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Abstract 

This paper presents a new formula found experimentally for the shape of the free surface of stable vortices. 

It is a generalisation of the theoretical formula for the irrotational vortex in the ideal fluid. The new formula 

applies to real vortices where viscosity and compression may be present. The experiments were carried out 

under laboratory conditions on water and air vortices that were produced in several different ways.  
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1. Introduction 

 

The shape of the free surface of the irrotational vortex in the ideal fluid is such that the square of 

the radius is inversely proportional to the depth (Kundu 2008) and may be given by formula (1.1).  
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The fluid is ideal if it is incompressible and has no viscosity. A vortex is said to be irrotational if 

the vorticity is zero everywhere, except for the singularity at the centre. Loosely speaking, a leaf 

on the surface of the irrotational vortex moves around the centre of the vortex but does not change 

its orientation, its stalk always points in the same direction, say to the north.  

 

The formula applies also to viscose but incompressible fluids if the vortex boundaries are far 

enough from its centre, so that the friction at the boundaries is negligible, since in the absence of 

boundaries the net viscose force on an element vanishes everywhere (Kundu 2008). If the 

boundaries are not far enough or the fluid is compressible then the equations are too difficult to 

solve. The shape of the irrotational vortex is a theoretical limit far removed from real vortices, as 

will be shown here. Real vortices have the shape given by formula (1.2) which I will call Vir.  
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Vir formula differs from formula (1.1) only in the values of the exponent , which determines the 

shape of the vortex. The parameter a gives the size, when z = a then r = a and vice versa. For the 

vortices considered here  = [0.6, 2.5]. The value 0.6 is for the vortex where the boundaries are far 

from the vortex centre. All vortices are in a stable state touching a solid surface at the narrow end, 

since during their rise and decay their shapes vary quickly and substantially.  

 

Using regression we can say with the confidence of 99.999% that the vortices considered here do 

not have the shape of the irrotational vortex in the ideal fluid. They fit Vir formula very well, the 

error area (over-runs + under-runs) in comparison to Vir is about 2% when vortices are not quite 

smooth or steady, i.e. the water level or the mist volume visibly changes, otherwise it is < 1%.  
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The rest of this introduction outlines how the vortices are produced, their photographs are marked, 

the optical distortions are corrected and the values of the parameters  and a are computed. Three 

different methods are used to produce water vortices, namely by rotating a disk or a ring close to 

the bottom of the vessel, pumping or sucking water using two parallel tubes facing opposite 

directions, using two coupled water bottles. In order to produce vortices as stable as possible 

vibration must be reduced to a minimum. In the case of rotating disks and rings this is achieved by 

driving them using a wheel underneath the water container, with the connection provided by aligned 

pairs of magnets. In addition, a water-proof wheel-bearing houses the axis and screws with semi-

spherical ends are fitted at the perimeter of the disk to act as stabilisers.  

 

Air vortices are created from the mist produced by ultrasonic vibrations in water. The mist is fanned 

into a box of a square footprint and with a vertical slit in each corner. The slits are asymmetrical, 

offset in such a way that the air sucked into the box acquires angular momentum. The mist enters 

the box via a hole in the centre of the bottom where it hits a horizontal partition with smaller holes 

at the perimeter arranged in a circle. The mist rises through the holes and hits another horizontal 

partition, thus losing the upward linear momentum and spreading into an even layer. This partition 

has a large circular opening from which an upside down vortex emerges when the mist and air are 

sucked through a much smaller hole in the ceiling by the fan above. To produce a steady and dense 

vortex the suction must be as gentle as possible and the mist must have near ambient temperature. 

The speed of the fans has to be set very finely at the start, so that the volume of the mist in the box 

increases very gently, since any change afterwards disturbs the vortex and distorts its shape.  

 

The photographs of vortices are marked by hand using a graphics software to trace the free surface. 

Markers are placed at regular intervals vertically or horizontally depending on the corresponding 

surface sections. The coordinates of the central pixel of the markers are recorded for further 

processing. To estimate the random human error in placing the markers five people marked the 

same photo of a water vortex and the standard deviation of the resulting errors was found. Real 

vortices are never perfectly symmetrical or vertical even if they are in a reasonably steady state. 

Thus a computer routine is used to combine the left arm and the mirror image of the right arm of 

the vortex into two symmetrical arms. The corresponding marks on the left and the right arm are 

then considered as the diameter of the disk at the given height of the vortex.  

 

The diameter of a sphere is distorted on photographs, therefore another routine is used to correct 

this. Yet another routine is used to correct the distortion due to the light refraction on the boundary 

between air and water. Photographs, being two-dimensional projections of three-dimensional 

objects, distort shapes in other ways than mentioned above. Therefore a three dimensional solid 

model of the irrotational vortex in the ideal fluid was machined and photos of it taken with the 

camera at various elevations and angles. It was found that as long as the elevations and the angles 

are within certain limits then the distortions do not affect the accuracy of Vir formula, nor the value 

of the exponent alpha. However, for some elevations and angles close to those limits some rules 

about marking the free surface on the photographs have to be observed.  

 

The coordinates of the corrected markers are used to find the parameters  and a that give the least 

sum of the squared errors. The computer routine that finds these parameters uses suitable ranges of 

both  and a as well as a suitable number of discrete points within these ranges. For each discrete 

pair (, a) the fit error is computed and the pair with the minimum error is chosen. This is repeated 

using smaller ranges of the values until the desired accuracy is reached.  
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2. Processing the Photographs of Vortices 

 

Real vortices are never perfectly vertical or perfectly symmetrical. A scheme for marking the vortex 

arms on the photographs was designed to deal with that. Using a graphics software photographs 

were sized to fit the vortex into a window of 400x400 to 500x500 pixels. A grid of 1 pixel thick 

lines, 5 pixels apart was superimposed on the photograph and markers of 3x3 pixels were manually 

placed along the edge of the vortex at intervals of 10 or 20 pixels, vertically and horizontally as 

appropriate. One arm and the mirror image of the other were used to produce the average arm, 

shown in figure 1, where the dashed line is the mirror image and the dotted line the average. The 

mirror image of the average arm gives us two symmetrical arms, in figure 2.  

 

 

 

 

 

 

 

 

 

 

 

 

FIGURE 1. Combining vortex arms       FIGURE 2. Vortex with symmetric arms 

 

In figure 3 the horizontal line at the top of the diagram represents the diameter of a disk or a 

cylinder. It is optically distorted and on a photograph appears greater than it is in reality. The light 

ray to the camera that is at the distance y0 from the centre of a cylinder touches the cylinder at a 

tangent and has a greater angle  than the line from the camera to the extreme point x of the 

cylinder. Using similar triangles with the same angle  we find the formula (2.1) for correcting this 

distortion. The formula is only approximate because it does not involve the elevation and the angle 

of the camera, however it turns out that this is sufficient for our needs.  

 

 

 

 

 

 

 

 

 

 

 

 

FIGURE 3. Tangential distortion 
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Another optical distortion is due to the refraction of light at the boundary between air and water. 

The refraction formula was first found by Snell (1591-1626), expressed using cosecants of the 

angles. These days we use mostly the sins formula due to Descartes (1596-1650), where n stands 

for the refractive index and  for the incident angle (Meyer-Arendt 1972).  

 

    )sin()sin( 2211  nn            (2.2) 

 

The refractive index n for some common media are: vacuum = 1, air = 1.0003, water = 4/3, 

spectacle glass C1 = 1.5230. These values are for the helium d line 587.6 and they vary with the 

wave length. If the boundary between the media is a plane we have the diagram in figure 4 below 

 

 

 

 

 

 

 

 

 

 

 

 

 

FIGURE 4. Refraction at a plane 

 

If we place the camera at the origin of the coordinates then for the angles  and  we have  

 

 
2

0

2

0

0)sin(
yx

x


    

2

1

2

1

1

)()(
)sin(

yyxx

xx




       (2.3) 

 

Using Descartes formula with n representing the refractive index of water we get 
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This leads to the formula for the actual distance of the point x, that appears on a photograph as x0  
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This formula is used to correct the refraction distortion when a vortex is produced in a laboratory 

using a square container. It is assumed that the transparent walls are thin in comparison to the size 

of the container and hence the diffraction due to the walls can be neglected. The profile of the 

vortex, the wall and the lens are all in parallel planes. Thus the distance x may stand either for the 

radius or the depth of the vortex, both of them may be corrected using the above formula.  

 

  



 12 Dec 2016  

5 

When a cylindrical container is used then the situation is more complicated, as shown in figure 5.  

 

 

 

 

 

 

 

 

 

 

 

 

 

FIGURE 5. Refraction at a cylinder 

 

We can no longer find a simple formula, instead we find several formulas that can be used in 

sequence to correct the distortion. Using the similar triangles with the common angle  we get 
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From the above we get the quadratic equation shown below for the unknown y1  
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The angles , , ,  and  can be obtained directly from the diagram and they are given below 
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Using a cylinder there is also vertical refraction that can be treated as the refraction in a plane, 

provided that the level of the camera is close to the top of the vortex. This is because in such 

circumstances there is little vertical refraction at the top of the vortex and the vertical part of the 

vortex is so narrow that in that range the surface of the cylinder can be considered flat.  
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3. Fitting Vir to Vortex  

 

When we have some data and a function y(x) the usual procedure to find the parameters of the 

function y(x) with the best fit to the data is to minimize the sum of the squared errors y2. The 

problem with this method is that it gives different parameters for r =Vir(z) and for z = Vir-1(r), i.e. 

when the axes are swapped. This is because the errors on the vertical section dominate the errors 

on the horizontal. The outcome should be independent of the coordinate system that happens to be 

used. We achieve this by using the distance h of the point from the curve, shown in figure 6.  

 

 

 

 

 

 

 

 

 

 

 

 

 

FIGURE 6. Distance from a Curve 

 

Using similar right-angle triangles we obtain the formula for h and the standard deviation   
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Vir can be fitted to the data by choosing suitable ranges for the parameters  and a, the number of 

discrete points in these ranges and then use a routine that finds the pair (, a) with the minimum 

sum of squared errors. Instead of parameter a one can use the distance between the top of the vortex 

and the level of Vir at infinite radius. This is easier to visualise and hence this method is used. If 

need be, one of the marker points may be chosen as the “Anchor” with zero error. Throughout this 

paper all Vir exponents  are calculated with the precision of plus-minus 0.001.  

 

The fit error  thus obtained is given in pixels which is easy to understand, but it is not a consistent 

measure for all vortices, because it depends on the size of the photograph and the corrections of 

distortions. Thus we define dimension-less quantities ,   and write Vir function (1.2) as in (3.2)  
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Quantities  and  are used for linear regression with the intercept set to zero, since (0) = 0. 

Regression parameters “R Square”, “P Value” and “Standard Error” are recorded for each vortex 

examined, as indicators of the goodness of fit. To estimate the accuracy of  the Confidence Range 

of 95% and 99.999% are also recorded.  
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4. Precision of the Method  

 

Throughout this paper the photographs shown are reduced to 220x220 pixels with enlarged markers 

for better visibility. To estimate the precision of the method employed a computer was used to print 

the outline of a 14x14 cm irrotational vortex in the ideal fluid. The printout was used to cut a 

template from a stiff sheet of paper for producing a 3D model on a wood lathe. Figure 7 shows a 

photo of the template. The coordinates of the markers were used to find the fit errors to Vir with  

= ½. A standard routine was then used to calculate the linear regression parameters (3.2), including 

the Line Fit Plot shown in figure 8.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

      FIGURE 7. Template,  = 1/2,  = 0.41 pix       FIGURE 8. Template, R2 = 0.9998, P = E-41 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

        FIGURE 9. Profile,  = 1/2,  = 0.58 pix        FIGURE 10. Profile, R2 = 0.9989, P = E-34 

 

The profile of the 3D model in figure 9 was obtained by using a carpenter’s square, a scalpel and a 

sheet of paper. The model is quite true to the template, except for the last 5 mm at the edge, where 

it deviates by about 0.5 - 1 mm. The profile is not as accurate as the template, as can be seen in 

figure 10, the standard deviations  = 0.41, 0.58 pix, as well as the regression errors ± = 0.003, 

0.007 at 95% confidence. Other regression parameters are R2 = 0.9998, 0.9989 and P = E-41, E-34.  
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The photo in figure 7 of the two-dimensional template does not suffer from any optical distortions 

that 3D objects suffer. It shows the vortex boundaries that follow a printed outline of a Vir with the 

known  and a. Thus the fit error  = 0.41 pix is entirely due to the random human inconsistency 

in placing the markers. Since this photo is clearer than any photo of the real vortices that are 

presented in this paper the lower limit of the random human error contribution to  is 0.41 pix.  

 

To estimate the upper limit of this error five people marked a photo of a water vortex that was of 

poorer quality than any of the example vortices, because the water was not very clear. One person 

marking the photo was partly colour-blind to red and another to blue. Fifteen marks were placed 

on both the left arm and the right arm of the vortex, thus the marking process generated 150 errors. 

Using the standard deviation of these errors it was found that the upper limit of the human error 

contribution to  is 0.92 pix.  

 

Thus for the example vortices in this paper the human error contribution is estimated to be the 

average of the above mentioned minimum and maximum, i.e. the contribution to  is 0.66 pix.  

 

The vortex fit parameter  is measured in pixels and hence it is easy to visualise, but it is not very 

good for comparing the goodness of fit, because the photographs are not all of the same size and 

those that are have different size vortices. However, using distances h (3.1) of the individual 

vortex markers from the Vir curve one can obtain an objective measure of the fit that can be used 

for comparing different example vortices. For this purpose we define the Error Area. 

 

   Error Area = (union – intersection) of the vortex and Vir profiles       (4.1) 

 

The Error Area can be closely approximated by the narrow strip enclosed by the line of straight 

segments connecting the vortex markers and the line of the corresponding straight segments on the 

Vir. This approximation of the Error Area can easily be computed at the same time as the standard 

deviation . The Vir Area is computed using the integral of the Vir.  
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The ratio of the two areas gives us the Relative Area Error (RAE) which is an objective measure 

for quantifying and comparing the goodness of fit.  

 

    RAE = Error Area/Vir Area         (4.3) 

 

For the template in figure 7 we have REA = 0.005, which is all due to the human error in marking. 

We found above that the human error contribution to  is 0.41 pix for the template and 0.66 pix for 

real vortices. i.e. approximately in the ratio 2:3. Thus if all Vir Areas were the same as for the 

template then the contribution of the human error to REA would increase proportionally from 0.005 

to 0.0075. It turns out that the Vir Area for the example vortices is always less than for the template 

and thus the contribution of the human error to RAE is always greater than 0.0075.  

 

 For real vortices the minimum contribution of human error to RAE = 0.0075      (4.4) 

 

If we subtract the above value in (4.4) from RAE for the example vortices we get the RAE values 

that would be obtained in the absence of the random human errors.  
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5. Solid Model of Irrotational Vortex  

 

In addition to the distortions already considered, the photographs can be distorted due to the level 

and the angle of the camera. To find this distortion and the ways of preventing or correcting it 

photographs of the solid model of the irrotational vortex were used. When the camera is at an angle 

greater than 15 degrees then the photos become too distorted, the simple tangential correction (2.1) 

is insufficient and we get  < 0.45. The photos of such examples are not shown. However, when 

the angle is less than 5 degrees and the camera is level or just below the top of the model then the 

error in  is quite small, as in the case of figures 11 and 12. In this case the top of the model is a 

bit distorted, because the camera was a bit too much below the level of the top.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

       FIGURE 11. Model A,  = 1/2,  = 1.15 pix       FIGURE 12. Model A, R2 = 0.9944, P = E-26 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

       FIGURE 13. Model B,  = 1/2, = 0.61 pix        FIGURE 14. Model B, R2 = 0.9996, P = E-30 

 

The camera may also be at the bottom of the model, as in the case of figures 13, 14. In this case 

only the extreme horizontal marker, which must be placed with precision, is used. It is used as the 

“Anchor”, i.e. the Vir curve is forced to go through it. The regression errors ± = 0.016, 0.005 at 

95% confidence. Other regression parameters are R2 = 0.9944, 0.9996 and P = E-26, E-30.  
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6. Examples of Water Vortices 

 

Three methods are used to produce water vortices, by rotating a disk or a ring at the bottom of the 

vessel, pumping water using two parallel tubes facing opposite directions, using coupled water 

bottles. Figures 15, 16 relate to a vortex produced by rotating a double ring with the diameter of 

4cm, hole diameter 1cm and the ring thickness 3mm. The vortex is in a square 50cm container with 

the water level at 10 cm. The walls are thus far enough to create little friction and the vortex is 

close to the ideal irrotational model, which corresponds to the Vir with exponent  = ½ .  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

     FIGURE 15. Ring,  = 0.60,  = 0.52 pix     FIGURE 16. Ring, R2 = 0.9983, P = E-28 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

       FIGURE 17. Jets,  = 0.67,  = 0.39 pix     FIGURE 18. Jets, R2 = 0.9984, P = E-21 

 

Figures 17, 18 relate to a vortex at Seaham Hall, Sunderland, UK (Pye 2000) produced by pumping 

water using two parallel jets facing each other. It operates in three cycles, with the water filling, 

overflowing and draining away. When the water is overflowing at a steady rate the vortex is quite 

stable for about a minute, during which period the photo was taken. The cylinder is large, its 

diameter is 2.2m and height 2.3m. There is enough difference in the angular velocity at the bottom 

and the top to cause a screw-like shape of the vortex. For the two examples the errors ± = 0.012, 

0.015 at 95% confidence. Other parameters are R2 = 0.9983, 0.9984 and P = E-28, E-21.  
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Figures 19, 20 relate to a vortex produced using two plastic one litre water bottles that are joined 

at their necks, filled with a bit less than one litre of water in all. The water is given some angular 

momentum by a circular movement using hands and then the bottles are placed in a holder to keep 

them steady. The flow of water is restricted by inserting a ring with the hole of 1cm in diameter 

where the bottles are joined. This makes the vortex last a bit longer, about 30 seconds.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

    FIGURE 19. Bottles A,  = 0.65,  = 1.04 pix  FIGURE 20. Bottles A, R2 = 0.9965, P = E-20  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

    FIGURE 21. Bottles B,  = 0.77,  = 1.25 pix  FIGURE 22. Bottles B, R2 = 0.9964, P = E-18  

 

Figures 21, 22 relate to a vortex taken at almost the same water level, but three minutes before the 

previous example above. The water level visibly decreases thus the vortices are semi-stable. 

However, they are not in the process of rising or decaying and hence satisfy the Vir formula quite 

well. The value of  depends mainly on the initial momentum. The difference of the angular 

velocities at the bottom and at the top results in a screw-like shape of the vortex vertical part, which 

affects figure 22 more than figure 20. For the two examples the errors ± = 0.022, 0.027 at 95% 

confidence. Other regression parameters are R2 = 0.9965, 0.9964 and P = E-20, E-18.  
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Figures 23, 24 relate to a vortex produced by rotating a disk close the bottom of the cylinder. The 

disk doesn’t have a hole at its centre and without it the air cannot circulate so that we cannot see 

any bubbles rising, which are seen in figure 15. The height of the cylinder is 20cm, the inner 

diameter at the top is 11cm and at the bottom 10cm. Figures 25, 26 relate to another such vortex, 

with the cylinder height 15cm, the inner diameter at the top 14.5cm and at the bottom 13.5cm.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

      FIGURE 23. Disk A,  = 0.89,  = 0.82 pix    FIGURE 24. Disk A, R2 = 0.9993, P = E-22  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

       FIGURE 25. Disk B,  = 2.49,  = 0.81 pix    FIGURE 26. Disk B, R2 = 0.9995, P = E-19  

 

In both cases the gap between the disk and the wall is only about 1mm, hence there is more friction 

at the wall than in the previous examples resulting in the higher values of . There is no screw 

effect in figure 25, possibly because the cylinder is low and hence the difference between the 

angular velocities at the bottom and the top is small. The plot in figure 26 is in the negative quadrant 

of the coordinates. This is because all values of z, r are smaller than the Vir parameter a, which is 

a bit greater than the radius of the cylinder. The origin of the coordinates is level with the Vir at 

infinity, which is about distance a above the top marker. The regression parameters for the two 

examples are ± = 0.014, 0.036 at 95% confidence, R2 = 0.9993, 0.9995 and P = E-22, E-19.  
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7. Examples of Air Vortices  

 

Air vortices are created from the mist produced by ultrasonic vibrations in water. The mist is 

pumped into the bottom of the box and sucked out through the ceiling. The box has a square 

footprint 40x40cm, is 30cm high and has 1cm wide vertical slits in each corner. The slits are 

asymmetrical, offset in a way that the air sucked into the box acquires angular momentum. The 

circular hole in the bottom has a diameter of 30cm and in the ceiling 4cm. The speed of the fans 

pumping the mist in and sucking it out has to be set at the start, so that the volume of mist in the 

box increases very gently, since any change afterwards disturbs the vortex and distorts it shape. 

Figures 27, 28 relate to one such vortex, figures 29, 30 to another taken two minutes earlier.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

     FIGURE 27. Mist A,  = 0.75,  = 1.70 pix   FIGURE 28. Disk A, R2 = 0.9966, P = E-16  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

     FIGURE 29. Mist B,  = 0.98,  = 1.53 pix   FIGURE 30. Disk B, R2 = 0.9978, P = E-17  

 

Because the volume of the mist in the box always visibly increases the vortices are semi-stable, 

slowly changing their shape all the time. However, they are not rising or decaying and the small 

end touches the ceiling, therefore they satisfy the Vir formula quite well. The errors ± = 0.028, 

0.030 at 95% confidence. Other regression parameters are R2 = 0.9966, 0.9978 and P = E-16, E-17.  
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8. Regression Analysis 

 

The parameters for the linear regression  =  (3.2) with zero intercept are shown in table 1.  

 
Figure Vortex 

Name 


Value

± 

@95% 

@95% 

± 

99.999% 

R 

Square 

P 

Value 

Points 

Used 

STD 

Error 

          

Fig. 7 Template 1/2 0.003 0.60% 0.010 0.9998 E-41 23 0.010 

Fig. 9 Profile 1/2 0.007 1.40% 0.020 0.9989 E-34 23 0.021 

Fig. 11 Model A 1/2 0.016 3.20% 0.045 0.9944 E-26 23 0.047 

Fig. 13 Model B 1/2 0.005 1.00% 0.016 0.9996 E-30 18 0.013 

          

Fig. 15 Ring 0.60 0.012 2.00% 0.034 0.9983 E-28 20 0.038 

Fig. 17 Jets 0.67 0.015 2.24% 0.048 0.9984 E-21 15 0.049 

Fig. 19 Bottles A 0.65 0.022 3.38% 0.067 0.9965 E-20 16 0.051 

Fig. 21 Bottles B 0.77 0.027 3.51% 0.085 0.9964 E-18 15 0.054 

Fig. 23 Disk A 0.89 0.014 1.57% 0.046 0.9993 E-22 14 0.027 

Fig. 25 Disk B 2.49 0.036 1.45% 0.126 0.9995 E-19 12 0.030 

Fig. 27 Mist A 0.75 0.028 3.73% 0.094 0.9966 E-16 13 0.053 

Fig. 29 Mist B 0.98 0.030 3.06% 0.099 0.9978 E-17 13 0.050 

 

TABLE 1. Regression Parameters 

 

The first four rows in the table refer to the model of the irritational vortex which has ½. For the 

template the error ± is 0.003 at 95% confidence and the other regression parameters show that 

the method used provides high precision. For the examples of the real vortices the error ± is 

from 0.012 to 0.036 at 95% confidence, with the corresponding values of  = (0.60, 2.49).  

 

For each real vortex the value of  = ½ is rejected with 99.999% confidence. Figure 31 shows two 

regression line plots for the vortex in figure 15, that has the smallest best fit  of all examples. 

The first plot is for the best fit  = 0.60 and the second for the forced  = ½. This visually 

demonstrates the meaning of 99.999% confidence.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 
FIGURE 31. Regression Line Fit Plots for the vortex in figure 15, for  = 0.60 and  = ½ 
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9. Vir Parameters Analysis 

 

The Vir parameters (1.2) and the parameters indicating the goodness of fit are shown in table 2.  

 
Figure Vortex 

Name 


Value  

a
Value  

Min 

z 

Max 

z 

Vir 

Area 

Error 

Area 

RAE 

 

Points 

Used 

Error 

 pix 

           

Fig. 7 Template 1/2 72.0 9.5 400.6 20662 107 0.005 23 0.412 

Fig. 9 Profile 1/2 71.7 7.7 409.0 21164 180 0.008 23 0.578 

Fig. 11 Model A 1/2 73.1 6.6 407.0 22012 351 0.016 23 1.149 

Fig. 13 Model B 1/2 76.6 11.7 413.5 22696 235 0.010 18 0.606 

           

Fig. 15 Ring 0.60 41.7 3.7 304.5 7981 106 0.013 20 0.521 

Fig. 17 Jets 0.67 26.1 2.6 324.5 3782 102 0.027 15 0.392 

Fig. 19 Bottles A 0.65 50.1 12.4 448.9 11037 327 0.030 16 1.042 

Fig. 21 Bottles B 0.77 60.9 28.4 427.7 11688 318 0.027 15 1.251 

Fig. 23 Disk A 0.89 63.3 33.7 398.5 10627 157 0.015 14 0.825 

Fig. 25 Disk B 2.49 154.6 168.0 343.0 9243 107 0.012 12 0.809 

Fig. 27 Mist A 0.75 74.1 16.5 454.7 19498 632 0.032 13 1.700 

Fig. 29 Mist B 0.98 85.7 33.6 442.8 19033 503 0.026 13 1.530 

 

TABLE 2. Vir Parameters 

 

The vertical part of the vortex in figure 17 is like a screw while the vortices in figures 19, 21, 27, 

29 are semi-stable because the water level is decreasing or the mist volume is increasing, hence 

their RAE is at the high end. If we exclude the random human errors RAE = 0.75% (4.4) for these 

vortices we get approximately RAE = 2%. For the more stable vortices in figures 15, 23, 25 we 

get RAE < 1%, which is of the same order as for the irrotational vortex model in figures 11, 13.  

 

Figure 32 shows the Vir graphs of the vortices involved. Only six vortices are included, 

because the remaining have  very close to some already present and their inclusion would result 

in a smudge. All vortices have a = 1, since otherwise the comparison would be difficult. 

This is achieved by dividing the values of z and r by a. The bold curve, the highest on the 

plot, is for the ideal irrotational vortex with  = ½, the lowest curve has  = 2.49.  
 

 

 

 

 

 

 

 

 

 

 

 
FIGURE 32. Vir graphs for the example vortices 
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10. Summary and Conclusions 

 

1. Using regression we can say with the confidence of 99.999% that real vortices do not have the 

shape of the irrotational vortex in the ideal fluid.  

 

2. The shape of steady vortices in water and air is given by the Vir formula, where the exponent  

determines the shape and the parameter a the size. For the example vortices in this paper the range 

of the exponent  = [0.60, 2.49] while for the irrotational vortex in the ideal fluid  = ½.  

 

   Vir_













z

a
azr )(       where        0  0a    

 

3. To quantify the goodness of fit of vortices to Vir we use the Relative Error Area (REA) which 

is the fraction Error Area/Vir Area. The Error Area consists of Vir over-run and under-run areas.  

 

4. The vortex in figure 17 has a screw-like profile resulting from a large difference of the angular 

velocities at the bottom and the top of the vortex. It has REA of about 2%.  

 

5. Vortices that are semi-stable, due to changing water level or mist volume at a rate that can easily 

be visually detected, as in figures 19, 21 and 27, 29 also have REA of about 2%.  

 

6. Stable vortices in figures 15, 23, 25, where the water level or the mist volume does not change, 

have REA < 1%.  

 

7. The random human errors in marking the vortex profile on the photographs of the example 

vortices contribute to RAE by 0.75%. This error is not included in the RAE fit errors given above.  

 

8. The Vir formula does not apply to vortices during their rise and decay, i.e. during the stage when 

their shape is changing rapidly and substantially.  

 

9. The Vir formula also does not apply to vortices that end in a sharp point instead of reaching a 

solid surface with the narrow end, even if they are reasonably steady.  

 

10. From the above we conclude that the Vir formula should apply to tornados and hurricanes which 

touch the ground. However, this has not been verified since the author was unable to find 

photographs where the upper parts were not obscured by the foreground or background clouds.  

 

11. If a way could be found of determining the Vir parameters for tornados and hurricanes then one 

could calculate their volume, mass and moments of inertia more precisely.  

 

12. It may be possible to adapt the Euler equations of motion for solid spinning tops in fluids to  

work out the trajectories and energies of tornados and hurricanes more precisely.  

 

13. It will be shown shortly in the paper entitled “Shapes with the Minimum Moment of Inertia” 

that the solid of rotation generated by the Vir function has the minimum moment of inertia of all 

concave spinning tops, i.e. that vortices give least resistance to spinning.  
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