unconstrained Einstein equation) so that the constrained transformations manifest a salient feature of the
Lorentz transformations. The little-known Einstein-Schwarzschild coordinate condition, which requires
the metric’s determinant to have its -1 Minkowski value, thereby constrains coordinate transformations
to have unit Jacobian, and for that reason causes tensor densities to transform as true tensors, which is
a salient feature of the Lorentz transformations. The Einstein-Schwarzschild coordinate condition also
allows the static Schwarzschild solution’s singular radius to be exactly zero; though another coordinate
condition that allows zero Schwarzschild radius exists, it isn’t Lorentz-covariant.

Introduction

The Einstein equation is under-determined because the Bianchi identity implies that all four components of
the covariant divergence of the ten-component Einstein tensor must vanish, so the Einstein equation by itself
could at most determine only six of the ten components of the gravitational metric-tensor field gµν [1]. That
makes it necessary to specify four additional function constraints on the ten-function metric-tensor field gµν .
Those four additional function constraints on the metric-tensor field gµν can’t be generally covariant, but
the theoretical-physics nature of the Einstein equation strongly suggests that those constraints must respect
special relativity: the weak-field (linearized) form of the Einstein equation is the unique special-relativistic
extension of static Newtonian gravitational theory in a setting strictly analogous to that of Maxwell’s equation
for four-vector Aµ in terms of the divergence-free four-vector jµ, except that for weak-field gravitation it
must be for symmetric second-rank tensor gµν in terms of the divergence-free symmetric second-rank tensor
Tµν [2], and the iterative corrections to the weak-field Einstein tensor are uniquely a matter of pursuing
special-relativistic gravitational-field stress-energy self-consistency in the context of preserving an overall
variational principle [3]; i.e., the Einstein equation can be viewed as being special-relativistic to its core.

Thus the four additional function constraints on gµν ought to be Lorentz-covariant. Moreover, for the
effect of the constraints to be natural from the perspective of observational and empirical physical scientists,
they should as well constrain the general coordinate transformations (which of course are compatible with
the unconstrained Einstein equation) so that the resulting constrained coordinate transformations manifest
a salient feature of the Lorentz transformations.

The only widely-recognized Lorentz-covariant four-vector constraint on gµν is the so-called “harmonic”
coordinate condition [4],

gµνΓλµν = 0. (1a)

The purported natural upshot of the Eq. (1a) coordinate condition is that it allegedly constrains the coor-
dinate four-vector xµ to be harmonic in the generally covariant sense that [5],

gαβxµ;α;β = 0. (1b)

In “support” of Eq. (1b), it is pointed out that if φ is a general invariant, then [6],

gαβφ;α;β = gαβ∂α∂βφ− gαβΓλαβ∂λφ, (1c)

so that if the Eq. (1a) coordinate condition holds, then,

gαβφ;α;β = gαβ∂α∂βφ. (1d)
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However, Eq. (1b) fails to follow from Eq. (1d) because the four components of xµ obviously aren’t general
invariants. In fact, although xµ is a four-vector under Lorentz transformations, it isn’t a covariant entity of
any kind under general coordinate transformations.

In a desperate attempt to “rescue” Eq. (1b), however, we note that dxµ does transform as a four-vector
under general coordinate transformations, so that formally , at least, we can calculate that,

dxµ;α;β = ∂β (∂α (dxµ) + Γµακdx
κ) + Γµβσ (∂α (dxσ) + Γσακdx

κ)− Γτβα (∂τ (dxµ) + Γµτκdx
κ) . (1e)

If we now make the desperate assumption that the undefined entity ∂γ
(
dxλ

)
is equal to ∂γ

(
xλ
)

= δλγ , then
Eq. (1e) becomes,

dxµ;α;β = Γµαβ +
[
∂β (Γµακ) + ΓµβσΓσακ − ΓτβαΓµτκ

]
dxκ. (1f)

By using the Eq. (1a) coordinate condition in concert with the questionable Eq. (1f), we “calculate” that,

gαβdxµ;α;β =
[
gαβ∂β (Γµακ) + gαβΓµβσΓσακ

]
dxκ 6= 0. (1g)

Therefore not even the desperate assumption that the undefined entity ∂γ
(
dxλ

)
is equal to ∂γ

(
xλ
)

= δλγ
can in any sense “rescue” the proposition that the Eq. (1a) coordinate condition implies Eq. (1b). Thus to
call the Eq. (1a) coordinate condition “harmonic” is to express a grievous misconception.

Since the widely-recognized Lorentz four-vector coordinate condition given by Eq. (1a) produces no
discernibly natural upshot, it is reasonable to examine the little-known remaining Lorentz four-vector coor-
dinate condition which follows from requiring that the contraction of two of the indices of Γνλµ yields zero,
namely Γνλν = 0. Since,

Γνλν = 1
2g
νµ (∂λgνµ + ∂νgλµ − ∂µgλν) = 1

2g
νµ (∂λgµν) = ∂λ ln

(
(−det (gµν))

1
2

)
, (2a)

imposition of,
Γνλν = 0, (2b)

implies that (−det (gµν))
1
2 is a constant ; substituting ηµν for gµν yields the value unity for that constant,

which is equivalent to the little-known Lorentz-invariant Einstein-Schwarzschild coordinate condition [7],

det (gµν) = −1. (2c)

Since (−det (gµν))
1
2 d4x is invariant under general coordinate transformations, the Eq. (2c) constraint on

gµν causes the infinitesimal space-time four-volume d4x itself to be invariant under those coordinate trans-
formations which the imposition of the Eq. (2c) coordinate condition (or, equivalently, which the imposition
of the Eq. (2b) coordinate condition) actually allows.

The coordinate transformations x̄µ(xν) which the Eq. (2c) Einstein-Schwarzschild coordinate condition
actually allows obviously must satisfy the unit-Jacobian coordinate transformation constraint [7],

det (∂ν x̄
µ) = ±1, (3a)

which clearly parallels the well-known constraint ,

det (Λµν ) = ±1, (3b)

that is satisfied by the Lorentz transformations. Thus the coordinate transformations which the Einstein-
Schwarzschild coordinate condition allows clearly manifest a salient feature of the Lorentz transformations.

It is apparent that the Eq. (3a) unit-Jacobian coordinate transformation constraint on the coordinate
transformations which are allowed by the Eq. (2c) Einstein-Schwarzschild coordinate condition turns all
tensor densities of the general coordinate transformations into true tensors of the coordinate transformations
which are allowed by the Einstein-Schwarzschild coordinate condition. This lack of any distinction between
tensor densities and true tensors is as well , of course, a salient feature of the Lorentz transformations. We
have above already seen in particlar that infinitesimal space-time four-volumes d4x, which are scalar densities
of the general coordinate transformations, are true invariants of the coordinate transformations which are
allowed by the Eq. (2c) Einstein-Schwarzschild coordinate condition—of course the d4x are very well-known
indeed to as well be true invariants of the Lorentz transformations.
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Therefore the Einstein-Schwarzschild coordinate condition of Eq. (2c) definitely constrains the general
coordinate transformations in such a way that the resulting constrained transformations of Eq. (3a) man-
ifest some of the salient features of the Lorentz transformations, which makes the Einstein-Schwarzschild
coordinate condition natural from the perspective of observational and empirical physical scientists.

We next turn to Schwarzschild’s 1916 static, spherically-symmetric empty-space (aside from at the origin
r = 0) metric solution of the Einstein equation which adheres to the Einstein-Schwarzschild coordinate
condition det (gµν) = −1 of Eq. (2c) [8].

The static, isotropic empty-space metric in Einstein-Schwarzschild coordinates

The static, spherically-symmetric empty-space (except at r = 0) Einstein-equation solution for the Einstein-
Schwarzschild coordinate condition det (gµν) = −1 of Eq. (2c) is [8],

ds2 = (1− (rS/R(r; r0))) (cdt)2 − (dR(r; r0)/dr)
2

(dr)2

1− (rS/R(r; r0))
− (R(r; r0)/r)

2
(r)2

[
(dθ)2 + (sin θdφ)2

]
, (4a)

where,

rS
def
= 2GM/c2, R(r; r0)

def
=
(
r3 + (r0)3

) 1
3 , (4b)

and r0 is an arbitrary constant of integration of the Einstein equation. When the arbitrary constant of
integration r0 is set equal to rS , the metric of Eq. (4a) has no singularities or time-dilation infinities at
positive values of r [8],

ds2 = (1− (rS/R(r; rS))) (cdt)2 − (dR(r; rS)/dr)
2

(dr)2

1− (rS/R(r; rS))
− (R(r; rS)/r)

2
(r)2

[
(dθ)2 + (sin θdφ)2

]
. (4c)

Eq. (4c) is Schwarzschild’s 1916 solution [8] produced by the Einstein-Schwarzschild coordinate condition
det (gµν) = −1 of Eq. (2c) and the setting of the arbitrary constant of Einstein-equation integration r0 to
rS , which eliminates all metric singularities and time-dilation infinities at positive values of r.

It is of interest to now examine two coordinate conditions which are algebraically more simply expressed
than is the Eq. (2c) Einstein-Schwarzschild coordinate condition, but in whose favor there doesn’t exist the
kind of physical motivation which was discussed at length for the Einstein-Schwarzschild coordinate condition
in the preceding section.

To facilitate the transformation of the Eq. (4c) 1916 Schwarzschild solution to these other choices of
coordinate condition, we note that the transformed static, spherically-symmetric metric must have the
generic form,

ds2 = f̄0(r̄)(cdt)2 − f̄�(r̄)(dr̄)2 − f̄6 (r̄)r̄2[(dθ)2 + (sin θdφ)2] =

f̄0(r̄(r))(cdt)2 − f̄�(r̄(r))(dr̄(r)/dr)2(dr)2 − f̄6 (r̄(r))(r̄(r)/r)2r2[(dθ)2 + (sin θdφ)2].
(5a)

Eq. (4c) and the last line of Eq. (5a) imply three transformation relations which are mediated by the radius
transformation function r̄(r),

f̄0(r̄(r)) = (1− (rS/R(r; rS))) , f̄�(r̄(r)) =
(dR(r; rS)/dr)

2

(1− (rS/R(r; rS))) (dr̄(r)/dr)2
, f̄ 6 (r̄(r)) =

(R(r; rS))
2

(r̄(r))2
. (5b)

The first algebraically simple coordinate condition which we shall now consider is the Lorentz-noncovar-
iant “standard” coordinate condition,

f̄ 6 (r̄) = 1, (6a)

which from the third transformation relation of Eq. (5b) allows us to immediately solve for the needed radius
transformation function r̄(r),

r̄(r) = R(r; rS) =
(
r3 + (rS)3

) 1
3 , (6b)

where we have used Eq. (4b) in the case that r0 = rS . The Schwarzschild metric of Eq. (4c) doesn’t have
infinite time dilation or singularities for positive r, but it does have both at r = 0, and we clearly see from
Eq. (6b) that r = 0 in the Einstein-Schwarzschild coordinates corresponds to r̄ = rS > 0 in “standard”
coordinates. Thus the Schwarzschild solution in “standard” coordinates is indeed afflicted by infinite time
dilation and metric singularities at a positive value of the “standard” coordinate r̄, namely at r̄ = rS .
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We can obtain the metric singularities of the Schwarzschild solution in “standard” coordinates in full
detail by taking note that Eq. (6b) also immediately yields the inverse r(r̄) of r̄(r),

r(r̄) =
(
r̄3 − (rS)3

) 1
3 , (6c)

and that Eq. (6b) in conjunction with Eq. (6c) furthermore yields,

R(r(r̄); rS) = r̄. (6d)

Noting that,
f̄0(r̄) = f̄0(r̄(r(r̄))) and f̄�(r̄) = f̄�(r̄(r(r̄))), (6e)

in conjunction with the first and second transformation relations of Eq. (5b) plus Eqs. (6b) and (6d) allows
us to deduce that,

f̄0(r̄) = (1− (rS/r̄)) and f̄�(r̄) = (1− (rS/r̄))
−1, (6f)

while from Eq. (6a) we of course have that f̄ 6 (r̄) = 1. Therefore from the first line of Eq. (5a) the
Schwarzschild solution metric in “standard” coordinates is given by,

ds2 = (1− (rS/r̄))(cdt)
2 − (1− (rS/r̄))

−1(dr̄)2 − r̄2[(dθ)2 + (sin θdφ)2]. (6g)

The Eq. (6g) Schwarzschild solution metric produced by the Eq. (6a) Lorentz-noncovariant “standard” co-
ordinate condition is algebraically considerably simpler than the Eq. (4c) Schwarzschild solution metric pro-
duced by the carefully physically-motivated Eq. (2c) Einstein-Schwarzschild coordinate condition, but that
algebraic simplicity comes at a high price in infinite time dilation and metric singularity at the positive radius
r̄ = rS > 0. The Eq. (4c) Schwarzschild solution metric produced by the Eq. (2c) Einstein-Schwarzschild
coordinate condition, of course has no such issues at any positive value of r.

The second algebraically simple coordinate condition which we consider is the Lorentz-noncovariant
“alternative standard” coordinate condition,

f̄�(r̄) = 1, (7a)

which from the second transformation relation of Eq. (5b) allows us to solve for dr̄(r)/dr,

dr̄(r)/dr = (1− (rS/R(r; rS)))
− 1

2 (dR(r; rS)/dr). (7b)

where from Eq. (4b) with r0 = rS ,

R(r; rS) =
(
r3 + (rS)3

) 1
3 . (7c)

We integrate Eq. (7b) to obtain r̄(r) as,

r̄(r) = r̄(0) +

∫ r

0

(1− (rS/R(r′; rS)))
− 1

2 (dR(r′; rS)/dr′) dr′. (7d)

We now change the variable of integration in Eq. (7d) from r′ to R = R(r′; rS),

r̄(r) = r̄(0) +

∫ R(r;rS)

rS

(1− (rS/R))
− 1

2 dR. (7e)

Changing the variable of integration once more fromR to u = cosh−1
(√

R/rS

)
implies thatR = rS cosh2(u),

dR = 2rS cosh(u) sinh(u)du and (1− (rS/R))
− 1

2 = cosh(u)/ sinh(u). Thus Eq. (7e) becomes,

r̄(r) = r̄(0) + rS

∫ cosh−1
(√

R(r;rS)/rS
)

0

(cosh(2u) + 1) du =

r̄(0) + (R(r; rS))
1
2 (R(r; rS)− rS)

1
2 + rS ln

(
(R(r; rS)/rS)

1
2 + ((R(r; rS)/rS)− 1)

1
2

)
,

(7f)

where R(r; rS) =
(
r3 + (rS)3

) 1
3 . Since the Eq. (7b) expression for dr̄(r)/dr is positive for r > 0, r̄(r)

increases monotonically with r for r > 0. So putting the arbitrary constant r̄(0) in Eq. (7f) to zero implies
that the Schwarzschild solution with the Eq. (7a) coordinate condition has no singularities or time-dilation
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infinities for positive values of r̄ because the Eq. (4c) Schwarzschild solution has no singularities or time-
dilation infinities for positive values of r. (But notwithstanding that with r̄(0) = 0 the Eq. (7f) expression
for r̄(r) definitely possesses a unique inverse r(r̄) for r̄ ≥ 0, Eq. (7f) makes it clear that that inverse r(r̄) isn’t
amenable to being worked out analytically and explicitly displayed, so neither is the Schwarzschild solution
metric amenable to being explicitly displayed for the coordinate condition f̄�(r̄) = 1 of Eq. (7a).)

However unlike the “alternative standard” coordinate condition f̄�(r̄) = 1 of Eq. (7a), the “standard”
coordinate condition f̄ 6 (r̄) = 1 of Eq. (6a) does not allow the Schwarzschild solution to have no singularities
or time dilation infinities at positive values of the radius r̄; instead the “standard” coordinate condition
definitely places a singularity and a time dilation infinity at positive r̄ = rS > 0, as is apparent from the
“standard” Schwarzschild solution metric given by Eq. (6g).

Likewise, it is well-known that the so-called “isotropic” coordinate condition f̄�(r̄) = f̄ 6 (r̄) and also
the so-called “harmonic” coordinate condition gµνΓλµν = 0 both do not allow the Schwarzschild solution to
have no singularities or time dilation infinities at positive values of the radius [9]. Such unavoidable occur-
rence of Schwarzschild-solution singularities or time-dilation infinities at positive radius values transparently
isn’t a feature of gravitational physics, but rather is as straightforward an indication as could possibly exist
that the coordinate conditions which give rise to those unphysical anomalies must be shunned . We have, of
course, already argued at length in the preceding section that the Einstein-Schwarzschild coordinate con-
dition det (gµν) = −1 of Eq. (2c) stands head and shoulders above other coordinate conditions in terms of
naturalness for observational and empirical physical scientists because it is Lorentz-covariant and because
the unit-Jacobian coordinate transformations which it allows manifest a salient feature of the Lorentz trans-
formations, namely that all tensor densities (such as the scalar-density infinitesimal space-time four-volumes
d4x) transform as true tensors. That the “alternative standard” coordinate condition f̄�(r̄) = 1 of Eq. (7a)
as well happens not to give rise to an unavoidable Schwarzschild-solution singularity or time-dilation infin-
ity at a positive value of r̄ still can’t justify simply disregarding the fact that that coordinate condition is
Lorentz-noncovariant .
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