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We suggest a method of computing many functions in the same time by using many paral-

lel quantum systems.
{a1,a2,as,... ,an}, and the function g :

{9(a1), 9(az2), g(as), ...
compute M functions g-, g°, ..., g

We use the Bernstein-Vazirani algorithm. Given the set of real values
R — {0,1}, we shall determine the following values
,g9(an)} simultaneously. By using M parallel quantum systems, we can
simultaneously. The speed of determining the N x M values will

be shown to outperform the classical case by a factor of N.
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Quantum mechanics [1-6] provides exact and fre-
quently remarkably accurate numerical predictions, as
reported for over a century. There has been a remark-
able link in recent decades between the quantum the-
ory and information theory, givin rise to the rich field
of quantum information theory (QIT), which novel pro-
posals that outperform classical tasks or simply have no
classical counterpart [6].

One case that involves both quantum theory and in-
formation theory that can be found in the foundations of
the quantum theory is the Leggett-type non-local vari-
ables theory [7], which has been experimentally explored
[8-10]. These experiments report that quantum theory
does not accept a Leggett-type non-local variables in-
terpretation, although some controversy remains around
the conclusions and interpretations of the experimental
outcomes [11-13].

Applications of QIT also include the implementation
of quantum algorithms. One such case is provided for
instance by the Deutsch’s problem [14], first experimet-
ally realized on a nuclear magnetic resonance proof-of-
principle quantum computer [15]. Implementation of the
Deutsch-Jozsa algorithm on an ion-trap quantum com-
puter has also been achieved [16]. There have been, as
well, several other attempts to use single-photon two-
qubit states for quantum computing. Oliveira et al
implemented the Deutsch’s algorithm with polarization
and transverse electromagnetic spatial modes as qubits
[17]. Other achievements also include single-photon Bell
states preparation and measurement [18], a decoherence-
free implementation of Deutsch’s algorithm using single-
photon and using two logical qubits [19] and, more re-

cently, a one-way quantum computing implementation
of the algorithm[20].

These achievements involving the Deutsch-Jozsa algo-
rithm are very well related to the so called Bernstein-
Vazirani algorithm [21, 22], which can be considered as an
extended version of the previous one. After these two al-
gorithms, Simon’s algorithm [23] was discovered, among
others. There has been an experimental implementa-
tion of a quantum algorithm that solves the Bernstein-
Vazirani parity problem without entanglement [24]. Ad-
ditionally, fiber-optics implementations of the Deutsch-
Jozsa and Bernstein-Vazirani quantum algorithms with
three qubits have been realized [25]. Also, a variant of
the algorithm for quantum learning being robust against
noise has been introduced [26], as well as a quantum algo-
rithm for approximating the influences of Boolean func-
tions and its applications [27]. The Bernstein-Vazirani
algorithm has been also versatile in quantum key distri-
bution [28] and transport implementation with ion qubits
[29].

In the present work we suggest a method of computing
many functions in the same time by using many parallel
quantum systems. We use the Bernstein-Vazirani algo-
rithm. Given the set of real values {a1,as,as,... ,an},
and the function g : R — {0,1}, we shall determine the
following values {g(a1), g(a2),g(as3),... ,g(an)} simulta-
neously. By using M parallel quantum systems, we can
compute M functions ¢!, g2, ..., ¢™ simultaneously. The
speed of determining the N x M values will be shown to
outperform the classical case by a factor of N.

Let us suppose that we are given the following sequence
of real values



a;,az,a3,... ,aN. (]‘)

Let us now introduce the function

g:R—{0,1}. (2)

One step is to determine the following values:

Recall that in the classical case, we need N queries, that
is, N separate evaluations of the function (2). In our
quantum algorithm, we shall require a single query. Sup-
pose now that we introduce another function

g(a1),g(a2),g(as),...

f:{0,13" — {0,1}, (4)

which is a function with a N-bit domain and a 1-bit
range. We construct the following function:

N

f(x)=g(a) -z =) g(ai)wi(mod2)

=1
=g(a1)z1 ® g(az)z2 ® g(az)rs ® -+ & glan)zn,
T; € {Ov ]-}Nag(ai) S {07 1}7 a; € Ra (5)

where a; is a real value. Here g(a) symbolizes

~g(an). (6)

Let us follow the quantum states through the algo-
rithm. The input state is

g(a1)g(az) -

[0) = [0)*¥]1). (7)

After the Hadamard transform on the state, we have

e 3 f— {|o>ﬁ|1>] | &

ze{0,1}N
Next, the function f is evaluated using
Uy : |2,9) = |2,y ® f()), (9)
giving

f(wx _
I v

After the Hadamard transform, using the previous equa-
tion and (10) we can now evaluate |i3),

sz(m)Z _
) = iZZ + |>{|o>\/§|1>]'(11)

Thus,
) =tal@e)z) o) —[1)
p =3 e
We notice
Z(_l)m-z+g(a)~m — 2N5g(a)7z' (13)
Thus,

[bs) izz “*9“”|>[|0>\—f|1>}
2
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— lg(a)) [

~ fan)g(or) - g(aw) [LH2] )

from which

g(an))- (15)
That is to say, if we measure
)) then we can retrieve the following

lg(a1)g(az) -
can be obtained.

lg(a1)g(az)---glan
values

g(al),g(ag),g(ag),... 7g(aN) (16)

using a single query. All we have to do is to perform one
quantum measurement.

The speed to determine N values improves by a factor
of N as compared to the classical counterpart. Notice
that we recoiver the Bernstein-Vazirani algorithm when
g:a; — a.

We suggest a method to compute M functions in the
same time as many parallel quantum systems. By us-
ing M parallel quantum systems, we can compute M
functions g¢', g2, ...,g™ simultaneously. That is, we can
retrieve the following values

9'(a1), 9" (a2), 9" (az), ... , 9" (an), (17)

9°(a1), 9%(a2), ¢%(az), ... , g*(an), (18)

9" (a1), g™ (a2), 9™ (az),... ,g™(an)  (19)

In the case, we measure the following quantum state:
9" (a1)g* (a2) -~ ¢" (an)) ®
l9°(a1)g%(az) -+~ g*(an)) ®

- ® g™ (a1)g" (a2) --- g™ (an))- (20)

All we have to do is to perform one quantum measure-
ment. [30].

In conclusions, we have presented a generalization of
the Bernstein-Vazirani algorithm. And by using the new
quantum algorithm, we have suggested a new method to
compute M functions in the same time as M parallel
quantum systems. The speed of computing the N x M
values will be shown to outperform the classical case by
a factor of V.



ACKNOWLEDGEMENTS

J. Batle acknowledges fruitful discussions with J.
Rosselld, Maria del Mar Batle and Regina Batle.

[1] J. von Neumann, Mathematical Foundations of Quantum
Mechanics (Princeton University Press, Princeton, New
Jersey, 1955).

[2] R. P. Feynman, R. B. Leighton, and M. Sands, Lectures
on Physics, Volume III, Quantum mechanics (Addison-
Wesley Publishing Company, 1965).

[3] M. Redhead, Incompleteness, Nonlocality, and Realism
(Clarendon Press, Oxford, 1989), 2nd ed.

[4] A. Peres, Quantum Theory: Concepts and Methods
(Kluwer Academic, Dordrecht, The Netherlands, 1993).

[5] J. J. Sakurai, Modern Quantum Mechanics (Addison-
Wesley Publishing Company, 1995), Revised ed.

[6] M. A. Nielsen and I. L. Chuang, Quantum Computation
and Quantum Information (Cambridge University Press,
2000).

[7] A. J. Leggett, Found. Phys. 33, 1469 (2003).

[8] S. Groblacher, T. Paterek, R. Kaltenbaek, C. Brukner,
M. Zukowski, M. Aspelmeyer, and A. Zeilinger, Nature
(London) 446, 871 (2007).

[9] T. Paterek, A. Fedrizzi, S. Groblacher, T. Jennewein, M.
Zukowski, M. Aspelmeyer, and A. Zeilinger, Phys. Rev.
Lett. 99, 210406 (2007).

[10] C. Branciard, A. Ling, N. Gisin, C. Kurtsiefer, A. Lamas-
Linares, and V. Scarani, Phys. Rev. Lett. 99, 210407
(2007).

[11] A. Suarez, Found. Phys. 38, 583 (2008).

[12] M. Zukowski, Found. Phys. 38, 1070 (2008).

[13] A. Suarez, Found. Phys. 39, 156 (2009).

[14] D. Deutsch, Proc. Roy. Soc. London Ser. A 400, 97
(1985).

[15] J. A. Jones and M. Mosca, J. Chem. Phys. 109, 1648
(1998).

[16] S. Gulde, M. Riebe, G. P. T. Lancaster, C. Becher, J.
Eschner, H. Haffner, F. Schmidt-Kaler, I. L. Chuang, and

R. Blatt, Nature (London) 421, 48 (2003).

[17] A. N. de Oliveira, S. P. Walborn, and C. H. Monken, J.
Opt. B: Quantum Semiclass. Opt. 7, 288-292 (2005).

[18] Y.-H. Kim, Phys. Rev. A 67, 040301(R) (2003).

[19] M. Mohseni, J. S. Lundeen, K. J. Resch, and A. M. Stein-
berg, Phys. Rev. Lett. 91, 187903 (2003).

[20] M. S. Tame, R. Prevedel, M. Paternostro, P. Bohi, M.
S. Kim, and A. Zeilinger, Phys. Rev. Lett. 98, 140501
(2007).

[21] E. Bernstein and U. Vazirani, Proceedings of the
Twenty-Fifth Annual ACM Symposium on The-
ory of Computing (STOC ’93), pp. 11-20 (1993),
doi:10.1145/167088.167097.

[22] E. Bernstein and U. Vazirani, SIAM J. Comput. 26-5,
pp. 1411-1473 (1997).

[23] D. R. Simon, Foundations of Computer Science, (1994)
Proceedings., 35th Annual Symposium on: 116-123, re-
trieved 2011-06-06.

[24] J. Du, M. Shi, X. Zhou, Y. Fan, B. J. Ye, R. Han, and
J. Wu, Phys. Rev. A 64, 042306 (2001).

[25] E. Brainis, L.-P. Lamoureux, N. J. Cerf, Ph. Emplit, M.
Haelterman, and S. Massar, Phys. Rev. Lett. 90, 157902
(2003).

[26] A. W. Cross, G. Smith, and J. A. Smolin, Phys. Rev. A
92, 012327 (2015).

[27] H. Li and L. Yang, Quantum Inf. Process. 14, 1787

(2015).
[28] K. Nagata and T. Nakamura, Open Ac-
cess Library  Journal, 2: el798  (2015).

http://dx.doi.org/10.4236 /0alib.1101798.

[29] S. D. Fallek, C. D. Herold, B. J. McMahon, K. M. Maller,
K. R. Brown, and J. M. Amini. New J. Phys. 18, 083030
(2016).

[30] Germano Resconi (private communications).



