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Abstract 

A recent paper by one of the authors presented a new formula found experimentally for the shape of the free 

surface of stable vortices. In this paper we show that the given shape is the concave spinning top with the 

minimum moment of inertia. A new variation method is used to find this shape, since no existing method 

seems to cope with the Lagrangian involving r(z)4, inequality constraints and the solution with r(0) = infinity. 

In the process we find spinning tops with the minimum moment of inertia under various constraints.  
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1. Introduction 

 

It has been shown experimentally (Germuska 2016) that the shape of the free surface of water and 

air vortices is described by the function (1.1) called Vir.  

 

   













z

a
azr )(       where        0  0a          (1.1) 

 

The exponent  determines the shape and the parameter a the size. Vir function is a generalisation 

of the function for the irrotational vortex in the ideal fluid where the exponent is fixed at  = ½ 

(Kundu 2008). We use the calculus of variations to show that the solid of rotation generated by Vir 

function (1.1) is the concave spinning top with the minimum moment of inertia, i.e. vortices have a 

concave shape with least resistance to spinning. More details about concave tops are in section 2.  

 

In physics calculus of variations is used to solve a wide variety of problems, including finding the 

trajectory f(t) of a particle that is exposed to some forces. In this case f(t) gives the minimum value 

to the integral of the difference between the kinetic and potential energy (Landau & Lifshitz 1976). 

Function f(t) is found by solving Euler-Lagrange differential equations (Arfken 1968; Jeffreys & 

Jeffreys 1980). More details about the principles of variation are in section 3. The details of the 

method used here are in sections 4 to 9. The rest of this introduction gives a survey of the existing 

variation methods and the reasons why none of them is suitable to find the solution we seek.  
 

A little over 100 years ago Ritz and Galerkin showed that some differential equations can be 

solved approximately by expressing function f(t) as a series cnn(t) and then finding the optimal 

coefficients cn (Akheizer 1962; Kantorovich 1964; Courant & Hilbert 1989). With the introduction 

of computers this method has became widespread. For the expression in the integral with the 1st 

and 2nd powers of f(t) and possibly also of f ’(t) the method results in N linear equations of N 

coefficients cn. If the base functions n are orthogonal then these equations have a sparse matrix 

with regular patterns, for which it is possible to find an algebraic solution (Chen & Hsiao 1975; 

Hwang & Shih 1983; Chang & Wang 1983; Hwang & Shih 1985; Horng & Chou 1986; Razzaghi 

& Razzaghi 1988; Paraskevopoulos et al. 1990; Razzaghi & Marzban 2000; Hsiao 2004).  

 

However, using 3rd and 4th powers of f(t) results in nonlinear equations involving terms cmcn and 

ckcmcn respectively. Since there is no general formula for the cubic or higher power equations, 

algebraic solutions are extremely rare.  
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The equations may be nonlinear and hence difficult to solve also for other reasons, e.g. √f(t) or 

1/f(t) in the integral. Many methods have been developed to solve some of these problems, for 

example: VIM (He 2007), perturbation (Yildirim & Ozis 2007), linearization (Maleki & Mashali-

Firouzi 2010), ADM (Wazwaz 2011), SAM (Jafari 2014), discretization (Maleki & Hashim 2014) 

and fractional variation (Atanacković et al. 2014).   

 

Finding the shape of the spinning top we seek is more difficult than it may seem at first sight and 

none of the methods mentioned above seems suitable for this purpose. One of the difficulties is that 

the solution function (1.1) has an infinity at z = 0 and thus some integrals used in variation become 

infinite. Another difficulty is the requirement that the spinning top must be concave, which is an 

inequality constraint, but with differential equations one can not use inequalities, only equalities. 

Yet another difficulty arises because the expression in the integral (Lagrangian) involves the fourth 

power r(z)4 which results in nonlinear equations, while most methods can solve only problems that 

involve the second power r(z)2 at the most, thus resulting in linear equations. The variation method 

used in this paper overcomes these difficulties as outlined below.  

 

To avoid the problem of the infinity at zero we introduce the condition that r(z) = R for 0 < z < , 

where R and  are constants. We may choose  as small and R as large as we like, within reason 

considering the accuracy of computation. We also demand that r(z) has no discontinuity at z =  .  

 

The problem with the inequality constraint is overcome by converting the inequality involved into 

an equality using the integral of the absolute value of the function involved, as shown below, which 

is then treated as any other equality constraint, using the Lagrange multiplier . 
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The problem with the fourth power r(z)4 is resolved by writing r(z) = rc(z) + rd(z), with the large 

“known” coefficients cn and the small “unknown” coefficients dn. We then use the binomial 

expansion of r(z)k = [rc(z) + rd(z)]k to decompose integrals of r(z)k and their partial derivatives by dk 

into powers of rd(z), see sections 4 and 5 respectively. The 1st power rd(z)1 involves only terms dk 

and the 2nd power rd(z)2 only dkdm. The minimizing equations involve the partial derivatives of the 

integrals by dk and the known coefficients cn which are constants. Thus if we ignore the 3rd and the 

higher powers rd(z)k we obtain approximate linear equations for the coefficients dn.  
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Using the ignored 3rd and the higher powers rd(z)k we compute the error in each linear equation 

involved, then using iteration we obtain a more and more accurate solution. To do so the initial 

values of the coefficients c0 and c1 are guessed and the rest are set to zero. The known coefficients 

cn are the input to an iteration cycle and the unknown coefficients dn are the output. For the next 

cycle we use cn = cn + dn. The coefficients dn converge to zero and cn converge to the solution. The 

iteration process outlined above is described in detail in section 7.   

 

The solution is presented in three stages, at each stage more constraints are added and different 

shapes with the minimum moment of inertia I are found. The 1st stage finds the spherical spinning 

top (Ix = Iy = Iz) with the minimum moment of inertia of given mass and height. The 2nd adds the 

condition that the spinning top has a Saturn-like disk of radius R and thickness . The 3rd adds three 

more constraints, the profile r(z) must be continuous, descending and convex.  
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2. Concave spinning top  

 

In everyday English the meaning of “convex” and “concave” is clear and easily demonstrated using 

optical lenses as examples. In functional analysis a function r(z) is convex if its second derivative 

r’’(z) ≥ 0. If r(z) is convex then –r(z) is concave and vice versa. A more general and more visual 

definition is based on Jensen inequality, i.e. r(z) is convex if a straight line drawn between any two 

of its points is above r(z) or at most coincides with it. In geometry a planar or a three dimensional 

object is convex if a straight line joining any two boundary points never goes outside the object, for 

example an ellipse. For more details see (Boyd & Vandenberghe 2004). The opposite object, where 

a straight line joining any two boundary points never goes inside the object doesn’t exist. Hence 

there is no generally accepted equivalent definition of a concave object.  

 

An inflated cone is a convex object and using the lens analogy it seems reasonable to describe a 

deflated cone as a concave object. In this paper by a “concave spinning top” we will understand a 

solid of rotation that can be generated by a continuous curve consisting of a positive constant and a 

positive convex function, as shown in figure 1. Figure 2 shows the same spinning top, we can tell 

that it is concave because rotated by 90 degrees it can be generated as described.  

 

 

 

 

 

 

 

 

 

 

 

 

 

  FIGURE 1. Concave spinning top  FIGURE 2. Concave spinning top 

 

A symmetric concave spinning top is symmetrical around its centre of mass, as shown in figure 3. 

Formulas for the moments of inertia are much simpler for symmetrical spinning tops, hence it is this 

shape generated by Vir function (1.1) for which we prove that it has the minimum moment of inertia 

of all concave spinning tops. However, the same applies also to the shape in figures 1 and 2.  

 

 

 

 

 

 

 

 

 

 

 

 

FIGURE 3. Symmetric concave spinning top 
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3. Euler-Lagrange Equations  

 

Consider the problem of finding the function f(t) which gives a stationary value, i.e. minimum, 

maximum or an inflection point, of the functional J(f)  
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The necessary condition for this is that the function F should satisfy the Euler equation (Arfken  

1968; Jeffreys &  Jeffreys 1980) 
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Let us approximate function f(t) by a series of N chosen functions n(t) with coefficients cn  
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The functional J becomes dependent only on the vector c, i.e. the coefficients cn  
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and  the condition (3.2) becomes  
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Assume that we impose a constraint on the function f(t) in the form of an integral 
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Using the Lagrange multiplier  equation (3.1) becomes (Arfken 1968)  
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Treating the integrand as a new function L, usually called the Lagrangian (Landau & Lifshitz 1976), 

we write J(f) as 
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The Euler-Lagrange equations that include the constraints are then solved simultaneously to find the 

solution function f(t), i.e. N unknown cn and K unknown k using N+K equations.  
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4. Integrals of the function we seek 

 

A solid of revolution that rotates about axis z is given by function r(z). The maximum z can be set 

to 1, because it amounts to the choice of the unit of measurement. Since r(z) = r(-z) it is sufficient to 

consider r(z) on the interval [0,1]. The coefficients in the series r(z) are split into two parts cn  and 

dn. Thus we can use the binomial expansion of [rc(z) + rd(z)]k and express it in the powers of d.  
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Any real power of the function r(z) can be expanded into natural powers of the function rd(z). Then 

the 1st and 2nd powers of the series rd(z) can be expressed as scalar products of the vector d, while 

the higher powers become scalar functions of tensors didi …dm of the corresponding rank.  

 

Integral of r2(z)  
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where A0 is a scalar, A1 is a vector and A2 is a symmetric tensor of rank two, i.e. a matrix.  

 

Integral of r4(z)  

 

  dzzdzrdzzrzrdzzrB
N

n

nncdc

4

1

0 0

4

1

0

1

0

4 ])()([])()([)(  


      (4.4a) 

 

dzzrB c
1

0

4)(0      dzzzr ncn  

1

0

3 )()(4 B1      dzzzzr mncmn )()()(6

1

0

2

,   B2     (4.4b) 

 

dzzrzrB dc 

1

0

3

3
4 )()(3       dzzrB d

1

0

4

4
1 )(4      (4.4c) 

 

          )(44)(330 mkjikji

T ddddBdddBBB  dB2ddB1      (4.4d) 

 

where B3 is a scalar function of the tensor didjdk and B4 is a scalar function of the tensor didjdkdm. 
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Integral of r(z) 2z2  
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Integral of the 1st derivative of r(z)  

 

This integral is the difference between the start and end of the curve r(z), i.e. [r(1) - r()].  
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Integral of the 2nd derivative of r(z)  

 

This integral is the difference between the 1st derivatives of r(z) at z = 1 and z =  . 
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Using the integrals shown above one can construct similar integrals, e.g. integral of r(z)3, r(z)n.  

Using Taylor expansion any integral can be decomposed into natural powers of coefficients dn.   
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5. Partial derivatives of the integrals by coefficients d  

 

To construct the Euler-Lagrange minimizing equations we need the partial derivatives by the 

coefficients dk. They are obtained simply from the expanded integrals, as shown below. 
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Derivative of integral B 
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Derivative of integral C 
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Derivative of integral X 
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Derivative of integral Y 
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Observe the pattern of the constants 1, 2, 3, 4 in 1.B1, 2.B2, 3.B3’, 4.B4’ of  the expression B’ and 

similar but shorter patterns of A’, C’, X’ and Y’.  
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6. Stages in finding the solution 

 

The solution we seek is the shape of the concave spinning top with the minimum moment of inertia. 

The moment of inertia about a given axis is defined as Σmir2
i and we will find that when expressed 

in terms of the mass density the squared radius r2 turns into r4. The moment of inertia has a 

fundamental role in the mechanics of rotating bodies, as fundamental as the mass for non-rotating 

bodies. We can see this by considering spherical spinning tops, for which the moments of inertia 

about all three axes (x, y, z) are equal. If we substitute the moment of inertia I for the mass m and the 

angular velocity ω for the linear velocity v then the expressions for the energy E and the momentum 

M become the same as for non-rotating bodies (Landau & Lifshitz 1976).  

 

 
2

2
1 mvE   

2

2
1 IE     mvM   IM        (6.1) 

 

Hence finding the shape of bodies with the minimum moments of inertia under various constraints 

is of fundamental interest in physics and engineering (Diaz, Herrera & Martinez 2006) while the 

methods used to find the shapes is of interest in mathematics (Freitas,  Laugesen & Liddell 2007). 

In the rest of this paper we present the solution to our problem in three stages described below, at 

each stage more constraints are added to the problem.  

 

First stage 

In the first stage we find the spinning top with the minimum moment of inertia that has given mass 

and height. To compare like with like the ratio of the moments of inertia about the axes x, y, z must 

be fixed. For simplicity we choose a spherical spinning top. Examples are a sphere, cube and any 

symmetric round body such as a cylinder or two cones, where the ratio of height to radius is just 

right. Thus we have three constraints, that the top is spherical, has given mass and r(z) is non-

negative. It also has one boundary condition, namely the maximum value of z = 1. We find that the 

generating function of rotation r(z) is an elliptical curve and the body is a truncated spheroid.  

 

This problem has an algebraic solution and we use it to show that our method works correctly.  

 

Second stage 

In the second stage we add the boundary condition that the spinning top has a Saturn-like disk of 

given radius R and thickness . This results in a truncated spheroid again, but this time with a 

discontinuity at z = .  

 

Due to the discontinuity we don’t seek an algebraic solution which is much more difficult to find.  

 

Third stage 

The third stage adds three constraints, that the profile r(z) is continuous, descending and convex.  

 

Function r(z) is convex if its second derivative r’’(z) ≥ 0 (Troutman 1983; Boyd & Vandenberghe 

2004). A more general and more visual definition is based on Jensen inequality, i.e. r(z) is convex if 

a straight line drawn between any two of its points is above r(z) or at most coincides with it. Thus a 

wavy curve is not convex, because each valley is convex, but each crest is concave.  

 

Because convexity and descendancy are inequality constraints there is no algebraic solution and the 

iterative solution becomes much more difficult. We find that the function r(z) that gives the 

minimum moment of inertia under the specified constraints has a singularity at zero, i.e. r(0) = ∞.  
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7. First stage 

 

In this stage we seek the shape of the spinning top with the minimum moment of inertia that has 

given mass and height from z = -1 to 1. A planar disk has the smallest moment of inertia of all planar 

shapes with the same area. Hence in three dimensional space the body with the minimum moment 

of inertia is a solid of rotation, with Ix = Iy. We solve the problem algebraically and then by iteration 

to show that the iterative method works correctly.  

 

For a profile curve r(z) the expressions for mass m, the moments of inertia Iz, Ix and the condition 

that the top is spherical, i.e. Iz = Ix, are  

 

 dzzrI z 

1

0

4)(   dzzzrzrI x  

1

0

224

2
1 )(2)(        (7.1) 

 dzzrm 

1

0

2)(2    0)(2)(

1

0

224

2
1   dzzzrzrII xz        (7.2) 

 

For simplicity we drop the constant  and the mass density  from the formulas above, which 

amounts to changing the units of measurement. With this simplification the functional J(r) is  
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In the absence of the derivative r’(z) by z in the Lagrangian the Euler-Lagrange equations (3.2) are 
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Carrying out the partial derivatives above gives us the algebraic equation 
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The mass constraint cannot be satisfied if r(z) = 0 for all z and hence the solution is 
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The solution r(z) is an ellipse if  -2 < 1 < 0  and  2 < 0  else a hyperbola if  1 < -2  and  2 < 0. 

The values of  1 and 2 are obtained by substituting r(z) from (7.6) into the constraints (7.2).  

 

  
a

acbb

2

42

1


   m

m










23

2
12          (7.7) 
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








23

4 m
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To obtain the solution by iteration we start with the Lagrangian L(r, z) of the integral J(r) in (7.3) 

 

  
2

2

224

2
1

1

4 )2(),( rzrrrrzL           (7.9) 

 

and use it as a template to express the integral J in terms of the integrals A, B, C 

 

  ACBBCBAJ  22
1

1 )2(),,(         (7.10) 

 

The partial derivatives of J by vector d, which is vector J’, are obtained in the same way 

 

  ')'2'(')',','(' 22
1

1 ACBBCBAJ          (7.11) 

 

and so are the constituents of J’ that correspond to different powers of the components dn  

 

  ])2([1),,(1 22
1

1 A1C1B1B1C1B1A1LL1      (7.12a) 

  ])2([2),,(2 22
1

1 A2C2B2B2C2B2A2LL2      (7.12b) 

  ]''[3)',','(3 2
1

1 B3B3C3B3A3LL3        (7.12c) 

  ]''[4)',','(4 2
1

1 B4B4C4B4A4LL4        (7.12d) 

 

The partial derivatives J’ by the components of vector d can now be expressed as 

 

  )()(' kjiji ddddd L4L3dL2L1J         (7.13) 

 

The solution to the variational problem given by the equations (3.5) can now be written as  

 

  0)()(  kjiji ddddd L4L3dL2L1        (7.14) 

 

In general we cannot always solve this equation algebraically because vectors L3 and L4 are 

functions of the products djdj and didjdk respectively. However, on the assumption that the 

components of vector d are much smaller than those of vector c, then the length of vectors L3, L4 

is much less than of vectors L1 and L2.d. Thus we can neglect vectors L3, L4 and get a set of linear 

equations for an approximate value of vector d and its (scalar) error L  

 

  L1dL2 -    )()( L4L3L4L3  TL      (7.15) 

 

If the function r(z) is a polynomial then all integrals involved have an algebraic formula. However, 

except for the polynomials of very low order the integral formulas are hundreds of characters long, 

not feasible to work out manually. Instead we use computer symbolic mathematics to obtain them.  

 

All matrices that make up matrix L2 are symmetrical since m n = n m and hence L2 is also 

symmetrical. Thus L2 can always be diagonalised and the linear equations above always have a 

unique non-trivial solution d, for any values of 1 and 2, provided that neither L1 nor L2 is null.  

Symmetrical matrices are a subset of Hermetian matrices used in quantum mechanics for which very 

precise and fast numerical methods exist. It is also easy to check the precision of the solution since 

L2.L2-1 should be the identity matrix, thus there is no point trying to find L2-1 algebraically.  

 

  



 13 Dec 2016  

11 

Now we describe the iteration process. We choose the initial values for the coefficients c0 and c1 to 

give a suitable initial function r(z). This is used to compute the initial integrals A, B, C and their 

partial derivatives A', B', C'. We also choose a suitable value for the initial range of s and the 

number of discrete values of  in this range. For the 1st and all subsequent iterations an approximate 

vector d is computed for all possible pairs (1, λ2) using the linear equations. The overall error , i.e. 

the solution precision, for each vector d is computed using the formulas below.  

 

    
222 dmdIL          (7.16) 

 

where  
B

CB
dI




22
1

   
m

mA
dm




2
     (7.17) 

 

In the problem considered here, there is also a tacit constraint, namely that we must have r(z) ≥ 0.  

We convert this inequality constraint into an equality constraint using the integral of |r(z)| and reject 

all vectors d that do not satisfy it.  

 

     
1

0

1

0
|)(|)( dzzrdzzr        (7.18) 

 

In general, the integrals involving an absolute value do not have an algebraic solution. This is 

because to obtain the solution involves finding the roots of the integrand. If the integrand is a 

polynomial of degree N we know that there are N complex roots, but we cannot find them 

algebraically if N ≥ 3. The numerical evaluation of integrals is inaccurate if the derivative r’(z) has 

high absolute values. The derivatives of |r(z)| and of r(z) have the same absolute value for all z. 

Hence, if the integral of r(z) evaluated numerically differs by some  from the same integral 

evaluated symbolically then the integral of |r(z)| also has the accuracy of the order of .  

 

After each successful iteration step the range of  is reduced by a chosen constant factor in such a 

way that the pair (1, 2) with the minimum  is in the centre of the range. The vector d corresponding 

to the minimum  is used to update the vector c = c + d. The reduction factor of the  range and the 

number of the discrete values of  remain the same. Thus the accuracy of (1, λ2) and hence of the 

solution function r(z) improves as the iteration goes on. The maximum  for all integrals of r(z), 

r’(z), r’’(z) evaluated during the iteration is monitored. Taking into account all three stages the 

maximum  = 10-13, hence the iteration is stopped when the solution accuracy  exceeds 10-12.  

 

Iterating on  values we change the N-dimensional problem of finding potentially a large number of 

coefficients cn to an L-dimensional problem of finding the  values, which in this case is two. Using 

a programming language like MATLAB the base functions may be defined as strings so that they 

can easily be changed. For this problem we use very simple non-orthogonal base functions:  

 

     
n

n zz )(           (7.19) 

 

The solution precision, is of the order of 10-13 for any length of the series  from N = 4 to 10. For N 

> 10 the solution is affected by computational precision and rounding errors. The series r(z) 

converges point-wise to the ellipse that was found by the exact solution. The maximum error for the 

series with N = 4  is 10-2 and for N = 10 it is 10-4. This shows that the method works correctly.  
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8. Second stage 

 

In this stage we demand that the body from the first stage must have a Saturn-like ring with given 

radius R and thickness .  

 

   Rzr )(   for  z = [0, )       (8.1) 

 

The ring is effectively a constraint on the shape of r(z), but we do not use a Lagrange multiplier . 

Instead we split the integration over two intervals [0, ] and [, 1]. The contribution from the 1st 

interval is always the same and independent of vectors c, d. Thus this contribution needs to be taken 

into account only for the constraints Iz = Ix and mass = m (7.17), i.e. the errors dI and dm. 

 

  
B

CB
dI




22
1

   
m

mA
dm




2
        (8.2) 

 

For this problem we use the same base functions n as in the first stage (7.19)  

 

     
n

n zz )(             (8.3) 

 

The Lagrangians L1 to L4 have the same form as in the 1st stage (7.12). Figure 4 shows the graph 

of r(z) and figure 5 the surface map of 1/ where  is the solution precision for the pairs (1, 2).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

           FIGURE 4. Radius r(z) Graph    FIGURE 5. Surface Map 1/ over (1, 2)  

 

We use the inverted error 1/ because it results in a sharp peak which is easy to see, while the error 

 results in a valley with a flat bottom and an unclear minimum that is difficult to locate visually.  

 

The body with the minimum moment of inertia is again a spheroid, but with the specified Saturn-

like ring that causes a discontinuity at z = .  

 

For series of length N = 7 the peak height 1/ = 1.7e+12, to reach this precision takes 18 iterations.  
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9. Third stage 

 

In this stage we again demand that the body must have a Saturn-like ring with given radius R and 

thickness . However, this time the reason for using the ring is that it provides a mechanism for 

finding a solution if r(z) tends to infinity at z = 0. We can choose R as large as we like and  as small 

as we like, within reason considering the accuracy of computation.  

 

We also add three constraints, namely that the profile r(z) is continuous, descending and convex. 

Thus, the function r(z) must be continuous on the entire interval  

 

   continuouszr )(  on  z = [0, 1]       (9.1) 

 

The continuity is satisfied by using base functions n that are zero at z =  except for 0  

 

   
n

n zz )()(    with  1)(0 z        (9.2) 

 

and by fixing L1, L2 so that we always get d0 = 0, hence c0 = R and r() is always exactly R 

 

  L10 = 0  and  L20,n = 0 L2n,0 = 0 L20,0 = 1      (9.3) 

 

We also ask that r(z) is convex beyond the Saturn ring 

 

   convexzr )(   on      z = [, 1]       (9.4) 

 

A function is convex if its 2nd derivative is non-negative, hence we have the inequality constraint  

 

   0)( zr   on      z = [, 1]       (9.5) 

 

A solution to the Euler-Lagrange equation is a stationary point, i.e. minimum, maximum or a point 

of inflection. There is nothing in the constraints above that requests the minimum. We found in the 

1st stage that the solution with the minimum moment of inertia is descending. Thus to direct the 

optimisation towards the minimum solution we use the constraint that r(z) must be descending. 

 

   0)( zr   on      z = [, 1]       (9.6) 

 

Convexity and descendancy are inequalities that we convert to equalities using the integrals of 

absolute values. We evaluate the integrals with and without the absolute value numerically and check 

that they are sufficiently accurate as described in stage one.  

 

|||||)(|)(
11

Xdzzrdzzr   
   |||||)(|)(

11

Ydzzrdzzr   
        (9.7) 

 

In the formulas (9.7) above we used the notation || || as a shorthand for the integrals of an absolute 

value. We will use these constraints with 3 and 4 as we used 1 for mass = m constraint in (7.2), 

(7.3). The difference from the mass constraint is that the required value m of the mass does not 

change, while the values of the integrals of the absolute value change for every curve r(z).  
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With the additional constraints the integral J (7.10) and the overall solution error  (7.16) become 

 

  YXACBBYXCBAJ  4322
1

1 )2(),,,,(        (9.8) 

 

   
22222 dydxdmdIL             (9.9) 

||||

||||

X

XX
dx


       

||||

||||

Y

YY
dy


      (9.10) 

 

The Lagrangians L2, L3, L4 retain the same form as in the 1st stage (7.12) while L1 becomes 

 

   ])2([),,,,( 4322
1

1 Y1X1A1C1B1B1Y1X1C1B1A1LL1       (9.11) 

 

Series r(z) of four terms gives the dotted convex arc in figure 6, while the eventual solution is the 

solid arc. It satisfies the constraints mass = m and Iz = Ix poorly compared to the previous stages. 

Figures 7, 8 show almost flat 1/ maps with the maximum height 40 instead of sharp peaks 10+12.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

          FIGURE 6. Radius r(z) Graph 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

   FIGURE 7. Surface Map 1/ over (1, 2)   FIGURE 8. Surface Map 1/ over (3, 4) 
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In figure 6 the function r(z) looks convex and descending, but in fact all four constraints are more 

or less equally unsatisfied, because the cubic polynomials are not flexible enough. On the other hand 

if we use seven terms in the series we get the reverse situation. The polynomials are too flexible and 

convexity with descendancy visibly dominate the errors, the function r(z) is too wavy. Virtually all 

series, e.g. Fourier, Chebyshev, etc. produce wavy curves. Thus to satisfy the convexity constraint 

completely is extremely difficult. To solve this problem we multiply the convexity error dy by a 

weight function w that decreases as the iteration proceeds and thus relaxes the convexity constraint. 

 

 w
Y

YY
dy 




||||

||||
 descendingiterationw )(        1)1( w     0)( w     (9.12) 

 

When the weight function w decreases more rapidly we get a more wavy curve r(z). Thus, still using 

the cubic polynomials, the function r(z) in figure 9 intersects the solid curve only 3 times (including 

the starting point) while in figure 10 there are 4 intersections. The surface maps 1/ in figure 11 and 

figure 12 refer to figure 10, but the maps for figure 9 are very similar.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

           FIGURE 9. Radius r(z) Graph              FIGURE 10. Radius r(z) Graph 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

   FIGURE 11. Surface Map 1/ over (1, 2)  FIGURE 12. Surface Map 1/ over (3, 4)  

 

Both solutions converge and after 29 iterations the peak of 1/ attains the accuracy of 10+12.  
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If we increase the number of terms in the series r(z) from four to five we obtain the solution shown 

in figure 13 below as the dotted curve, which is visually almost identical to the solid curve.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

        FIGURE 13. Radius r(z) Graph 

 

As the iteration proceeds the weight w decreases and the function r(z) converges to the solid curve. 

The iteration ends on the 29th iteration when the overall error  exceeds the accuracy of 10-12. The 

surface maps of 1/ on the grid (1, 2) and (3, 4) are shown in figures 14 and 15 below.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  FIGURE 14. Surface Map 1/ over (1, 2)  FIGURE 15. Surface Map 1/ over (3, 4) 

 

The moment of inertia for the wavy dotted curve r(z) is 0.39% greater than that for the solid curve, 

which is strictly convex, strictly descending, infinite at the origin and we call it Vir.  

 

 













z

a
azVir )(       where        0a  0        and           Vir(0) =  ∞    (9.13) 

 

Vir(z) function is the solution to which all approximations converge. It generates the concave 

spherical spinning top with the minimum moment of inertia. Vir function was found by one of the 

authors as a conjecture based on physical considerations that are beyond the scope of this article.  
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10. Summary and conclusions 

 

Using the calculus of variations we found that vortices have the shape of concave spinning tops with 

the minimum moment of inertia, called Vir. The term Vir to refers to the function and the 3D shape.  
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


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




z

a
azVir )(       where        0a  0   note  Vir(0) =  ∞  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

        FIGURE 16. Radius r(z) of Vir 

 

The laws of Newtonian Mechanics, Special Relativity, General Relativity and Quantum Mechanics 

can be derived from the Principle of Least Action (Landau & Lifshitz 1965; Landau & Lifshitz 1975; 

Landau & Lifshitz 1976; Troutman 1983). Action is the integral of the difference between the kinetic 

and potential energy. Variation is used to find the function that minimises the action.  

 

In Optics we cannot use “Action” because there is no concept of the potential energy of light. Instead 

Fermat derived the laws for the refraction and reflection of light from the Principle of Least Time 

using the calculus of variations (Meyer-Arendt 1972; Courant & Robbins 1978; Troutman 1983).  

 

In a similar way to the examples above, we derived here a law of Fluid Mechanics for the shape of 

vortices by using the Principle of Least Moment of Inertia, i.e. Least Resistance to Spinning.  

 

Vir function may be of interest also to other branches of physics, because in spite of having infinity 

at zero it generates a solid of rotation with a finite mass and moment of inertia if  < ¼. Vir with the 

mass and height of a sphere can have the radius as large as we like and in free space behave as a 

sphere, i.e. it can be rotated with equal effort about any axis through its centre of mass.  

 

To the best of our knowledge the variation method used here is new and may be suitable for solving 

problems involving non-linear equations, inequality constraints and an infinity in the solution.  

 

The computer programme for finding the solution has two versions, with symbolic and numeric 

integration. Both produce the results accurate to 10-12 but the numerical version is 100 times faster.  

 

It will be shown shortly in the paper entitled “Vir Theory of Elementary Particles” that elementary 

particles have the shape of twin vortices with the common spin axis connected at the large ends.  
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