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Abstract

In this paper we are combining Heisenberg’s uncertainty principle with Haug’s new insight on the
maximum velocity for anything with rest-mass; see [1, 2, 3]. This leads to a new and exact boundary
condition on Heisenberg’s uncertainty principle. The uncertainty in position at the potential maximum
momentum for subatomic particles as derived from the maximum velocity is half of the Planck length.

Perhaps Einstein was right after all when he stated, “God does not play dice.” Or at least the dice
may have a stricter boundary on possible outcomes than we have previously thought.

We also show how this new boundary condition seems to make big G consistent with Heisenberg’s
uncertainty principle. We obtain a mathematical expression for big G that is fully in line with empirical
observations.

Hopefully our analysis can be a small step in better understanding Heisenberg’s uncertainty principle
and its interpretations and by extension, the broader implications for the quantum world.

Key words: Heisenberg’s uncertainty principle, maximum velocity matter, point particle, boundary
condition, big G, Planck mass particle, Planck length, reduced Compton wavelength.

1 Introduction

Haug [1, 2, 3] has recently introduced a new maximum velocity for subatomic particles (anything with
mass) that is just below the speed of light. The formula is given by
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where �̄ is the reduced Compton wavelength of the particle we are trying to accelerate and l
p

is the
Planck length [4]. This maximum velocity puts an upper boundary condition on the kinetic energy, the
momentum, and the relativistic mass, as well as on the relativistic Doppler shift in relation to subatomic
particles. Basically, no fundamental particle can attain a relativistic mass higher than the Planck mass,
and the shortest reduced Compton wavelength we can observe from length contraction is the Planck
length. In addition, the maximum frequency is limited to the Planck frequency, the Planck particle mass
is invariant, and so is the Planck length (when related to the reduced Compton wavelength). Here we
will combine this equation with Heisenberg’s uncertainty principle.

2 Heisenberg’s Uncertainty Principle in relation to Maxi-
mum Momentum

Heisenberg’s uncertainty principle [5] is given by1
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where �
x

is considered to be the uncertainty in the position, �
p

is the uncertainty in the momentum,
and h̄ is the reduced Planck constant.

⇤e-mail espenhaug@mac.com. Thanks to Victoria Terces for helping me edit this manuscript. Also thanks to Alan Lewis,
Daniel Du↵y, ppauper and AvT for useful tips on how to do high precision calculations.

1See also Kennard [6] that was the first to “prove” this modern inequality based on the work of Heisenberg.
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Haug [1] has shown that the maximum momentum for a fundamental particle likely is given by
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Based on this we can find a lower boundary in the uncertainty of the position, �
x

, for of any funda-
mental particle when assuming the �

p

is limited to the maximum momentum for the subatomic particle
in question. From this we get
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and since the Planck mass can be written as m
p

= h̄

l

p

1
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, we can rewrite this as
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For any known fundamental particle, �̄ >> l
p

so we can use the first term of a series expansion:q
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and when �̄ >> l
p

we have a very good approximation by
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In other words, the maximum uncertainty in the position of any fundamental subatomic particle (when
assuming �

p

is equal to the maximum momentum of the particle) is half the Planck length. This lies in
strong contrast to standard physics, where there is basically no boundary on the maximum momentum a
fundamental particle can achieve as long as it is below infinite. Therefore, in the standard theory there
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is no limit on how close �
x

can be, relative to zero. As [7] recently has shown, this leads to absurd
possibilities for relativistic mass, kinetic energy, and momentum. Under the standard theory, an electron
could attain a relativistic mass equal to the rest-mass of the Moon, the Earth, the Sun and even the
whole observable universe while still traveling below the speed of light.

In the new theory presented by Haug no fundamental particle can attain a relativistic mass larger than
the Planck mass. Under our new interpretation of Heisenberg’s principle there is an exact upper limit
on the momentum, and it is identical for all subatomic fundamental particles. Naturally this will only
hold true because their maximum velocity is not the same and is dependent on their reduced Compton
wavelength. Our theory gives an exact limit on how close v can get to c. For example, for an electron
this maximum velocity is
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⇡ c⇥ 0.999999999999999999999999999999999999999999999124 (8)

This is the same maximum velocity as given by [1, 2]. These calculations require very high precision
and were calculated in Mathematica.2

In our view, the right interpretation is most likely that the reduced Compton wavelength of the electron
is contracted down to the Planck length at this maximum velocity, as discussed by [8]. In this case, we
cannot claim that the electron is at an exact point location �

x

⇡ 0, simply because it is not a point
particle. The reduced Compton wavelength is, in our view, the distance from center to center between
two indivisible particles that make up the electron, traveling back and forth counter-striking. When they
are ultimately compressed (due to length contraction of the void in between the indivisibles making up
the fundamental particle), the particles must lie side by side. The reduced Compton wavelength is now
l
p

. And our best estimate of where the electron is now would be half the Planck length, that is to say, in
the middle of its contracted reduced Compton wavelength. Heisenberg’s uncertainty principle combined
with our maximum velocity formula possibly indicates that there can be no point particles.

In the special case of a Planck mass particle, we find that �
x

= 1. This may sound dramatic, but the
correct interpretation is simply that the momentum of a Planck-mass particle always is zero, since the
Planck mass particle is standing still as observed from any reference frame; see [1]. I would also claim that
Heisenberg’s uncertainty principle may not be ideally suited for describing the situation for any particle
that is merely standing still (at rest).

Again the shortest �
x

we can have in relation to a momentum is 1
2 lp, which again can be used to find

the maximum momentum for any subatomic particle.
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This leads to a quadratic equation with a negative and positive solution for v, where only the pos-

itive solution seems to make practical sense3, namely that v = c
q
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2 . This gives us the maximum

momentum for any subatomic particle equal to p
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2We used several di↵erent set-ups in Mathematica; here is one of them: N [Sqrt[1� (1616199 ⇤ 10^(�41))^2/(3861593 ⇤ 10^(�19))^2], 50],
where 1616199 ⇤ 10^(�41) is the Planck length and 3861593 ⇤ 10^(�19) is the reduced Compton wavelength of the electron.
An alternative way to write it is: N [Sqrt[1� (SetPrecision[1.616199 ⇤ 10^(�35))^2, 50]/(SetPrecision[3.861593 ⇤ 10^(�13))^2, 50]], 50].

3Or the minus solution could be interpreted as a particle traveling in the opposite direction of the plus solution.
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We are not the only ones to suggest an absolute minimum uncertainty in the position of any particle,
such as an electron. Adler and Santiago [9] have, based on assumed gravitational interaction of the photon
and the particle being observed, modified the uncertainty principle with an additional term. By doing this
they find a minimum uncertainty in the position that is not far from our prediction. The strength in our
result is that no additional terms in the Heisenberg principle are needed to get a minimum uncertainty
in the position of any particle, and thereby also a maximum limit in the uncertainty of the momentum.

3 Time and Energy

Heisenberg’s uncertainty principle in terms of time and energy can be written as
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Haug [1] has shown that the maximum kinetic energy of a fundamental particle with reduced Compton
wavelength of �̄ is given by
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We can use this result in Heisenberg’s time energy uncertainty inequality equation
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and when �̄ >> l
p

, we have a very good approximation by
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Which is half a Planck second. It is worth mentioning that the half Planck second and half Planck
length found as boundary conditions here are exactly the same as the results we obtained when looking
at the Lorentz transformation in the limit of the maximum velocity of mass [10].
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4 Big G and Heisenberg’s Uncertainty Principle

As shown in [3], the maximum velocity can also be written as

v
max

= c

r
1�

l2
p

�̄2
= c

r
1� Gm2

h̄c
(14)

where G is Newton’s gravitational constant [11] and m is the mass of a fundamental particle. It is
important to understand m in this context is not just any mass; this mass must have a reduced Compton
wavelength. In other words, it is the mass of fundamental particles. Based on this observation, we can
assess whether or not we can use this in combination with Heisenberg’s uncertainty principle to derive a
theoretical value of big G. We are not the first to suggest that Heisenberg’s uncertainty principle could
be related to Newtonian gravity. McCulloch [12] has shown that Newton’s gravity formula basically can
be derived from Heisenberg’s uncertainty principle. However, he has not shown how big G also can be
derived from it.

We could also say that this is just another way to show the maximum velocity for matter may be
consistent with Heisenberg’s uncertainty principle, although this should not be considered as evidence
that we will get big G from Heisenberg’s uncertainty principle. We have
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To write the gravitational constant as G =
l

2
p

c

3

h̄

has already been suggested by Haug [13, 14] in order
to simplify a series of expressions in Newton and Einstein gravity end results. It has also been derived
by dimensional analysis [3] and used to simplify the equation form of the Planck units. Further, Haug
has suggested that the Planck length (at least in a thought experiment) can be found independent of G
based on the maximum velocity formula.

This gives the same value as the gravitational constant, as is known from experiments. However, there
is still considerable uncertainty about the exact measurement of the gravitational constant. Experimen-
tally, substantial progress has been made in recent years based on various methods. See, for example,



6

[15, 16, 17, 18, 19]. In the formula presented here, the uncertainty lies in the exact value of the Planck
length, as well as in h̄; the speed of light c = 299792458 is exact per definition. At the moment, the
Planck length can only be found from G, but if we had access to much more advanced particle accelerators
than the Large Hadron Collider, we could expect to detect v

max

and then back the Planck length out
from there. We claim that big G is indeed a universal constant, but it is a composite constant that is
dependent on three even more fundamental constants, namely h̄, l

p

, and c.

5 Conclusion

By combining Heisenberg’s uncertainty principle with the newly introduced maximum velocity on mass,
we have shown that the smallest location uncertainty of a fundamental particle is related to half the
Planck length, and that the shortest time interval is related to half the Planck time. This is the “same”
finding as we obtained when combining this maximum velocity with the Lorentz transformation [10].
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