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Abstract

Importance Sampling (IS) is a well-known Monte Carlo technique that approximates integrals involving a
posterior distribution by means of weighted samples. In this work, we study the assignation of a single weighted
sample which compresses the information contained in a population of weighted samples. Part of the theory
that we present as Group Importance Sampling (GIS) has been already employed implicitly in different works in
literature. The provided analysis yields several theoretical and practical consequences. For instance, we discuss
the application of GIS into the Sequential Importance Resampling (SIR) framework and show that Independent
Multiple Try Metropolis (I-MTM) schemes can be interpreted as a standard Metropolis-Hastings algorithm,
following the GIS approach. We also introduce two novel Markov Chain Monte Carlo (MCMC) techniques
based on GIS. The first one, named Group Metropolis Sampling (GMS) method, produces a Markov chain
of sets of weighted samples. All these sets are then employed for obtaining a unique global estimator. The
second one is the Distributed Particle Metropolis-Hastings (DPMH) technique, where different parallel particle
filters are jointly used to drive an MCMC algorithm. Different resampled trajectories are compared and then
tested with a proper acceptance probability. The novel schemes are tested in different numerical experiments
such as learning the hyperparameters of Gaussian Processes (GP), the localization problem in a sensor network
and the tracking of the Leaf Area Index (LAI), where they are compared with several benchmark Monte Carlo
techniques. Three descriptive Matlab demos are also provided.

Keywords: Importance Sampling, Markov Chain Monte Carlo (MCMC), Particle Filtering, Particle
Metropolis-Hastings, Multiple Try Metropolis, Bayesian Inference

1 Introduction

Monte Carlo methods are state-of-the-art tools for approximating complicated integrals involving multidimensional
distributions, which is often required in science and technology [16, 22, 23, 38]. The most popular classes
of MC methods are the Importance Sampling (IS) techniques and the Markov chain Monte Carlo (MCMC)
algorithms [22, 38]. IS schemes produce a random discrete approximation of the posterior distribution by a
population of weighted samples [6, 27, 23, 38]. MCMC techniques generate a Markov chain (i.e., a sequence of
correlated samples) with a pre-established target probability density function (pdf) as invariant density [22, 23].

In this work, we introduce theory and practice of the Group Importance Sampling (GIS) scheme, where the
information contained in different sets of weighted samples is compressed by using only one particle (properly
selected) and one suitable weight. This general idea supports the validity of different Monte Carlo algorithms in
literature: interacting parallel particle filters [5, 33, 37], particle island schemes and related techniques [42, 43, 44],
particle filters for model selection [14, 32, 41], nested Sequential Monte Carlo (SMC) methods [34, 35, 40] are
some examples. We point out some consequences of the application of GIS in Sequential Importance Resampling
(SIR) schemes, allowing partial resampling procedures and the use of different marginal likelihood estimators.
Then, we show that the Independent Multiple Try Metropolis (I-MTM) techniques and the Particle Metropolis-
Hastings (PMH) algorithm can be interpreted as a classical Independent Metropolis-Hastings (I-MH) method by
the application of GIS.

Furthermore, we present two novel techniques based on GIS. One example is the Group Metropolis Sampling
(GMS) algorithm that generates a Markov chain of sets of weighted samples. All these resulting sets of samples are



jointly employed obtaining a unique particle approximation of the target distribution. On the one hand, GMS can
be considered an MCMC method since it produce a Markov chain of sets of samples. On the other hand, the GMS
can be also considered as an iterated importance sampler where different estimators are finally combined in order
to build a unique IS estimator. This combination is obtained dynamically through random repetitions given by
MCMC-type acceptance tests. GMS is closely related to Multiple Try Metropolis (MTM) techniques and Particle
Metropolis-Hastings (PMH) algorithms [2, 3, 7, 10, 31, 29], as we discuss below. The GMS algorithm can be also
seen as an extension of the method in [8], for recycling auxiliary samples in a MCMC method.

We also introduce the Distributed PMH (DPMH) technique where the outputs of several parallel particle filters
are compared by an MH-type acceptance function. The proper design of DPMH is a direct application of GIS.
The benefit of DPMH is twofold: different type of particle filters (for instance, with different proposal densities)
can be jointly employed, and the computational effort can be distributed in several machines speeding up the
resulting algorithm. As the standard PMH method, DPMH is useful for filtering and smoothing the estimation of
the trajectory of a variable of interest in a state-space model. Furthermore, the marginal version of DPMH can
be used for the joint estimation of dynamic and static parameters. When the approximation of only one specific
moment of the posterior is required, like GMS, the DPMH output can be expressed as a chain of IS estimators. The
novel schemes are tested in three different numerical experiments: hyperparameter tuning for Gaussian Processes,
localization in a sensor network and filtering of Leaf Area Index (LAI). The comparisons with other benchmark
Monte Carlo methods show the benefits of the proposed algorithms.1

The paper has the following structure. Section 2 recalls some background material. The basis of the GIS theory
is introduced in Section 3. The applications of GIS in particle filtering and Multiple Try Metropolis algorithms
are discussed in Section 4. In Section 5, we introduce the novel techniques based on GIS. Section 6.1 provides the
numerical results and in Section 7 we discuss some conclusions.

2 Problem statement and background

In many applications, the goal is to infer a variable of interest, x = x1:D = [x1, x2, . . . , xD] ∈ X ⊆ RD×η, where
xd ∈ Rη for all d = 1, . . . , D, given a set of related observations or measurements, y ∈ RdY . In the Bayesian
framework all the statistical information is summarized by the posterior probability density function (pdf), i.e.,

π̄(x) = p(x|y) =
`(y|x)g(x)
Z(y)

, (1)

where `(y|x) is the likelihood function, g(x) is the prior pdf and Z(y) is the marginal likelihood (a.k.a., Bayesian
evidence). In general, Z ≡ Z(y) is unknown and difficult to estimate in general, so we assume to be able to evaluate
the unnormalized target function,

π(x) = `(y|x)g(x). (2)

The computation of integrals involving π̄(x) = 1
Zπ(x) are often intractable. We consider the Monte Carlo

approximation of these complicated integrals involving the target π̄(x) and a integrable function h(x) with respect
to π̄, e.g.,

I = Eπ̄[h(X)] =
∫

X
h(x)π̄(x)dx, (3)

where we denote X ∼ π̄(x). The basic Monte Carlo (MC) procedure consists in drawing N independent samples
from the target pdf, i.e., x1, . . . ,xN ∼ π̄(x), so that ÎN = 1

N

∑N
n=1 h(xn) is an estimator of I [23, 38]. However,

in general, direct methods for drawing samples from π̄(x) do not exist so that alternative procedures are required.
Below, we describe one of them.

1Three descriptive Matlab demos are also provided at https://github.com/lukafree/GIS.git.
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2.1 Importance Sampling

Let us consider the use of a simpler proposal pdf, q(x), and rewrite the integral I in Eq. (3) as

I = Eπ̄[h(X)],
= Eq[h(X)w(X)],

=
1
Z

∫

X
h(x)

π(x)
q(x)

q(x)dx, (4)

where w(x) = π(x)
q(x) : X → R. This suggests an alternative procedure. Indeed, we can draw N samples x1, . . . ,xN

from q(x),2 and then assign to each sample the unnormalized weights

wn = w(xn) =
π(xn)
q(xn)

, n = 1, . . . , N. (5)

If Z is known, an unbiased IS estimator [23, 38] is defined as ÎN = 1
ZN

∑N
n=1 wnh(xn), where xn ∼ q(x). If

Z is unknown, defining the normalized weights, w̄n = wnPN
i=1 wi

with n = 1, . . . , N , an alternative asymptotically
unbiased IS estimator is given by

IN =
N∑

n=1

w̄nh(xn). (6)

Both ÎN and IN are consistent estimators of I in Eq. (3) [23, 38]. Moreover, an unbiased estimator of marginal
likelihood, Z =

∫
X π(x)dx, is given by Ẑ = 1

N

∑N
i=1 wi. More generally, the pairs {xi, wi}Ni=1 can be used to build

a particle approximation of the posterior distribution,

π̂(x|x1:N ) =
1

NẐ

N∑

n=1

wnδ(x− xn), (7)

=
N∑

n=1

w̄nδ(x− xn), (8)

where δ(x) denotes the Dirac delta function. Table 1 summarizes the main notation of the work. Note that the
words sample and particle are used as as synonyms along this work. Moreover, Table 14 shows the main used
acronyms.

2.2 Concept of proper weighting

The standard IS weights in Eq. (5) are broadly used in the literature. However the definition of properly weighted
sample can be extended as suggested in [38, Section 14.2], [23, Section 2.5.4] and in [15]. More specifically, given a
set of samples, they are properly weighted with respect to the target π̄ if, for any integrable function h,

Eq[w(xn)h(xn)] = cEπ̄[h(xn)], ∀n = {1, . . . , N}, (9)

where c is a constant value, also independent from the index n, and the expectation of the left hand side is
performed, in general, w.r.t. to the joint pdf of w(x) and x, i.e., q(w,x). Namely, the weight w(x), conditioned
to a given value of x, could even be considered a random variable. Thus, in order to obtain consistent estimators,
one can design any joint q(w,x) as long as the restriction of Eq. (9) is fulfilled. In the following, we use the
general definition in Eq. (9) for designing proper weights and proper summary samples assigned to different sets
of samples.

2We assume that q(x) > 0 for all x where π̄(x) 6= 0, and q(x) has heavier tails than π̄(x).
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Table 1: Main notation of the work.

x = [x1, . . . , xD] variable of interest, x ∈ X ⊆ RD×η, with xd ∈ Rη for all d
π̄(x) Normalized posterior pdf, π̄(x) = p(x|y)
π(x) Unnormalized posterior function, π(x) ∝ π̄(x)

π̂(x|x1:N ) Particle approximation of π̄(x) using the set of samples x1:N = {xn}Nn=1

x̃ Resampled particle, x̃ ∼ π̂(x|x1:N ) (note that x̃ ∈ {x1, . . . ,xN})
wn = w(xn) Unnormalized standard IS weight of the particle xn
w̄n = w̄(xn) Normalized weight associated to xn
w̃m = w̃(x̃m) Unnormalized proper weight associated to the resampled particle x̃m

Wm summary weight of m-th set Sm
IN Standard self-normalized IS estimator using N samples
ĨN Self-normalized estimator using N samples and based on GIS theory
Z Marginal likelihood; normalizing constant of π(x)

Ẑ, Z Estimators of the marginal likelihood Z

3 Group Importance Sampling: weighting a set of samples

Let us consider M sets of weighted samples,

S1 = {x1,n, w1,n}N1
n=1, S2 = {x2,n, w2,n}N2

n=1, . . . SM = {xM,n, wM,n}NMn=1,

where xm,n ∼ qm(x), i.e., a different proposal pdf for each set Sm and in general Ni 6= Nj , for all i 6= j,
i, j ∈ {1, ...,M}. In some applications and different Monte Carlo schemes, it is convenient (and often required)
to compress the statistical information contained in each set using a pair of summary sample, x̃m, and summary
weight, Wm, m = 1, . . . ,M , in such a way that the following expression

ĨM =
1

∑M
j=1Wj

M∑

m=1

Wmh(x̃m), (10)

is still a consistent estimator of I, for a generic integrable function h(x). Thus, although the compression is lossy,
we still have a suitable particle approximation π̂ of the target π̄ as shown below. In some cases, it is possible to store
all the sets Sm, for m = 1, . . . ,M , but the use of the concept of summary weight is needed (as an example, see the
algorithm described in Section 5.1). In other scenarios, it is convenient to employ both concepts of summary particle
and summary weight: for instance, in a distributed framework where it is necessary to restrict the communication
with the central node (see Figure 3). In the following, we denote the importance weight of the n-th sample in the
m-th group as wm,n = w(xm,n) = π(xm,n)

qm(xm,n) , the m-th marginal likelihood estimator as

Ẑm =
1
Nm

Nm∑

n=1

wm,n, (11)

and the normalized weights within a set, w̄m,n = wm,nPNm
j=1 wm,j

= wm,n

Nm bZm , for n = 1, . . . , Nm and m = 1, . . . ,M .

Definition 1. A resampled particle, i.e.,

x̃m ∼ π̂m(x) = π̂(x|xm,1:Nm) =
Nm∑

n=1

w̄m,nδ(x− xm,n), (12)

is a summary particle x̃m for the m-group. Note that x̃m is selected within {xm,1, . . . ,xm,Nm} according to the
probability mass function (pmf) defined by w̄m,n, n = 1, . . . , Nm.

It is possible to use the Liu’s definition in order to assign a proper importance weight to a resampled particle
[25], as stated in the following theorem.
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Theorem 1. Let us consider a resampled particle x̃m ∼ π̂m(x) = π̂(x|xm,1:Nm). A proper unnormalized weight
following the Liu’s definition in Eq. (9) for this resampled particle is w̃m = Ẑm, defined in Eq. (11).

The proof is given in Appendix A. Note that two (or more) particles, x̃′m, x̃′′m, resampled with replacement from the
same set and hence from the same approximation, x̃′m, x̃

′′
m ∼ π̂m(x), have the same weight w̃(x̃′m) = w̃(x̃′′m) = Ẑm,

as depicted in Figure 1. Note that the classical importance weight cannot be computed for a resampled particle,
as explained in Appendix A and pointed out in [21, 25, 34], [27, App. C1].

Resample 3 times

x

bZm
bZm

x

wm,4

wm,1

wm,2

wm,3

xm,1 xm,2 xm,3 xm,4 ex0
m = ex00

m = xm,4ex000
m = xm,2

Figure 1: Example of generation (one run) and proper weighting of 3 resampled particles (with replacement), ex′m, ex′′m andex′′′m, from the m-th group, where Nm = 4 and bZm = 1
4

P4
n=1 wm,n.

Definition 2. The summary weight for the m-th group of samples is Wm = Nmw̃m = NmẐm.

Particle approximation. Figure 2 represents graphically an example of GIS with M = 2 and N1 = 4, N2 = 3.
Given the M summary pairs {x̃m, w̃m}Mm=1 in a common computational node, we can obtain the following particle
approximation of π̄(x), i.e.,

π̂(x|x̃1:M ) =
1

∑M
j=1NjẐj

M∑

m=1

NmẐmδ(x− x̃m), (13)

involving M weighted samples in this case (see App. B). For a given function h(x), the corresponding specific GIS
estimator in Eq. (10) is

ĨM =
1

∑M
j=1NjẐj

M∑

m=1

NmẐmh(x̃m). (14)

It is a consistent estimator of I, as we show in Appendix B. The expression in Eq. (14) can be interpreted
as a standard IS estimator where w̃(x̃m) = Ẑm is a proper weight of a resampled particle [25], and we
give more importance to the resampled particles belonging to a set with more cardinality. See DEMO-2 at
https://github.com/lukafree/GIS.git.

Combination of estimators. If we are interested only in computing the integral I for a specific function h(x),
we can summarize the statistical information by the pairs {I(m)

Nm , w̃m} where

I
(m)

Nm =
Nm∑

n=1

w̄m,nh(xm,n), (15)

is the m-th partial IS estimator obtained by using Nm samples in Sm. Given all the S =
∑M
j=1Nj weighted samples

in the M sets, the complete estimator IS in Eq. (6) can be written as a convex combination of the M partial IS
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x

ex1 ex2

xx1,1 x1,2 x1,3 x1,4 x2,3x2,1 x2,2

N1 = 4 N2 = 3

N2
bZ2N1

bZ1

w1,1

w1,2

w1,3

w1,4

w2,1

w2,2

w2,3

Figure 2: Graphical representation of GIS. In this case, M = 2 groups of N1 = 4 and N2 = 3 weighted samples are
summarized with a resampled particle and one summary weight ewm = Nm bZm, m = 1, 2.

estimators, I
(m)

Nm , i.e.,

IS =
1

∑M
j=1NjẐj

M∑

m=1

Nm∑

n=1

wm,nh(xm,n), (16)

=
1

∑M
j=1NjẐj

M∑

m=1

NmẐm

Nm∑

n=1

w̄m,nh(xm,n), (17)

=
1

∑M
j=1Wm

M∑

m=1

WmI
(m)

Nm . (18)

The equation above shows that the summary weight Wm measures the importance of the m-th estimator I
(m)

Nm ,
which is another interpretation of the proper weighting the group of samples Sm. This suggests another valid
compression scheme.

Remark 1. In order to approximate only one specific moment I of π̄(x), we can summarize the m-group with the
pair {I(m)

Nm ,Wm}Mm=1, thus all the M partial estimators can be combined following Eq. (18).

In this case,there is no loss of information w.r.t. storing all the weighted samples. However, the approximation
of other moments of π̄(x) is not possible. Figures 3-4 depict the graphical representations of the two possible
approaches for GIS.

All the previous considerations have theoretical and practical consequences for the application of different Monte
Carlo schemes, as we highlight hereafter.

4 Application of GIS in other Monte Carlo schemes

In this section, we discuss the application of GIS within other well-known Monte Carlo schemes. First of all,
we consider the use of GIS in Sequential Importance Resampling (SIR) methods, a.k.a., standard particle filters.
Then, we discuss that the Independent Multiple Try Metropolis (I-MTM) schemes and the Particle Metropolis-
Hastings (PMH) algorithm can be interpreted as a classical Metropolis-Hastings method taking into account the
GIS approach.

4.1 Application in particle filtering

In Section 2.1, we have described the IS procedure in a batch way, i.e., generating directly a D-dimensional vector
x′ ∼ q(x) and then compute the weight π(x′)

q(x′) . This procedure can be performed sequentially if the target density is
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(a)

SM

exM

Sm

exm

S1

ex1

. . . . . .

Central Node

{ex1, W1}
{exm, Wm}

{exM , WM}

WMWmW1

(b)

SMSmS1
. . . . . .

Central Node

WMWmW1

{I(1)

N1
, W1}

{I(m)

Nm
, Wm}

{I(M)

NM
, WM}

I
(M)

NM
I
(m)

Nm
I
(1)

N1

Figure 3: Graphical overview of GIS in a parallel/distributed framework. (a) The central node obtains all the pairs
{exm,Wm}Mm=1, and provides bπ(x|ex1:M ) or IM . Note that only M particles, exm ∈ RD, and M scalar weights, Wm ∈ R, are
transmitted, instead of S samples and S weights, with S =

PM
m=1Nm. (b) Alternatively, if we are interested only in a

specific moment of the target, we can transmit the pairs {I(m)
Nm ,Wm}Mm=1 and then combine them as in Eq. (18).

{Sm}M
m=1

b⇡(x|x1:M,1:Nm
)

IS

{exm, Wm}M
m=1

b⇡(x|ex1:M )

Moment Est.

Particle Approx.

{I(m)

Nm
, Wm}M

m=1

IS

None

eIM

Num. of particles S =
MX

m=1

Nm M  S M  S

Figure 4: Possible outputs of different GIS compression schemes. On the left, {Sm}Mm=1, no compression is applied. In

the center, {I(m)
Nm ,Wm}Mm=1, we can perfectly reconstruct the estimator IS in Eq. (16) where S =

PM
m=1Nm, but we cannot

approximate other moments. Using {ex(m)
Nm

,Wm}Mm=1, we always obtain a lossy compression, but any moments of π̄(x) can
be approximated, as shown in Eqs. (13)-(14).

7



factorized. In this case, the method is known as Sequential Importance Sampling (SIS) and, is the basis of particle
filtering, along with the use of the resampling procedure. Below, we describe the SIS method.

4.1.1 Sequential Importance Sampling (SIS)

Let us that recall x = x1:D = [x1, x2, . . . , xD] ∈ X ⊆ RD×η where xd ∈ Rη for all d = 1, . . . , D, and let us consider
a target pdf π̄(x) factorized as

π̄(x) =
1
Z
π(x) =

1
Z
γ1(x1)

D∏

d=2

γd(xd|x1:d−1), (19)

where γ1(x1) is a marginal pdf and γd(xd|x1:d−1) are conditional pdfs. We can also consider a proposal pdf
decomposed in the same fashion, q(x) = q1(x1)

∏D
d=2 qd(xd|xd−1), In a batch IS scheme, given the n-th sample

xn = x
(n)
1:D ∼ q(x), we assign the importance weight

w(xn) =
π(xn)
q(xn)

=
γ1(x(n)

1 )γ2(x(n)
2 |x

(n)
1 ) · · · γD(x(n)

D |x
(n)
1:D−1)

q1(x(n)
1 )q2(x(n)

2 |x
(n)
1 ) · · · qD(x(n)

D |x
(n)
1:D−1)

. (20)

=
D∏

d=1

βd, (21)

where β(n)
1 = π(x

(n)
1 )

q(x
(n)
1 )

and β
(n)
d =

γd(x
(n)
d |x

(n)
1:d−1)

qd(x
(n)
d |x

(n)
1:d−1)

, with d = 1, . . . , D. Let us also denote the joint probability of

[x1, . . . , xd] as π̄d(x1:d) = 1
Zd
πd(x1:d) = 1

Zd
γ1(x1)

∏d
j=2 γj(xj |x1:j−1), so that π̄D(x1:D) ≡ π̄(x) and ZD ≡ Z.

Thus, we can draw samples generating sequentially each component x(n)
d ∼ qd(xd|x(n)

1:d−1), d = 1, . . . , D, so that

xn = x
(n)
1:D ∼ q(x) = q1(x1)

∏D
d=2 qd(xd|xd−1), and compute recursively the corresponding IS weight as in Eq. (21).

The SIS technique is also given in Table 2 setting η ≥ 1.

Remark 2. In SIS, there are two possible formulations of the estimator of the marginal likelihoods Zd =∫
Rdη πd(x1:d)dx1:d,

Ẑd =
1
N

N∑

n=1

w
(n)
d =

1
N

N∑

n=1

w
(n)
d−1β

(n)
d , (22)

Zd =
d∏

j=1

[
N∑

n=1

w̄
(n)
j−1β

(n)
j

]
. (23)

In SIS, both estimators are equivalent Zd ≡ Ẑd. See Appendix C for further details.

4.1.2 Sequential Importance Resampling (SIR)

The expression in Eq. (21) suggests a recursive procedure for generating the samples and computing the importance
weights, as shown in Steps 2a and 2b of Table 2. In Sequential Importance Resampling (SIR), a.k.a., standard
particle filtering, resampling steps are incorporated during the recursion as in step 2(c)ii of Table 2 [11, 12]. In
general, the resampling steps are applied only in certain iterations in order to avoid the path degeneration, taking
into account an approximation ÊSS of the Effective Sampling Size (ESS) [19, 26]. If ÊSS is smaller of pre-
established threshold, the particles are resampled. Two examples of ESS approximation are ÊSS = 1PN

n=1(w̄
(n)
d )2

and ÊSS = 1

max w̄
(n)
d

where w̄(n)
d = w

(n)
dPN

i=1 w
(i)
d

. Note that, in both cases,

0 ≤ ÊSS ≤ N. (24)

8



Hence, the condition for the adaptive resampling can be expressed as ÊSS < ηN where η ∈ [0, 1]. SIS is given
when η ≥ 1 and SIR for η ∈ (0, 1]. When η = 1, the resampling is applied at each iteration and in this case SIR
is often called bootstrap particle filter [11, 12, 13]. If η = 0, no resampling is applied, we only apply Steps 2a and
2b, and we have the SIS method described above, that after D iterations is completely equivalent to the bath IS
approach, since wn = w(xn) ≡ w(n)

D where xn = x1:D.

Partial resampling. In Table 2, we have considered that only a subset of R ≤ N particles are resampled. In this
case, step 2(c)iii including the GIS weighting is strictly required in order to provide final proper weighted samples
and hence consistent estimators. The partial resampling procedure is an alternative approach to prevent the loss of
particle diversity [25]. In the classical description of SIR [39], we have R = N (i.e., all the particles are resampled)
and the weight recursion follows setting the unnormalized weights of the resampled particles to any equal value.
Since all the N particles have been resampled, the choice of this value have no impact in the weight recursion and
in the estimation of I.

Marginal likelihood estimators. Even in the case R = N , i.e., all the particle are resampled as in the standard
SIR method, without using the GIS weighting only the formulation Zd in Eq. (23) provides a consistent estimator
of Zd, since involved the normalized weights w̄(n)

d−1, instead of the unnormalized ones, w(n)
d−1.

Remark 3. If the GIS weighting is applied in SIR, both formulations Ẑd and Zd in Eqs. (22)-(23) provide consistent
estimator of Zd and they are equivalent, Ẑd ≡ Zd (as in SIS). See an exhaustive discussion in Appendix C.

Table 2: SIR with partial resampling

1. Choose N the number of particles, R ≤ N the number of particles to be resampled, the initial particles
x

(n)
0 , n = 1, . . . , N , an ESS approximation ÊSS [26] and a constant value η ∈ [0, 1].

2. For d = 1, . . . , D:

(a) Propagation: Draw x
(n)
d ∼ qd(xd|x(n)

1:d−1), for n = 1, . . . , N .

(b) Weighting: Compute the weights

w
(n)
d = w

(n)
d−1β

(n)
d =

d∏

j=1

β
(n)
j , n = 1, . . . , N, (25)

where β(n)
d =

γd(x
(n)
d |x

(n)
1:d−1)

qd(x
(n)
d |x

(n)
1:d−1)

.

(c) if ÊSS < ηN then:

i. Select randomly a set of particles S = {x(jr)
d }Rr=1 where R ≤ N , jr ∈ {1, . . . , N} for all r, and

jr 6= jk for r 6= k.

ii. Resampling: Resample R times within the set S according to the probabilities w̄(jr)
d =

w
(jr)
dPR

k=1 w
(jk)
d

, obtaining {x̄(jr)
d }Rr=1. Then, set x(jr)

d = x̄
(jr)
d , for r = 1, . . . , R.

iii. GIS weighting: Compute ẐS = 1
R

R∑
r=1

w
(jr)
d−1 and set w(jr)

d−1 = ẐS for all r = 1, . . . , R.

3. Return {xn = x
(n)
1:D, wn = w

(n)
D }Nn=1.
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GIS in Sequential Monte Carlo (SMC). The idea of summary sample and summary weight have been
implicitly used in different SMC schemes proposed in literature, for instance, for the communication among parallel
particle filters [5, 33, 37], and in the particle island methods [42, 43, 44]. GIS also appears indirectly in particle
filtering for model selection [14, 32, 41] and in the so-called Nested Sequential Monte Carlo techniques [34, 35, 40].

4.2 Multiple Try Metropolis schemes as Standard Metropolis-Hastings method

The Metropolis-Hastings (MH) method is one of the most popular MCMC algorithm [22, 23, 38]. It generates a
Markov chain {xt}∞t=1 where π̄(x) is the invariant density. Considering a proposal pdf q(x) independent from the
previous state xt−1, the corresponding Independent MH (IMH) scheme is formed by the steps in Table 3 [38].

Table 3: The Independent Metropolis-Hastings (IMH) algorithm

1. Choose an initial state x0.

2. For t = 1, . . . , T :

(a) Draw a sample v′ ∼ q(x).

(b) Accept the new state, xt = v′, with probability

α(xt−1,v′) = min
[
1,
π(v′)q(xt−1)
π(xt−1)q(v′)

]
= min

[
1,

w(v′)
w(xt−1)

]
, (26)

where w(x) = π(x)
q(x) (standard importance weight). Otherwise, set xt = xt−1.

3. Return {xt}Tt=1.

Observe that α(xt−1,v′) = min
[
1, w(v′)

w(xt−1)

]
in Eq. (26) involves the ratio between the importance weight of

the proposed sample v′ at the t-th iteration, and the importance weight of the previous state xt−1. Furthermore,
note that at each iteration only one new sample v′ is generated and compared with the previous state xt−1 by the
acceptance probability α(xt−1,v′) (in order to obtain the next state xt). The Particle Metropolis-Hastings (PMH)
method [2] and the alternative version of the Independent Multiply Try Metropolis technique [28] (denoted as
I-MTM2) are jointly described in Table 4.3 They are two MCMC algorithms where at each iteration several
candidates {v1, . . . ,vN} are generated. After computing the IS weights w(vn), one candidate is selected vj
within the N possible values, i.e., j ∈ {1, . . . , N}, applying a resampling step according to the probability mass
w̄n = w(vn)PN

i=1 w(vi)
= w(vn)

N bZ′ , n = 1, . . . , N . Then the selected sample vj is tested with a proper probability α(xt−1,vj)
in Eq. (27).

The difference between PMH and I-MTM2 is the procedure employed for the generation of the N candidates
and for construction of the weights. PMH employs a sequential approach, whereas I-MTM2 uses a standard batch
approach [28]. Namely, PMH generates sequentially the components vj,k of the candidates, vj = [vj,1, . . . , vj,D]>,
and compute recursively the weights as shown in Section 4.1. Since resampling steps are often used the resulting
candidates v1, . . . ,vN are correlated, whereas in I-MTM2 they are independent. I-MTM2 coincides with PMH if
the candidates are generated sequentially but without applying resampling steps, so that I-MTM2 can be considered
a special case of PMH.

Note that w̃(vj) = Ẑ ′ and w̃(xt−1) = Ẑt−1 are the GIS weights of the resampled particles vj and xt−1

3PMH is used for filtering and smoothing a variable of interest in state-space models (see, for instance, Figure 13). The Particle
Marginal MH (PMMH) algorithm [2] is an extension of PMH employed in order to infer both dynamic and static variables. PMMH is
described in Appendix D.
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Table 4: PMH and I-MTM2 techniques

1. Choose an initial state x0 and Ẑ0.

2. For t = 1, . . . , T :

(a) Draw N particles v1, . . . ,vN from q(x) and weight them with the proper importance weight w(vn),
n = 1, . . . , N , using a sequential approach (PMH), or a batch approach (I-MTM2). Thus, denoting
Ẑ ′ = 1

N

∑N
n=1 w(vn), we obtain the particle approximation π̂(x|v1:N ) = 1

N bZ′ ∑N
n=1 w(vn)δ(x−vn).

(b) Draw vj ∼ π̂(x|v1:N ).

(c) Set xt = vj and Ẑt = Ẑ ′, with probability

α(xt−1,vj) = min

[
1,

Ẑ ′

Ẑt−1

]
. (27)

Otherwise, set xt = xt−1 and Ẑt = Ẑt−1.

3. Return {xt}Tt=1.

respectively, as stated in Definition 1 and Theorem 1.4 Hence, considering the GIS theory, we can write

α(xt−1,vj) = min

[
1,

Ẑ ′

Ẑt−1

]
= min

[
1,

w̃(vj)
w̃(xt−1)

]
, (28)

which has the form of the acceptance function of the classical IMH method in Table 3. Therefore, PMH and
I-MTM2 algorithms can be also summarized as in Table 5.

Remark 4. The PMH and I-MTM2 algorithms take the form of the classical IMH method employing the equivalent
proposal pdf q̃(x) in Eq. (29) (depicted in Figure 5; see also Appendix A), and using the GIS weight w̃(x̃′) of a
resampled particle x̃′ ∼ q̃(x), within the acceptance function α(xt, x̃′).

−10 −5 0 5 10
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

x

eq(x)

q(x)

⇡̄(x)

vn ⇠ q(x)
n = 1, . . . , N

ex0 ⇠ b⇡(x|v1:N )
ex0 ⇠ eq(x)v1:N

Figure 5: (Left) Graphical representation of the generation of one sample x′ from the equivalent proposal pdf eq(x) in Eq.
(29).(Right) Example of the equivalent density eq(x) (solid line) with N = 2. The target, π̄(x), and proposal, q(x), pdfs
are shown with dashed lines. See DEMO-3 at https://github.com/lukafree/GIS.git.

4Note that the number of candidates per iteration is constant (N), so that Wt
Wt−1

=
N ew(vj)

N ew(xt−1)
=

ew(vj)ew(xt−1)
.
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Table 5: Alternative description of PMH and I-MTM2

1. Choose an initial state x0.

2. For t = 1, . . . , T :

(a) Draw x̃′ ∼ q̃(x), where

q̃(x) =
∫

XN

[
N∏

i=1

q(vi)

]
π̂(x|v1:N )dv1:N , (29)

is the equivalent proposal pdf associated to a resampled particle [21, 25].

(b) Set xt = x̃′, with probability

α(xt−1, x̃′) = min
[
1,

w̃(x̃′)
w̃(xt−1)

]
. (30)

Otherwise, set xt = xt−1.

3. Return {xt}Tt=1.

5 Novel Techniques

In this section, we provide two examples of novel MCMC algorithms based on GIS. First of all, we introduce a
Metropolis-type method producing a chain of sets of weighted samples. Secondly, we present a PMH technique
driven by M parallel particle filters. In the first scheme, we exploit the concept of summary weight and all the
weighted samples are stored. In the second one, both concepts of summary weight and summary particle are used.
The consistency of the resulting estimators and the ergodicity of both schemes is ensured.

5.1 Group Metropolis Sampling

Here, we describe an MCMC procedure that yields a sequence of sets of weighted samples. All the samples are then
employed for a joint particle approximation of the target distribution. The Group Metropolis Sampling (GMS)
is outlined in Table 6. Figures 6(a)-(b) give two graphical representations of GMS outputs (with N = 4 in both
cases). Note that the GMS algorithm uses the idea of summary weight for comparing sets. Given the generated
sets St = {xn,t, ρn,t}Nn=1, for t = 1, . . . , T , GMS provides the global particle approximation

π̂(x|x1:N,1:T ) =
1
T

T∑

t=1

N∑

n=1

ρn,t∑N
i=1 ρi,t

δ(x− xn,t), (31)

=
1
T

T∑

t=1

N∑

n=1

ρ̄n,tδ(x− xn,t). (32)

Thus, the estimator of a specific moment of the target is

ĨNT =
1
T

T∑

t=1

N∑

n=1

ρ̄n,th(xn,t) =
1
T

T∑

t=1

Ĩ
(t)
N . (33)

If the N candidates, v1, . . . ,vN , and the associated weights, w1, . . . , wN , are built sequentially by a particle filtering
method, we have a Particle GMS (PGMS) algorithm (see Section 6.3) and marginal versions can be also considered
(see Appendix D).
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Table 6: Group Metropolis Sampling

1. Build an initial set S0 = {xn,0, ρn,0}Nn=1 and Ẑ0 = 1
N

∑N
n=1 ρn,0.

2. For t = 1, . . . , T :

(a) Draw N samples, v1, . . . ,vN ∼ q(x) following a sequential or a batch procedure.

(b) Compute the weights, wn = π(vn)
q(vn) , n = 1, . . . , N ; define S ′ = {vn, wn}Nn=1; and compute

Ẑ ′ = 1
N

∑N
n=1 wn.

(c) Set St = {xn,t = vn, ρn,t = wn}Nn=1, i.e., St = S ′, and Ẑt = Ẑ ′, with probability

α(St−1,S ′) = min

[
1,

Ẑ ′

Ẑt−1

]
. (34)

Otherwise, set St = St−1 and Ẑt = Ẑt−1.

3. Return {St}Tt=1, or {Ĩ(t)
N }Tt=1 where Ĩ(t)

N =
N∑
n=1

ρn,tPN
i=1 ρi,t

h(xn,t).

Relation with IMH. The acceptance probability α in Eq. (34) is the extension of the acceptance probability
of IMH in Eq. (26), considering the proper GIS weighting of a set of weighted samples. Note that, in this version
of GMS, all the sets contain the same number of samples.

Relation with MTM methods. GMS is strictly related to Multiple Try Metropolis (MTM) schemes
[7, 30, 31, 28] and Particle Metropolis Hastings (PMH) techniques [2, 28]. The main difference is that GMS use
no resampling steps at each iteration for generating summary samples, indeed GMS uses the entire set. However,
considering a sequential of a batch procedure for generating the N tries at each iteration, we can recover a MTM
(or the PMH) chain by the GMS output applying one resampling step when St 6= St−1,

x̃t =





ṽt ∼
N∑

n=1

ρ̄n,tδ(x− xn,t), if St 6= St−1,

x̃t−1, if St = St−1,

(35)

for t = 1, . . . , T . Namely, {x̃t}Tt=1 is the chain obtained by one run of the MTM (or PMH) technique. Figure 6(b)
provides a graphical representation of a MTM chain recovered by GMS outputs.

Ergodicity. As also discussed above, (a) the sample generation, (b) the acceptance probability function and
hence (c) the dynamics of GMS exactly coincide with the corresponding steps of PMH or MTM (with a sequential
or batch particle generation, respectively). Hence, the ergodicity of the chain is ensured [7, 31, 2, 28]. Indeed, we
can recover the MTM (or PMH) chain as shown in Eq. (35).

Recycling samples. The GMS algorithm can be seen as a method of recycling auxiliary weighted samples in
MTM schemes (or PMH schemes, if the candidates are generated by SIR). In [8], the authors show how recycling
and including the samples rejected in one run of a standard MH method into a unique consistent estimator. GMS
can be considered an extension of this technique where N ≥ 1 candidates are drawn at each iteration.

Iterated IS. GMS can be also interpreted as an iterative importance sampling scheme where an IS approximation
of N samples is built at each iteration and compared with the previous IS approximation. This procedure is iterated
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T times and all the accepted IS estimators Ĩ(t)
N are finally combined for providing a unique global approximation

of NT samples. Note that, the temporal combination of the IS estimators is obtained dynamically by the random
repetitions due to the rejections in the MH test. Hence, the complete procedure for weighting the samples generated
by GMS can be interpreted as the composition of two weighting schemes: (a) by an importance sampling approach
building {ρn,t}Nn=1 and (b) by the possible random repetitions due to the rejections in the MH test.

Consistency of the GMS estimator. Recovering the MTM chain {x̃t}Tt=1 as in Eq. (35), the estimator
ĨT = 1

T

∑T
t=1 h(x̃t) is consistent, i.e., ĨT converges almost-surely to I = Eπ̄[h(x)] as T → ∞, since {x̃t}Tt=1 is

an ergodic chain [38]. Note that Ebπ[h(x̃t)|St] =
∑N
n=1 ρ̄n,th(xn,t) = Ĩ

(t)
N for St 6= St−1, where π̂(x|x1:N,t) =∑N

n=1 ρ̄n,tδ(x − xn,t). If St = St−1, then Ebπ[h(x̃t)|St] = Ebπ[h(x̃t−1)|St−1] = Ĩ
(t−1)
N and, since Ĩ(t)

N = Ĩ
(t−1)
N , we

have again Ebπ[h(x̃t)|St] = Ĩ
(t)
N . Therefore, we have

E[ĨT |S1:T ] =
1
T

T∑

t=1

Ebπ[h(x̃t)|St] (36)

=
1
T

T∑

t=1

Ĩ
(t)
N = ĨNT . (37)

Thus, the GSM estimator ĨNT in Eq. (33) can be expressed as ĨNT = E[ĨT
∣∣S1:T ], where S1:T are all the weighted

samples obtained by GMS, and it is consistent for T → ∞ since ĨT is consistent. Furthermore, fixing T , ĨNT is
consistent for N →∞ for standard IS arguments [23].

(a)

St�1 St+1St

(b)

t

x x x x

St St+1 St+2 St+3

ext

ext+1 ext+2

ext+3

Figure 6: (a) Chain of sets St = {xn,t, ρn,t}Nn=1 generated by the GMS method (graphical representation with N = 4).
(b) Graphical examples of GMS outputs, St, St+1, St+2 and St+3, where St+2 = St+1. The weights of the samples are
denoted by the size of the circles. A possible recovered MTM chain is also depicted with solid line, where the states are exτ
with τ = t, t+ 1, t+ 2, t+ 3 and ext+2 = ext+1.

5.2 Distributed Particle Metropolis-Hastings algorithm

The PMH algorithm is an MCMC technique particularly designed for filtering and smoothing a dynamic variable
in a state-space model [2, 28] (see for instance Figure 13). In PMH, different trajectories obtained by different runs
of a particle filter (see Section 4.1) are compared according to suitable MH-type acceptance probabilities, as shown
in Table 4. In this section, we show how several parallel particle filters ( for instance, each one consider a different
proposal pdf) can drive a PMH-type technique.

The classical PMH method uses a single factorized proposal pdf q(x) = q1(x1)
∏D
d=2 qd(xd|x1:d−1), employed

in single SIR method in order to generate new candidates before of the MH-type test (see Table 4). Let us
consider the problem of tracking a variable of interest x = [x1, . . . , xD]> ∈ RD×η and the target pdf π can be
factorized as π(x) = π1(x1)

∏D
d=2 πd(xd|x1:d−1). We assume that M independent processing units are available

jointly with a central node as shown Fig. 7. We use M parallel particle filters, each one with a different proposal
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pdf, qm(x) = qm,1(x1)
∏D
d=2 qm,d(xd|x1:d−1), one per each processor. Then, after one run of the parallel particle

filters, we obtain M particle approximations π̂m(x). Since, we aim to reduce the communication cost to the central
node (see Figs. 3 and 7), we consider that each machine only transmits the pair {Ẑm, x̃m}, where x̃m ∼ π̂m(x) (we
set N1 = . . . = NM , for simplicity). Applying the GIS theory, then it is straightforward to outline the method,
called Distributed Particle Metropolis-Hastings (DPMH) technique, shown in Table 7.

Table 7: Distributed Particle Metropolis-Hastings algorithm

1. Choose an initial state x0 and Ẑm,0 for m = 1, . . . ,M .

2. For t = 1, . . . , T :

(a) (Parallel Processors) Draw N particles vm,1, . . . ,vm,N from qm(x) and weight them with
IS weights w(vm,n), n = 1, . . . , N , using a particle filter (or a batch approach), for each
m = 1, . . . ,M . Thus, denoting Ẑm = 1

N

∑N
n=1 w(vm,n), we obtain the M particle approximations

π̂m(x) = π̂(x|vm,1:N ) = 1

N bZm
∑N
n=1 w(vm,n)δ(x− vm,n).

(b) (Parallel Processors) Draw x̃m ∼ π̂(x|vm,1:N ), for m = 1, . . . ,M .

(c) (Central Node) Resample x̃ ∈ {x̃1, . . . , x̃M} according to the pmf bZmPM
j=1

bZj , m = 1, . . . ,M , i.e.,

x̃ ∼ π̂(x|x̃1, . . . , x̃M ).

(d) (Central Node) Set xt = x̃ and Ẑm,t = Ẑm, for m = 1, . . . ,M , with probability

α(xt−1, x̃) = min

[
1,

∑M
m=1 Ẑm∑M

m=1 Ẑm,t−1

]
. (38)

Otherwise, set xt = xt−1 and Ẑm,t = Ẑm,t−1, for m = 1, . . . ,M .

The method in Table 7 has the structure of a Multiple Try Metropolis (MTM) algorithm using different proposal
pdfs [7, 31]. More generally, in step 2a, the scheme described above can even employ different kind of particle
filtering algorithms. In step 2b, M total resampling steps are performed,one per processor. Then, one resampling
step is performed in the central node (step 2c). Finally, the resampled particle is accepted as new state with
probability α in Eq. (38).

Ergodicity. The ergodicity of DPMH is ensured since it can be interpreted as a standard PMH method
considering a single particle approximation5

π̂(x|v1:M,1:N ) =
M∑

m=1

Ẑm∑M
j=1 Ẑj

π̂(x|vm,1:N ) =
M∑

m=1

Wmπ̂(x|vm,1:N ), (39)

and then we resample once, i.e., draw x̃ ∼ π̂(x|v1:M,1:N ). Then, the proper weight of this resampled particle
is Ẑ =

∑M
m=1 Ẑm, so that the acceptance function of the equivalent classical PMH method is α(xt−1, x̃) =

min
[
1, bZbZt−1

]
= min

[
1,

1
M

PM
m=1

bZm
1
M

PM
m=1

bZm,t−1

]
, where Ẑt−1 =

∑M
m=1 Ẑm,t−1 (see Table 4).

Using partial IS estimators. if we are interested in approximating only one moment of the target pdf, as
shown in Figures 3-4, at each iteration we can transmit the M partial estimators I

(m)

N and combine them in the
5This particle approximation can be interpreted as obtained by a single particle filter splitting the particles in M disjoint sets and

then applying the partial resampling described in Section 4.1, i.e., performing resampling steps within the sets. See also Eq. (62).
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central node as in Eq. (18), obtaining Ĩ ′NM = 1PM
j=1

bZj
∑M
m=1 ẐmI

(m)

N . Then, a sequence of estimators, Ĩ(t)
NM , is

created according to the acceptance probability α in Eq. (38). Finally, we obtain the global estimator

ĨNMT =
1
T

T∑

t=1

Ĩ
(t)
NM . (40)

This scheme is depicted in Figure 7(b).

Benefits. One advantage of the DPMH scheme is that the generation of samples can be parallelized (i.e., fixing
the computational cost, DPMH allows the use of M processors in parallel) and the communication to the central
node requires the transfer of only M particles, x̃′m, and M weights, Ẑ ′m, instead of NM particles and NM weights.
Figure 7 provides a general sketch of DPMH. Its marginal version is described in Appendix D. Another benefit of
DPMH is that different types of particle filters can be jointly employed, for instance, different proposal pdfs can
be used.

Special cases and extensions. The classical PMH method is as a special case of the proposed algorithm of
Table 7 when M = 1. If the partial estimators are transmitted to the central node, as shown in Figure 7(b), DPMH
coincides with PGMS when M = 1. Adaptive versions of DPMH can be designed in order select automatically
the best proposal pdf among the M densities, based of the weights Wm = bZmPM

j=1
bZj , m = 1, . . . ,M . For instance,

Figure 12(b) shows that DPMH is able to detect the best scale parameters within the M used values.

(a)

Central Node

PF-1 . . . . . .PF-2 PF-M

↵(xt�1, ex) = min

"
1,

PM
m=1

bZmPM
m=1

bZm,t�1

#

{ex1, bZ1} {ex2, bZ2} {exM , bZM}

xt

ex ⇠ b⇡(x|ex1:M )

(b)

Central Node

PF-1 . . . . . .PF-2 PF-M

{I(1)

N , bZ1} {I(2)

N , bZ2} {I(M)

N , bZM}

eI(t)
NM

↵(eI(t�1)
NM , eI 0NM ) = min

"
1,

PM
m=1

bZmPM
m=1

bZm,t�1

#

eI 0
NM =

MX

m=1

bZmPM
j=1

bZj

I
(m)

N

Figure 7: Graphical representation of Distributed Particle Metropolis-Hastings (DPMH) method, (a) for estimating a
generic moment, or (b) for estimating of a specific moment of the target.

6 Numerical Experiments

In this section, we test the novel techniques considering several experimental scenarios and three different
applications: hyperparameters estimation for Gaussian Processes (D = 2, η = 1), a localization problem jointly
with the tuning of the sensor network (D = 8, η = 1), and the online filtering of a remote sensing variable called
Leaf Area Index (LAI; D = 365, η = 1). We compare the novel algorithms with different benchmark methods
such adaptive MH algorithm, MTM and PMH techniques, parallel MH chains with random walk proposal pdfs, IS
schemes, and the Adaptive Multiple Importance Sampling (AMIS) method.
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6.1 Hyperparameters tuning for Gaussian Process (GP) regression models

We test the proposed GMS approach for the estimation of hyperparameters of a Gaussian process (GP) regression
model [4], [36]. Let us assume observed data pairs {yj , zj}Pj=1, with yj ∈ R and zj ∈ RL. We also denote the
corresponding P × 1 output vector as y = [y1, . . . , yP ]> and the L × P input matrix as Z = [z1, . . . , zP ]. We
address the regression problem of inferring the unknown function f which links the variable y and z. Thus,
the assumed model is y = f(z) + e, where e ∼ N(e; 0, σ2), and that f(z) is a realization of a GP [36]. Hence
f(z) ∼ GP(µ(z), κ(z, r)) where µ(z) = 0, z, r ∈ RL, and we consider the kernel function

κ(z, r) = exp

(
−

L∑

`=1

(z` − r`)2

2δ2

)
, (41)

Given these assumptions, the vector f = [f(z1), . . . , f(zP )]> is distributed as p(f |Z, δ, κ) = N (f ; 0,K), where 0
is a P × 1 null vector, and Kij := κ(zi, zj), for all i, j = 1, . . . , P , is a P × P matrix. Therefore, the vector
containing all the hyperparameters of the model is x = [δ, σ], i.e., all the parameters of the kernel function in
Eq. (41) and standard deviation σ of the observation noise. In this experiment, we focus on the marginal posterior
density of the hyperparameters, π̄(x|y,Z, κ) ∝ π(x|y,Z, κ) = p(y|x,Z, κ)p(x), which can be evaluated analytically,
but we cannot compute integrals involving it [36]. Considering a uniform prior within [0, 20]2, p(x) and since
p(y|x,Z, κ) = N (y; 0,K + σ2I), we have

log [π(x|y,Z, κ)] = −1
2
y>(K + σ2I)−1y − 1

2
log
[
det
(
K + σ2I

)]
,

where clearly K depends on δ [36]. The moments of this marginal posterior cannot be computed analytically. Then,
in order to compute the Minimum Mean Square Error (MMSE) estimator x̂ = [δ̂, σ̂], i.e., the expected value E[X]
with X ∼ π̄(x|y,Z, κ), we approximate E[X] via Monte Carlo quadrature. More specifically, we apply a the novel
GMS technique and compare with an MTM sampler, a MH scheme with a longer chain and a static IS method.
For all these methodologies, we consider the same number of target evaluations, denoted as E, in order to provide
a fair comparison.

We generated P = 200 pairs of data, {yj , zj}Pj=1, according to the GP model above setting δ∗ = 3, σ∗ = 10,
L = 1, and drawing zj ∼ U([0, 10]). We keep fixed these data over the different runs, and the corresponding
posterior pdf is given in Figure 9(b). We computed the ground-truth x̂ ≈ [δ̂ ≈ 3.5200, σ̂ ≈ 9.2811] using an
exhaustive and costly grid approximation, in order to compare the different techniques. For both GMS, MTM
and MH schemes, we consider the same adaptive Gaussian proposal pdf qt(x|µt, λ2I) = N (x|µt, λ2I), with λ = 5
and µt is adapted considering the arithmetic mean of the outputs after a training period, t ≥ 0.2T , in the same
fashion of [24, 18] (µ0 = [1, 1]>). First, we test both techniques fixing T = 20 and varying the number of tries N .
Then, we set N = 100 and vary the number of iterations T . Figure 8 (log-log plot) shows the Mean Square Error
(MSE) in the approximation of x̂ averaged over 103 independent runs. Observe that always GMS outperforms the
corresponding MTM scheme. These results confirm the advantage of recycling the auxiliary samples drawn at each
iteration during an MTM run. In Figure 9(a), we show the MSE obtained by GMS keeping invariant the number
of target evaluations E = NT = 103 and varying N ∈ {1, 2, 10, 20, 50, 100, 250, 103}. As a consequence, we have
T ∈ {103, 500, 100, 50, 20, 10, 4, 1}. Note that the case N = 1, T = 103, corresponds to an adaptive MH (A-MH)
method with a longer chain, whereas the case N = 103, T = 1, corresponds to a static IS scheme (both with the
same posterior evaluations E = NT = 103). We observe the GMS always provides smaller MSE than the static IS
approach. Moreover, GMS outperforms A-MH with the exception of two cases where T ∈ {1, 4}.

6.2 Localization of a target and tuning of the sensor network

We consider the problem of positioning a target in R2 using range measurements in a wireless sensor network
[1, 20]. We also assume that the measurements are contaminated by noise with different unknown power, one per
each sensor. This situation is common in several practical scenario. Indeed, even if the sensors have the same
construction features, the noise perturbation of each the sensor can vary with the time and depends on the location
of the sensor. This occurs owing to different causes: manufacturing defects, obstacles in the reception, different
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Figure 8: MSE (loglog-scale; averaged over 103 independent runs) obtained with the MTM and GMS algorithms (using
the same proposal pdf and the same values of N and T ) (a) as function of N with T = 20 and (b) as function of T with
N = 100.
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Figure 9: (a) MSE (loglog-scale; averaged over 103 independent runs) of GMS (circles) versus the number of candidates
N ∈ {1, 2, 10, 20, 50, 100, 250, 103}, but keeping fixed the total number of posterior evaluations E = NT = 1000, so that
T ∈ {1000, 500, 100, 50, 20, 10, 4, 1}. The MSE values the extreme cases N = 1, T = 1000, and N = 1000, T = 1, are
depicted with dashed lines. In first case, GMS coincides with an adaptive MH scheme (due the adaptation of the proposal,
in this example) with a longer chain. The second one represents a static IS scheme (clearly, using the sample proposal than
GMS). We can observe the benefit of the dynamic combination of IS estimators obtained by GMS. (b) Posterior density
π(x|y,Z, κ).
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physical environmental conditions (such as humidity and temperature) etc. Moreover, in general, these conditions
change along the time, hence it is necessary that the central node of the network is able to re-estimate the noise
powers jointly with position of the target (and other parameters of the models if required) whenever a new block
of observations is processed.

More specifically, let us denote the target position with the random vector Z = [Z1, Z2]>. The position of the
target is then a specific realization Z = z. The range measurements are obtained from NS = 6 sensors located at
h1 = [3,−8]>, h2 = [8, 10]>, h3 = [−4,−6]>, h4 = [−8, 1]>, h5 = [10, 0]> and h6 = [0, 10]> as shown in Figure
10(a). The observation models are given by

Yj = 20 log (||z− hj ||) +Bj , j = 1, . . . , NS , (42)

where Bj are independent Gaussian random variables with pdfs, N (bj ; 0, λ2
j ), j = 1, . . . , NS . We denote

λ = [λ1, . . . , λNS ] the vector of standard deviations. Given the position of the target z∗ = [z∗1 = 2.5, z∗2 = 2.5]>

and setting λ∗ = [λ∗1 = 1, λ∗2 = 2, λ∗3 = 1, λ∗4 = 0.5, λ∗5 = 3, λ∗6 = 0.2] (since NS = 6), we generate NO = 20
observations from each sensor according to the model in Eq. (42). Then, we finally obtain a measurement matrix
Y = [yk,1, . . . , yk,NS ] ∈ RdY , where dY = NONS = 120, k = 1, . . . , NO. We consider uniform prior U(Rz) over the
position [z1, z2]> withRz = [−30×30]2, and a uniform prior over λj , so that λ has prior U(Rλ) withRλ = [0, 20]NS .
Thus, the posterior pdf is

π̄(x|Y) = π̄(z,λ|Y) = `(y|z1, z2, λ1, . . . , λNS )
2∏

i=1

p(zi)
NS∏

j=1

p(λj), (43)

=



NO∏

k=1

NS∏

j=1

1√
2πλ2

j

exp

(
− 1

2λ2
j

(yk,j + 10 log (||z− hj ||)2

)
 Iz(Rz)Iλ(Rλ) (44)

where x = [z,λ]> is a vector of parameters of dimension D = NS + 2 = 8 that we desire to infer, and Ic(R) is an
indicator variable that is 1 if c ∈ R, otherwise is 0.

Our goal is to compute the Minimum Mean Square Error (MMSE) estimator, i.e., the expected value of the
posterior π̄(x|Y) = π̄(z,λ|Y). Since the MMSE estimator cannot be computed analytically, we apply Monte
Carlo methods for approximating it. We compare GMS, the corresponding MTM scheme, the Adaptive Multiple
Importance Sampling (AMIS) technique [9], and N parallel MH chains with a random walk proposal pdf. For
all of them we consider Gaussian proposal densities. For GMS and MTM, we set qt(x|µn,t, σ2I) = N (x|µt, σ2I)
where is adapted considering the empirical mean of the generated samples after a training period, t ≥ 0.2T [24, 18],
µ0 ∼ U([1, 5]D) and σ = 1. For AMIS, we have qt(x|µt,Ct) = N (x|µt,Ct), where µt is as previously described
(with µ0 ∼ U([1, 5]D)) and Ct is also adapted using the empirical covariance matrix, starting C0 = 4I. We also
test the use of N parallel Metropolis-Hastings (MH) chains (we also consider the case of N = 1, i.e., a single chain),
with a Gaussian random-walk proposal pdf, qn(µn,t|µn,t−1, σ

2I) = N (µn,t|µn,t−1, σ
2I) with µn,0 ∼ U([1, 5]D) for

all n and σ = 1.
We fix the total number of evaluations of the posterior density as E = NT = 104. Note that, generally, the

evaluation of the posterior is the most costly step in MC algorithms (however, AMIS has the additional cost of
re-weighting all the samples at each iteration according to deterministic mixture procedure [6, 9, 15]). We recall
that T denotes the total number of iterations and N the number of samples drawn from each proposal at each
iteration. We consider x∗ = [z∗,λ∗]> as the groundtruth and compute the Mean Square Error (MSE) in the
estimation obtained with the different algorithms. The results are averaged over 500 independent runs and they
are provided in Tables 8, 9, and 10 and Figure 10(b). Note that GMS outperforms AMIS for each a pair {N,T}
(keeping fixed E = NT = 104), and GMS also provides smaller MSE values than N parallel MH chains (the case
N = 1 corresponds to a unique longer chain). Figure 10(b) shows the MSE versus N maintaining E = NT = 104

for GMS and the corresponding MTM method. This figure again confirms the advantage of recycling the samples
in a MTM scheme.
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Table 8: Results GMS.

MSE 1.30 1.24 1.22 1.21 1.22 1.19 1.31 1.44
N 10 20 50 100 200 500 1000 2000
T 1000 500 200 100 50 20 10 5
E NT = 104

MSE range Min MSE= 1.19 ——— Max MSE= 1.44

Table 9: Results AMIS [9].

MSE 1.58 1.57 1.53 1.48 1.42 1.29 1.48 1.71
N 10 20 50 100 200 500 1000 2000
T 1000 500 200 100 50 20 10 5
E NT = 104

MSE range Min MSE= 1.29 ——— Max MSE= 1.71

Table 10: Results N parallel MH chains with random-walk proposal pdf.

MSE 1.42 1.31 1.44 2.32 2.73 3.21 3.18 3.15
N 1 5 10 50 100 500 1000 2000
T 104 2000 1000 200 100 20 10 5
E NT = 104

MSE range Min MSE= 1.31 ——— Max MSE=3.21

6.3 Filtering and Smoothing of the Leaf Area Index (LAI)

We consider the problem of estimating the Leaf Area Index (LAI) denoted as xd ∈ R+ (where d ∈ N+ also represents
a temporal index) in a specific region at a latitude of 42◦ N [17]. Since xt > 0, we consider Gamma prior pdfs over
the evolutions of LAI and Gaussian perturbations for the “in-situ” received measurements, yt. More specifically,
we following assume the state-space model (formed by propagation and measurement equations),

{
gd(xd|xd−1) = G

(
xd

∣∣∣xd−1
b , b

)
= 1

cd
x

(xd−1−b)/b
d exp

(
−xdb

)
,

`d(yd|xd) = N (yd|xd, λ2) = 1√
2πλ2 exp

(
− 1

2λ2 (yd − xd)2
)
,

(45)

for d = 2, . . . , D, with initial probability g1(x1) = G(x1|1, 1), where b, λ > 0 and cd > 0 is a normalizing constant.
Note that the expected value of the Gamma pdf above is xd−1 and the variance is b.

First Experiment. Considering known the parameters of the model, the posterior pdf is

π̄(x|y) ∝ `(y|x)g(x), (46)

∝
[
D∏

d=2

`d(yd|xd)
][(

D∏

d=2

gd(xd|xd−1)

)
g1(x1)

]
, (47)

with x = x1:D ∈ RD. For generating the ground-truth (i.e., the trajectory x∗ = x∗1:D = [x∗1, . . . , x
∗
D]), we simulate

the temporal evolution of LAI in one year (i.e., 1 ≤ d ≤ D = 365) by using a double logistic function (as suggested
in the literature [17]), i.e.,

xd = a1 + a2

(
1

1 + exp(a3(d− a4))
+

1
1 + exp(a5(d− a6))

+ 1
)
, (48)
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Figure 10: (a) Sensor network: the location of the sensors (antennas) and the target (circle) in the numerical example. The
solid line represents the different unknown variances of the sensors. (b) MSE (log-scale) versus the number of candidates
N ∈ {50, 200, 500, 1000, 2000} obtained by GMS and the corresponding MTM algorithm, keeping fixed the total number of
evaluations E = NT = 104 of the posterior pdf, so that T ∈ {200, 50, 20, 10, 5}.

with a1 = 0.1, a2 = 5, a3 = −0.29, a4 = 120, a5 = 0.1 and a6 = 240 as employed in [17]. In Figure 13, the
true trajectory x1:D is depicted with dashed lines. The observations y = y2:D are then generated (each run)
according to yd ∼ `d(yd|xd) = 1√

2πλ2 exp
(
− 1

2λ2 (yd − xd)2
)
. First of all, we test the standard PMH, the particle

version of GMS (PGMS), and DPMH (fixing λ = 0.1). For DPMH, we use M = 4 parallel filters with different
scale parameters b = [b1 = 0.01, b2 = 0.05, b3 = 0.1, b4 = 1]>. Figure 13 shows the estimated trajectories
x̂t = x̂1:D,t = 1

t

∑t
τ=1 x̃τ (averaged over 2000 runs) obtained by DPMH with N = 5 at t ∈ {2, 10, 100}, in one

specific run. Figure 12(a) depicts the evolution of the MSE obtained by DPMH as function of T and considering
different values of N ∈ {5, 7, 10, 20}. The performance of DPMH improves as T and N grow, as expected. DPMH
detects the best parameters among the four values in b, following the weights Wm (see Figure 12(b)) and DPMH
takes advantage of this ability. Indeed, we compare DPMH with N = 10, T = 200, and M = 4 using b, with
M = 4 different standard PMH and PGMS algorithms with N = 40 and T = 200 (clearly, each one driven by a
unique filter, M = 1) in order to keep fixed the total number of evaluation of the posterior E = NMT = 8 · 103,
each one using a parameter bm, m = 1, . . . ,M . The results, averaged over 2000 runs, are shown in Table 11. In
terms of MSE, DMPMH always outperforms the 4 possible standard PMH methods. PGMS using two parameters,
b2 and b3, provides better performance, but DPMH outperforms PGMS averaging the 4 different MSEs obtained
by PGMS. Moreover, due to the parallelization, in this case DPMH can save ≈ 15% of the spent computational
time.

Second Experiment. Now we consider also the parameter λ unknown, so that the complete variable of interest
[x, λ] ∈ RD+1. Then the posterior is π̄(x, λ|y) ∝ `(y|x, λ)g(x, λ) according to the model Eq. (45), where
g(x, λ) = g(x)gλ(λ) and gλ(λ) is a uniform pdf in [0.01, 5]. Then we test the marginal versions of the PMH and
DPMH with qλ(λ) = gλ(λ) (see App. D), for estimating [x∗, λ∗] where x∗ = x∗1:D is given by Eq. (48) and λ∗ = 0.7.
Figure 13 shows the MSE in estimation of λ∗ (averaged over 1000 runs) obtained by DPMMH as function of T and
different number of candidates, N ∈ {5, 10, 20} (with againM = 4 and b = [b1 = 0.01, b2 = 0.05, b3 = 0.1, b4 = 1]>).
Table 12 compares the standard PMMH and DPMMH for estimating λ∗ (we set E = NMT = 4 ·103 and T = 100).
Averaging the results of PMMH, we can observe that DPMMH outperforms the standard PMMH in terms of smaller
MSE and smaller computational time.
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Figure 11: Output of DPMH (with N = 5, λ = 0.1 and b = [0.01, 0.05, 0.1, 1]>) at different iterations (a) t = 2, (b)
t = 10, and (c) t = 100, in one specific run. The true values, x∗ = x∗1:D, are shown dashed lines whereas the estimated
trajectories by DPMH, bxt = bx1:D,t, with solid lines.
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Figure 12: (a) MSE in estimation of the trajectory (averaged over 2000 runs) obtained by DPMH as function T and
different values of N ∈ {5, 7, 10, 20}. As expected, we can see that the performance of DPMH improves as T and N grow.

(b) Averaged values of the normalized weights Wm =
bZmPM
j=1

bZj (with N = 5 and N = 10) associated to each filter. DPMH

is able to detect the best variances (b2 and b3) of the proposal pdfs among the values b1 = 0.01, b2 = 0.05, b3 = 0.1 and
b4 = 1 (as confirmed by Table 11).
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Figure 13: MSE in estimation of λ∗ = 0.7 (averaged over 1000 runs) obtained by DPMMH as function T and different
values of N ∈ {5, 10, 20}.

Table 11: Comparison among PMH, PGMS and DPMH with E = NMT = 8 · 103 and T = 200 (λ = 0.1), estimating the
trajectory x∗ = x∗1:D.

Proposal Var

Standard PMH PGMS DPMH
N = 40 N = 40 N = 10
(M = 1) (M = 1) M = 4
MSE MSE MSE

b1 = 0.01 0.0422 0.0380

0.0108b2 = 0.05 0.0130 0.0100
b3 = 0.1 0.0133 0.0102
b4 = 1 0.0178 0.0140
Average 0.0216 0.0181 0.0108
Norm. Time 1 1 0.83

Table 12: Comparison among PMMH and DMPMH with E = NMT = 4 · 103 and T = 100, for estimating λ∗ = 0.7.

Proposal Var

PMMH DPMMH
N = 40 N = 10
(M = 1) M = 4
MSE MSE

b1 = 0.01 0.0929

0.0234b2 = 0.05 0.0186
b3 = 0.1 0.0401
b4 = 1 0.0223

Average 0.0435 0.0234
Norm. Time 1 0.85
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7 Conclusions

In this work, we have described the Group Importance Sampling (GIS) theory and its application in other Monte
Carlo schemes. We have considered the use of GIS in SIR (a.k.a., particle filtering), showing that GIS is strictly
required if the resampling procedure is applied only in a subset of the current population of particles. Moreover
we have highlighted that, in the standard SIR method, if GIS is applied there exists two equivalent estimators
of the marginal likelihood (one of them is an estimator of the marginal likelihood only if the GIS weighting is
used), exactly as in Sequential Importance Sampling (SIS). We have also shown that the Independent Multiple
Try Metropolis (I-MTM) schemes and the Particle Metropolis-Hastings (PMH) algorithm can be interpreted as a
classical Metropolis-Hastings (MH) method taking into account the GIS approach.

Furthermore, two novel methodologies based on GIS have been introduced. One of them (GMS) yields a Markov
chain of weighted samples and can be also considered an iterative importance sampler. The second one (DPMH)
is a distributed version of the PMH where different parallel particle filters can be jointly employed. These filter
cooperate for driving the PMH scheme. Both techniques have been applied successfully in three different numerical
experiments (tuning of the hyperparameters for GPs, a localization problem in a sensor network and the tracking
of the Leaf Area Index), comparing them with several benchmark methods. Marginal versions of GMS and DPMH
have been also discussed and tested in the numerical applications. Three Matlab demos have been also given in
order to facilitate the comprehension of the reader and, at the same time, and providing a further confirmation of
the discussed results. As a future line, we plan to design an adaptive DPMH scheme in order to select online the
best particle filters among the M run in parallel, and parsimoniously distribute the computational effort.
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A Proper weighting of a resampled particle

Let us consider the particle approximation of π̄ obtained by the IS approach drawing N particles xn ∼ q(x),

π̂(x|x1:N ) =
N∑

n=1

w̄(xn)δ(x− xn) =
1

NẐ

N∑

n=1

w(xn)δ(x− xn). (49)

Given the cloud of particle x1:N ∼
∏N
n=1 q(xn), we have that x̃′ ∼ π̂(x|x1:N ). Let us denote the joint pdf

Q̃(x,x1:N ) = π̂(x|x1:N )
[∏N

i=1 q(xi)
]
. The marginal pdf q̃(x) of a resampled particle x̃′, integrating out x1:N (i.e.,
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x̃′ ∼ q̃(x)), is

q̃(x) =
∫

XN
Q̃(x,x1:N )dx1:N (50)

=
∫

XN
π̂(x|x1:N )

[
N∏

i=1

q(xi)

]
dx1:N , (51)

=
N∑

j=1



∫

XN−1

w(x)

NẐ


q(x)

N∏

i=1
i6=j

q(xi)


 dx¬j


 ,

= π(x)
N∑

j=1



∫

XN−1

1

NẐ



N∏

i=1
i6=j

q(xi)


 dx¬j


 ,

= π(x)
∫

XN−1

1

Ẑ



N∏

i=1
i 6=j

q(xi)


 dx¬j , j ∈ {1, . . . , N}. (52)

Therefore, the standard IS weight of a resampled particle, x̃′ ∼ q̃(x), is

w(x̃′) =
π(x̃′)
q̃(x̃′)

. (53)

However, generally q̃(x) cannot be evaluated, hence the standard IS weight cannot be computed [21, 25, 34], [27,
App. C1]. An alternative is to use the Liu’s definition of proper weighting in Eq. (9) and look for a weight function
ρ(x̃) = ρ(x̃|x1:N ) such that

E eQ(x,x1:N )[ρ(x|x1:N )h(x)] = cEπ̄[h(x)], (54)

where Q̃(x,x1:N ) = π̂(x|x1:N )
[∏N

i=1 q(xi)
]
. Below, we show that a suitable choice is

ρ(x̃|x1:N ) = Ẑ(x1:N ) =
1
N

N∑

i=1

w(xi), (55)

since it holds in Eq. (54).

Proof. Note that

E eQ(x,x1:N )[ρ(x|x1:N )h(x)] =
∫

X

∫

XN
ρ(x|x1:N )h(x)Q̃(x,x1:N )dxdx1:N ,

=
∫

X

∫

XN
h(x)ρ(x|x1:N )π̂(x|x1:N )

[
N∏

i=1

q(xi)

]
dxdx1:N . (56)

Recalling that π̂(x|x1:N ) = 1

N bZ ∑N
j=1 w(xj)δ(x − xj), where Ẑ = Ẑ(x1:N ) = 1

N

∑N
n=1 w(xn) and w(xn) = π(xn)

q(xn) ,
we can rearrange the expectation above as

E eQ(x,x1:N )[ρ(x|x1:N )h(x)] =
∫

X
h(x)



N∑

j=1



∫

XN−1
ρ(x|x1:N )

w(x)

NẐ


q(x)

N∏

i=1
i 6=j

q(xi)


 dx¬j





 dx,

=
∫

X
h(x)π(x)



N∑

j=1



∫

XN−1
ρ(x|x1:N )

1

NẐ



N∏

i=1
i6=j

q(xi)


 dx¬j





 dx, (57)

27



where x¬j = [x1, . . . ,xj−1,xj+1, . . . ,xN ]. If we choose ρ(x|x1:N ) = Ẑ and replace it in the expression above, we
obtain

E eQ(x,x1:N )[ρ(x|x1:N )h(x)] =
∫

X
h(x)π(x)



N∑

j=1



∫

XN−1
Ẑ

1

NẐ



N∏

i=1
i 6=j

q(xi)


 dx¬j





 dx,

=
∫

X
h(x)π(x)N

1
N
dx,

=
∫

X
h(x)π(x)dx

= cEπ̄[h(x)], (58)

where c = Z, that is the normalizing constant of π(x). Note that Eq. (58) coincides with (54). 2

B Particle approximation by GIS

Let us consider S samples xm,n ∼ qm(x), where S =
∑M
m=1Nm, and weight them wm,n = π(xm,n)

qm(xm,n) with
m = 1, . . . ,M and n = 1, . . . , Nm. Moreover, let us define two types of normalized weights, one within the
m-th group

w̄m,n =
wm,n∑N
k=1 wm,k

=
wm,n

NmẐm
, (59)

and the other one considering all the S samples,

r̄m,n =
wm,n∑M

j=1

∑Nj
k=1 wj,k

=
wm,n∑M
j=1NjẐj

. (60)

The complete particle approximation of the target distribution is

π̂(x|x1:M,1:N ) =
1

∑M
j=1

∑Nj
k=1 wj,k

M∑

m=1

Nm∑

n=1

wm,nδ(x− xm,n),

=
M∑

m=1

Nm∑

n=1

r̄m,nδ(x− xm,n). (61)

Note that it can be also rewritten as

π̂(x|x1:M,1:N ) =
1

∑M
j=1NjẐj

M∑

m=1

NmẐm

N∑

n=1

w̄m,nδ(x− xm,n),

=
1

∑M
j=1NjẐj

M∑

m=1

NmẐmπ̂(x|xm,1:N ), (62)

=
M∑

m=1

Wmπ̂(x|xm,1:N ), (63)

where π̂(x|xm,1:N ) are the m-th particle approximation and Wm = Nm bZmPM
j=1Nj

bZj is the normalized weight of the

m-th group. If we resample M times x̃m ∼ π̂(x|xm,1:N ) exactly one sample per group, we obtain the particle
approximation of Eq. (13), i.e.,

π̂(x|x̃1:M ) =
M∑

m=1

Wmδ(x− x̃m). (64)
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Since π̂(x|x1:M,1:N ) is a particle approximation of the target distribution π̄ (converging to the distribution for
N →∞), then π̂(x|x̃1:M ) is also a particle approximation of π̄ (converging for N →∞ and M →∞). Therefore,
any estimator of the moments of π̄ obtained using the summary weighted particles as in Eq. (14) is consistent.

C Estimators of the marginal likelihood in SIS and SIR

The classical IS estimator of the normalizing constant Zd =
∫

Rd×η πd(x1:d)dx1:d at the d-th iteration is

Ẑd =
1
N

N∑

n=1

w
(n)
d =

1
N

N∑

n=1

w
(n)
d−1β

(n)
d , (65)

=
1
N

N∑

n=1




d∏

j=1

β
(n)
j


 . (66)

An alternative formulation, denoted as Zd, is often used

Zd =
d∏

j=1

[
N∑

n=1

w̄
(n)
j−1β

(n)
j

]
(67)

=
d∏

j=1

[∑N
n=1 w

(n)
j∑N

n=1 w
(n)
j−1

]
= Ẑ1

d∏

j=2

[
Ẑj

Ẑj−1

]
= Ẑd. (68)

where we have employed w̄
(n)
j−1 =

w
(n)
j−1PN

i=1 w
(i)
j−1

and w
(n)
j = w

(n)
j−1β

(n)
j [12, 13]. Therefore, given Eq. (68), in SIS these

two estimators Ẑd in Eq. (65) and Zd in Eq. (67) are equivalent approximations of the d-th marginal likelthood
Zd [32]. Furthermore, note that Zd can be written in a recursive form as

Zd = Zd−1

[
N∑

n=1

w̄
(n)
d−1β

(n)
d

]
. (69)

C.1 Estimators of the marginal likelihood in particle filtering

Sequential Importance Resampling (SIR) (a.k.a., particle filtering) combines the SIS approach with the application
of the resampling procedure corresponding to step 2(c)ii of Table 2. If the GIS weighting is not applied, in SIR
only

Zd =
d∏

j=1

[
N∑

n=1

w̄
(n)
j−1β

(n)
j

]
.

is a consistent estimator of Zd. In this case, Ẑd = 1
N

∑N
n=1 w

(n)
d is not a possible alternative without using GIS.

However, considering the proper GIS weighting of the resampled particles (the step 2(c)iii of Table 2), then Ẑd is
also a consistent estimator of Zd and it is equivalent to Zd. Below, we analyze three cases considering a resampling
applied to the entire set of particles:

• No Resampling (η = 0): this scenario corresponds to SIS where Ẑd, Zd are equivalent as shown in Eq.
(68).
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• Resampling at each iteration (η = 1): using the GIS weighting, w(n)
d−1 = Ẑd−1 for all n and for all d, and

replacing in Eq. (65) we have

Ẑd = Ẑd−1

[
1
N

N∑

n=1

β
(n)
d

]
, (70)

=
1
N

d∏

j=1

[
N∑

n=1

β
(n)
j

]
. (71)

Since the resampling is applied to the entire set of particles, we have w̄(n)
d−1 = 1

N for all n. Replacing it in the
expression of Zd in (69), we obtain

Zd =
1
N

d∏

j=1

[
N∑

n=1

β
(n)
j

]
, (72)

that coincides with Ẑd in Eq. (71).

• Adaptive resampling (0 < η < 1): for the sake of simplicity, let us start considering a unique resampling
step applied at the k-th iteation with k < d. We check if both estimators are equal at d-th iteration of the
recursion. Due to Eq. (68), we have Zk ≡ Ẑk,6 since before the k-th iteration no resampling has been applied.
With the proper weighting w(n)

k = Ẑk for all n, at the next iteration we have

Ẑk+1 =
1
N

N∑

n=1

w
(n)
k β

(n)
k+1 = Ẑk

[
1
N

N∑

n=1

β
(n)
k+1

]
,

and using Eq. (69), we obtain

Zk+1 = Zk

[
N∑

n=1

1
N
β

(n)
k+1

]
= Ẑk

[
1
N

N∑

n=1

β
(n)
k+1

]
,

so that the estimators are equivalent also at the (k+ 1)-th iteration, Zk+1 ≡ Ẑk+1. Since we are assuming no
resampling steps after the k-th iteration and until the d-th iteration, we have that Zi ≡ Ẑi for i = k+2, . . . , d
due to we are in a SIS scenario for i > k (see Eq. (68)). This reasoning can be easily extended for different
number of resampling steps.

Figure 14 summarizes the expressions of the estimators in the extreme cases of η = 0 and η > 1. Note that the
operations of sum and product are inverted. See DEMO-1 at https://github.com/lukafree/GIS.git.

D Particle Marginal Metropolis-Hastings (PMMH) algorithms

Let us consider x = x1:D = [x1, x2, . . . , xD] ∈ X ⊆ RD×η where xd ∈ Rη for all d = 1, . . . , D and an additional
model parameter θ ∈ Rdθ to be inferred as well. Assuming a prior pdf gθ(θ) over θ, and a factorized complete
posterior pdf π̄(x,θ)

π̄c(x,θ) ∝ πc(x,θ) = gθ(θ)π(x|θ), (73)

where

π(x|θ) = γ1(x1|θ)
D∏

d=2

γd(xd|x1:d−1,θ).

6We consider to compute the estimators before the resampling.
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Figure 14: Expressions of the marginal likelihood estimators Zd and bZd in two extreme scenarios: without resampling and
applying resampling at each iterations. Note that in the formulations above the operations of sum and product are inverted.

Moreover, let us the denote as π̂(x|v1:N ,θ) = 1

N bZ(θ′)

∑N
n=1 w(vn|θ′)δ(x− vn) a particle approximation of π(x|θ)

obtained by one run of a particle filter approach. The Marginal PMH (PMMH) technique is then summarized in
Table 13. PMMH is often used for both smoothing and parameter estimation in state-space models. Note that if
qθ(θ|θt−1) = gθ(θ) then the acceptance function becomes

α = min

[
1,

Ẑ(θ′)

Ẑ(θt−1)

]
. (74)

Table 13: Particle Marginal MH (PMMH) algorithm

1. Choose an initial state x0 and Ẑm,0 for m = 1, . . . ,M .

2. For t = 1, . . . , T :

(a) Choose an initial state x0, θ0, Ẑ(θ0).

(b) For t = 1, . . . , T :

i. Draw θ′ ∼ qθ(θ|θt−1) and vj ∼ π̂(x|v1:N ,θ
′) = 1

N bZ(θ′)

∑N
n=1 w(vn|θ′)δ(x − vn) (where π̂ is

obtained with one run of a particle filter).
ii. Set θt = θ′, xt = vj , with probability

α = min

[
1,

Ẑ(θ′)gθ(θ′)qθ(θt−1|θ′)
Ẑ(θt−1)gθ(θt−1)qθ(θ|θt−1)

]
. (75)

Otherwise, set θt = θ′ and xt = xt−1.

3. Return {xt}Tt=1 and {θt}Tt=1.

Distributed Particle Marginal Metropolis-Hastings (DPMMH). We can easily design a marginal version
of DPMH in Section 5.2, drawing θ′ ∼ qθ(θ|θt−1) and run M particle filters addressing the target pdf π̄(x|θ′). The
algorithm follows the steps in Table 13 with the difference that M parallel particle filters are used, and in this case
the acceptance probability is

α = min


1,

[∑M
m=1 Ẑm(θ)

]
gθ(θ′)qθ(θt−1|θ′)

[∑M
m=1 Ẑm(θt−1)

]
gθ(θt−1)qθ(θ|θt−1)


 . (76)

31



Table 14: Main acronyms in the work.

GP Gaussian Process
MSE Mean Square Error

IS Importance Sampling
SIS Sequential Importance Sampling
SIR Sequential Importance Resampling
PF Particle Filter

SMC Sequential Monte Carlo
AMIS Adaptive Multiple Importance Sampling

MCMC Markov Chain Monte Carlo
MH Metropolis-Hastings
IMH Independent Metropolis-Hastings
MTM Multiple Try Metropolis

I-MTM Independent Multiple Try Metropolis
I-MTM2 Independent Multiple Try Metropolis (version 2)

PMH Particle Metropolis-Hastings
PMMH Particle Marginal Metropolis-Hastings

GIS Group Importance Sampling
GSM Group Metropolis Sampling

PGSM Particle Group Metropolis Sampling
DPMH Distributed Particle Metropolis-Hastings

DPMMH Distributed Particle Marginal Metropolis-Hastings
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