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Abstract. The political attitude and the ideology of a vesynall elite of
physicists (Niels Bohr, Werner Heisenberg, Max Bard giew other) played a
major role in the construction of the Copenhagerrpretation of quantum
mechanics in the 1920s. Lastly, the hegemonic srahdcausal Copenhagen
Interpretation of quantum mechanics abandoned thmeiple of causality in
guantum mechanics and opened a very wide door sticigm, logical fallacies
and wishful thinking in physics and in science ashs Historically, the Second
International Congress for the Unity of Science (Cdagen, June 21-26,
1936) tried to solve the problem of causality wittphysics but without a
success. Thus far, 80 years after the Second httemal Congress for the
Unity of Science this contribution at the Linnaddisiversity in 2016 in Vaxjo
Sweden will make an end too Bohr's and Heisenbdagsa of non-causality
within quantum mechanics and re-establish the tncesd validity of the
principle of causality at quantum level and undamditions of relativity theory
by mathematizing the relationship between causeeffiedt in the form of the
mathematical formula of the causal relationship Ik. contrast to Bohr,
Heisenberg and other representatives of the Copenhatgrpretation quantum
mechanics, a realistic interpretation of quantureotii grounded on the
unrestricted validity of the principle of causalityill expel any kind of
mysticism from physics and enable a quantizatiothefgravitational field.
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1 Introduction

The theory of causality is deeply connected withi anderstanding of objective
reality, the causal investigations and the explamyambitions of objective reality
especially by physical sciences.

1.1 Causality and philosophy

A good deal of the theoretical work in the theofycausality has been developed by
several, well known philosophers. One of the filstumented attempts to present a
rigorous theory of causation came from the Gredlopbpher and scientist Aristotle
(384-322 BC). Aristotle developed a theory of céitysaommonly referred to athe
doctrine of four causesMany aspects and general features of Aristotlédgjical
concept of causality are meanwhile extensively aritically debated in secondary
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literature. Among other outstanding authors whok&dron the problem of Causality
David Hume is still present. Hume's (1711-1776)pskal conception of causality is
commonly known athe regularity theory of causatioAccording to Hume [1],

“we may define a cause to lmn object, followed by anotheand where all the
objects similar to the first are followed by obsimilar to the second. Or in other
words whereif the first object had not been, the second neeer existed

Roughly speaking, Hume’'s understanding of causaitgrounded on theost hoc
ergo propter hoc fallacyA day follows the night but because of this tlag & not the
cause or a cause of the night and vice versa. Huola@m that “if the first object had
not been, the second never had existed” is widegduas the foundation of the
counterfactual analysis of causation (i. e. Davivls [2]). Paul-Henri Thiry, Baron
d'Holbach (1723-1789), a philosopher of the FreBolightenment, notorious for his
atheism and criticisms of Christianity, developedis philosophical writings an one
sided, mechanistic and deterministic theory of aftys in which causality is
grounded on an uninterrupted succession of causksféects.

“L'univers, ce vaste assemblage de tout ce quitexise nous offre partout que de
la matiére et du mouvement : son ensemble naes montrequ’une chaine
immense et non interrompue de causes eetbBefijuelques-unes de ces causes
nous sont connues ... d’autres nous sont ingsn.” [3]

In broken English:

“The universe, that vast assemblage of every thiag exists, presents only matter
and motion: the whole offers to our contemplatioothing but an immense, an
uninterrupted succession of causes and effeotag of these causes are known to us
... others are unknown to us”

d’Holbach links cause and effect to changes as:such

“Une cause, est un étre qui en met unea@n mouvement, ou qui produit
qguelgue changement en lui. L'effet est learement qu’un corps produit dans
un autre a I'aide du mouvement.” [4]

In broken English:

“A cause is a being which puts another in motianwhich produces some change in
it. The effect is the change produced in one bdmythe motion or presence of
another.”

The 19th Century German philosopher, G.W.F. Hej@r0—1831) provided a very
abstract and idealistic philosophical account &f trature of causality [5] while
relying on the dialectical method.



“Daher hat zwar die Ursache eine Wirkung, und iggleich selbst Wirkung, und die

Wirkung hat nicht nur eine Ursache, sondern isthaselbst Ursache. Aber die

Wirkung, welche die Ursache hat, und die Wirkung, sle ist — ebenso die Ursache,
welche die Wirkung hat, und die Ursache, die gie, isind verschieden.” [6]

In broken English:

,Therefore, though the cause has an effect antltieeasame time itself effect, and the
effect not only has a cause but is also itself eayst the effect which the cause has,
and the effect which the cause is, are differestare also the cause which the effect
has, and the cause which the effect is.

Some other authors (e.g. Reichenbach [7], SuppksS@mon [9]) preferred a
probabilistic approach to the theory of causat®tiehle himself is following Hegel.
“Eine Einheit von Gegensétzen verkorpert die Bamighvon Ursache und Wirkung
..." [10]. Baruki¢ is of the position that the dualism and unity kedw cause and
effect is the foundation of the relationship betweause and effect. “Ohne einander
kein Gegeneinander. Ursache und Wirkung bildenrimale dieses Zusammenhangs
Gegenséatze." [11] We shall not discuss neitheretimes other best known theories of
causality in detail. Still, the relationship betweeause and effect is not solved,
neither philosophically nor mathematically. The aiofi this publication is to
characterize the relationship between cause aretteffhile using the tools of
probability theory. The motivation for probabilstapproaches to causation is of
fundamental and far reaching importance, since sarthapproach, if successful,
would be compatible with quantum theory while aghig a closer match with
commonsense judgements about causation too. Tieenmt to analyze and
understand causation in terms of probability thecaynot be successful without
addressing a couple of preliminary issues. Whatésause or what is the cause, what
is an effect or what is the effect? In principleayran effect occur in the absence of a
cause? And the other way, may an effect fail taunaethe presence of a cause? In
so far, what does constitute a causal relafo@n the other hand, if it is unclear
what does constitute the causal relation, canamgwver the questionyhat does
not constitute a causal relatiorCan a cause as such be independent fraowits
effect and vice versa, under conditions wharéeterministic causal relationship
assumed?

1.2. Causality and mathematics

The concept of independence is of fundamental itapoe in probability theory and

in science as such. Historically, the mathematicahcept of independence is
backgrounded by De Moivre too. De Moivre defirindependence of events in the
following way.



“Two Events are independent, when they have noedon one with the other, and
that the happening of one neither forwards ntistructs the happening of the
other. Two events are dependent, when they sar connected together as that the
Probability of either's happening is altered by thappening of the other.” [12] In
last consequence, De Moivre mathematizes indepeederthe form of an example
as follows:

“those two Events beinigdependentthe Probability of their both happening will
be 1/13 x 1/13 = 1/169" [13]

In the following, one of the first detailed mathdial trials to mathematize co-
relation can be ascribed to the French physicisgjuste Bravais [14],[15] (1811-
1863), Francis Galton (1822 — 1911), the 1909 keigiicnglish Victorian statistician
and anthropologist, and at the end to Karl Pea$867 — 1936). In fact, following
Karl Pearson himself Bravais developed a complaetory of correlation. “The
fundamental theorems of correlation were for thst fime and almost exhaustively
discussed by BRAVAIS (‘Analyse mathernatique s peobabilités des erreurs de
situation d’'un point.” Mémoires par divers Savahs)X., Paris, 1846, pp. 255-332)
nearly half a century ago. He deals completely wli#h correlation of two and three
variables.” [16] Pearson's alternative mathemati@atount to non-causation is
presented especially by his publication of the @ation coefficient [16], first
conceived by Francis Galton [17], and Person’s ipabbn of the mean square
contingency [18] as
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introduced by Pearson as a response to Yules [4€jction of two attributes.
Pearson’s ongoing battle against causation wasvatetl by the goal to exterminate
any kind causation from statistics and science wh.sAltogether, according to
Pearson, “We are now in a position, | think, to r@gfate the scientific value of the
word cause. Scientifically, cause ... is meanirgle$ [20]. In general, “there is ... no
true cause and effect” [21]. The reader who i¢ stit hardly impressed by Pearson
denial of any kind of causation, may consider Rmassconcept of causality as
follows. “No phenomena are causal”’ [22]. Finally,he wider view of the universe
sees all phenomena as correlated, but not causédhed.” [23] Thus far, for Pearson,
causation is not the major issue and Pearson'apprthe problem of causation can
be summarized by his demand that “... there is@aton but not causation.” [24].
Pearson’s methodological reductionism of caosato correlation became a
heritage of modern statistics and mathematicd &ad some crucial
epistemological and ontological implications. Geatems of scientists,
mathematicians and philosophers were influenced&grson’s rejection of any
kind of causality and the substitution of causatlyy correlation. In summary,
Pearson's very transparent and dogmatic hostitityatds causation is derived



from his own philosophical point of view and stibt abandoned by mathematics
and statistics. “Pearson’s philosophy discouraged from looking too far behind
phenomena” [25]. In particular, neither Pearsowsaation coefficient nor his mean
square contingency can be regarded as the matlam&drmula of the causal
relationship k. Pearson failed to provide or toiweml self-consistent mathematical
proof of a mathematical formula of the causal refeghip [26]. Meanwhile many
publications demonstrated that correlation is dentical with causation. One of the
many very convincing [27], easy to read and yebirative contributions to this topic
was published by Sober. The sea levels in Venicktlam bread prices in Britain have
increased steadily with time with the consequer@ higher than average bread
prices tend to be associated with higher than geesaa levels. Sober found a highly
significant correlation between the sea levels ienide and the bread prices in
Britain, in other words a highly significant comébn between two causally
independent processes. Finally, the fundamentalhenadtical and historical
breakthrough in the concept of independence anftrute mathematical foundation
of causality can be ascribed to the measure-thiearentributions to the mathematics
of probability theory by the 20th-century Russianathematician Andrei
Nikolajewitsch Kolmogorow (1903-1987). In fact, ig insightful to view some of
Kolmogorow's theorectical approaches to the conoéjridependence. “The concept
of mutual independence of two or more experimemtld) in a certain sense, a
central position in the theory of probability.” [R&nd rightly too. However,
Kolmogorov's axiomatization of the Theory of Prottigbis a cornerstone of the
assimilation of measure theory to probability thedrhe concept of independence is
still of strategic and central importance. “In cegsence, one of the most important
problems in the philosophy of the natural scierisesin addition to the well-known
one regarding the essence of the concept of priityaitéelf - to make precise the
premises which would make it possible to regard a@iyen real events as
independent.” [29] Thus far, neither Heisenbergeartainty principle, nor Bell's
theorem nor CHSH-inequality have refuted the law infependence [30] of
probability theory or Kolmogorov's probability calas.

1.3. Causality and physics

At least the law of independences the point where (quantum) physics meet
probability theory and vice versa. According tom$ein, the law of independence is
the foundation of physical sciences. “Ohne dien#&mme einer ... Unabhéangigkeit
der ... Dinge voneinander ... ware physikaliscHgsnken ... nicht mdoglich.”
[31] Einstein’s position in broken English: “Withbuthe assumption of ...
independence of ... things from each other ... igayshinking ... is not possible.”
Einstein is elaborating on the principle of loocalds follows: ,Fir die relative
Unabhangigkeitraumlich distanter Dinge (A und B) ist digee characteristisch:
aussere Beeinflussung von A hat keinen usthdten Einfluss auf B; dies ist
als «Prinzip der Nahewirkung bekannt, das nur in der Feld-Theorie koueat]
angewendet ist. Voéllige Aufhebung dieses Grutmsa wiirde die Idee von der
Existenz (quasi-) abgeschlossener Systeme ardit ddie Aufstellung empirisch



prufbarer Gesetze in dem uns gelaufigen Sinmendglich machen.” [32] In
broken English: ‘For the relative independence pdtislly distant things (A and B)
the following principle is characteristic: any extal influence of A has no direct
influence on B; This is known as a ‘principle ofcédity’ which is only applied
consistently in field theory. This principle comgly abolished would disable the
possibility of the existence of (nearly-) closedsteyns and the establishment of
empirically verifiable laws in the common sense fulther position Einstein’s on the
principle of locality is the following: “But on @ supposition we should, in my
opinion, absolutely hold fast: the real factsituation of the system S2 is
independent of what is done with the system Bhich is spatially separated from
the former.” [33] Einstein is linking the principlef locality to the law of
independence of probability theory. Due to Einstdinth are identical. However,
Heisenberg's uncertainty principle, endorsed eapigdiy the founding fathers of the
so-called Copenhagen interpretation of quantum en@ch, Bohr, Born and other
plays an important role in many discussions on tieoretical implications of
guantum mechanics. In particular the consistenaph®fprinciple of causalitys one
striking aspect of Heisenberg's uncertainty prilecgnd the Copenhagen dominated
guantum mechanics. According to Heisenberg andohis uncertainty principle,
guantum mechanics has refuted the principle of alaysdefinitely. “... so wird
durch die Quantenmechanik die Unglltigkeit des ldlesetzes definitiv
festgestellt” [34]. Bohr supported Heisenberg'sifims In fact, Bohr in his striving
to find a common ground for a causal descriptianpfioysics and our knowledge in
general, addressed the assembly of scientists lyam#ing that the “so-called
indeterminacy relations explicitly bear out the itation of causal analysis“[35] In
fact, a characteristic feature of Bohr's point @w and his special account of the
principle of causality is the demand that “physicdorces us to replace ... causality
by ... complementarity” [36] Deep doubts about tidimited validity of the principle
of causality were implied by the Copenhagen dorethahterpretation of quantum
mechanics. Historically, a so-call&@kcond International Congress for the Unity of
Scienceorganized in Copenhagen (June 21-26, 1936) wasated to the problem of
causality in physics but did succeed to find a tofu “The Second International
Congress for the Unity of Science was to deal pryymaith the problem of
causality“[37] Under these circumstances, we atedavith the necessity of a radical
revision of the foundation for explanation and diggmn of natural phenomena.
Among Einstein and many others too, Hans Reichdnl{a891-1953) states this
straightforward as “Quantenmechanik haf, authot zu Zweifeln an der
unumschrankten Giltigkeit des Kausalprinzigsfuhrt* [38] Independent of
Heisenberg’'s uncertainty, Bell's theorem too exelctausality. “The paradox of
Einstein, Podolsky and Rosen was advanced as amarg that quantum mechanics
could not be a complete theory but should be Isupgnted by additional variables.
These additional variables were to restore toltkery causality and locality ... Itis
the requirement of locality ... that creates theemsal difficulty .” [39] Indeed, in
theoretical quantum mechanics, principles and #mer (no-go theorem) like
Heisenberg's uncertainty principle, Bell's theoré¢he CHSH inequality et cetera
state with respect to the principle of causalitg demanding that a deterministic
relationship between cause and effect is physically possible. Today, these
guantum mechanical no-go theorems are alreadyjatbbefore the level of accepted



wisdom. Just a minority of dissenters try to digptitese no-go wisdom. In particular,
wrong scientific positions shouldn't make it thrbugjstory. Today, the refutation of
the main no-go principles of the Copenhagen dorathatterpretation of quantum
mechanics like Heisenberg's uncertainty principi®][41],[42] Bell's theorem
[43],[44] the CHSH inequality [43],[44] are simplgeing ignored or not being
referred to by scientists. Thus far, a solutiontloé problem of a deterministic
relationship between cause and effect at quantuai ig not in sight. With regard to
new conclusions and insights, this paper is orgahias follows. In the section,
Material and methodd will give some basic quantum mechanical andheiatatical
definitions and a terminological distinction onlg much as is necessary for a better
understanding of this paper due to the immense atwofuliterature known. In the
section,Axioms | will introduce the most simple and the mosttedag fundamental
statements which are taken to be true without amthér proof and which equally
serve as the starting point from which the theorantke section Results are logically
derived. It is important to note that an axiom mesystem may be only a theorem in
another system and vice versa. The relationshigvdmt cause and effect will be
fused into a single mathematical formula while gsiine language of quantum theory
and equally following a deductive-hypothetical aggarh. In the sectioB@iscussion
the meaning of the result and the relationshipotaceete problems will be discussed.
In the following of this investigation | will restt myself to a one-dimensional
treatment and the discrete case in order to dexrb@samount of notation needed,
since in all cases, whether the observable hassereté or continuous set of
eigenvalues, the generalization to four (i.e. quantmechanics) or n-dimensions (i.e.
quantum field theory) will be equally simple.

2 Material and methods

2.1 Definitions

Definition 1. Bernoulli trials

A Bernoulli trial (or binomial trial) denotes a @am experiment with exactly two
possible outcomegither a concrete eigenvalu@ not a concrete eigenvalue i. e. all
but the concrete eigenvalue. The mathematical flizateon of the Bernoulli trial is
denoted as the Bernoulli process. A random expatimmay consists of performing n
Bernoulli trials, each with the probability;a} as associated with the eigenvgkuei.
e.itist=+1, ..., +N.

Definition 2. Bernoulli observable

Let a Bernoulli random variable or a Bernoulli ghan mechanical observable be
associated with a quantum mechanical operator. thet Bernoulli quantum
mechanical observable be determined by the fadttbigasame observable can take



only two eigenvaluesither+1 or +0 associated with some adequate probabilities and
eigenfunctions.

Property. In the language of set theory we obtain §&.={+0, +1}.

Definition 3. The expectation value of an effect

Let ;& (an effect) denote an eigenvalue of a quantumreabiegE;.. More precisely,
let rE; denote the set of all possible eigenvaleeat one single Bernoulli trial t, i. e.
all possible outcomes of a measurement. LgEfE@enote the denote the expectation
value of the quantum observahlg. Let W(gE;) denote the wave function gi;. Let
WHRE,) denote the complex-conjugate of the wave functibgE,. Let c(e) denote
the complex coefficient as associated with the reighie ;e while satisfying some
normalization condition. Let *(;et) denote complex conjugate of the complex
coefficient as associated with the eigenvatud_ et |)(je) denote the eigenfunction as
associated with an eigenvaljge while satisfying some normalization condition. Let
Lp*(jq) denote complex conjugate of the eigenfunction agsociated with the
eigenvalueje, while satisfying normalization. Let j8) denote the probability as
associated with the eigenvaly® Let Efe) denote the expectation value of an
eigenvaluge. Leto(je)? denote the variance of an eigenvabyel et o(je) denote the
standard deviation of an eigenvajeieln general, it is

E(ia)= ex i, g)= € &% & ¢ =0 o 20 (e (o )eul ) (2)

Properties.
Under conditions where jg) = 1 it is E(e) =;&. Further, from the definition above it
follows that

3)

According to mathematical statistics, the prooffollowing relationships can be
found in literature. In general, it is

E(e?)=d )% &x e, §=u(; g% Bxw(i p= e (p) (4)

The variances(je)? of an eigenvalug, follows as
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From this relationship, the eigenvaleecan be derived as
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while the standard deviatiar(je)) of an eigenvalugs, is defined as

G(iet)zi/(iqzx . e))_(i ex b té)z zf/J [éx( b )3’(( -1 (p, )‘}) (8)

The definition of variance leads to the equatiaat th

E(,¢%) = ¢) +o(, ¢ 9)

=1 (10)

=1 (11)

The probability p€) as associated with an eigenvajgecan be calculated in general
as
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or with respect to the Chebyshev's inequality [@$]
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while the associated eigenfunctigije) follows from the relationship

p(ia)=uw( e)xw( g)=* (14)

as
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Definition 4. The expectation value of a cause

Letic; (a cause) denote an eigenvalue of a quantum dadsderyC,. In particular, let
oC: denote the set of all possible eigenvalgeat one single Bernoulli trial t, i. e. all
possible outcomes of a measurement. LeiCEE(denote the denote the expectation
value of the quantum observal€,. Let W(oC,) denote the wave function gC..
Let Y{,C,) denote the complex-conjugate of the wave functibrn,C. Let c(c)
denote the complex coefficient as associated wigheigenvaluegc; while satisfying
some normalization condition. Let(g,) denote complex conjugate of the complex
coefficient as associated with the eigenvatud_et i(ic;) denote the eigenfunction as
associated with an eigenvalige while satisfying some normalization condition. Let
W'(ic) denote complex conjugate of the eigenfunction aasociated with the
eigenvalue;c, while satisfying normalization. Let pf) denote the probability as
associated with the eigenvalue Let E(c) denote the expectation value of an
eigenvaluec,. Leto(ic)? denote the variance of an eigenvatuel et o(ic;) denote the
standard deviation of an eigenvajgeln general, it is

E(,q)=c(i¢)x ex¢( )=w( Ox v ( 9= = p ¢ (16)



Properties.
Under conditions where gf) = 1 it is E(c) = ic. According to mathematical
statistics, the following relationships are proogsdcorrect.

E(,6%)=c( )%, ¢x ¢ €)=w( &% Exw'( 9= &éx b9 (17)
The variance of an eigenvaligefollows as
o(ic) =E(¢?)-E( ¢)=( ¢ 9)-( o .9) (18)
which is equivalent with
o(ia) =(16*xp(i¢))=( ex i 0) = €x( 8 9x(* 6.9)) (19)

From this relationship, the eigenvalgecan be derived as

‘C‘ ( )2 = C(Q) (20)
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while the standard deviation of an eigenvatués defined as
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Definition 5. The co-variance of cause and effect

The covariance of two different eigenvalygsind;e, denoted by(ic; , j&), is known
to be defined as

o(ice)= ey 8)-( & 9% € .9)=(( o b oo (e (R)p<( e (0l (22)

where E{: , j&) denotes the expectation value of the two diffeeégenvaluesc; and
j&. This equation can be simplified as

ofiea)=(i e e)<( i er @)= b9 b} (23)



where p{; , j&) denotes the joint probability function betweére eigenvalueg: and
ije. The joint probability function between the eigahues;c; and;g can be equal to
zero. From this relationship, the product of thgeavaluesc; and;g can be derived as

o)< ) 24)
It is easy to extend these definitions to n-dimemnai cases.

Definition 6. The causal relationship k(c, i&)

The deterministic relationship between cause afecefeven at quantum level) is
determined by the mathematical formula of the clanetationship ki, ie) as

oW
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Definition 7. The commutation relation

Today, the Copenhagen dominated interpretation wwntum mechanics, mostly
regarded as synonymous with indeterminism, has doaseumerable problems to
scientist and challenges at least our imaginatiofiact, the question of what kind of
reality the Copenhagen dominated interpretatiorqudintum mechanics describes,
however, is controversial. In particular, one piltd the mathematical formalism of
the Copenhagen dominated interpretation of quantueechanics ishe canonical
commutation relationwhich is attributed to Max Born [46]. The canonica
commutation relation is by definition such that

. h
[ )=l

(26)

where X denotes the position operator, p denotesntbmentum operator, i is the
imaginary unit, h denotes Planck's constant whitkenotes the mathematical constant
pi. The Copenhagen dominated interpretation of swrarmechanics reduces more or
less the whole quantum mechanics to the relatipndbetween position and
momentum and forces us to study objective realitly ahrough this one and only
scientific eye. The implications of the at leastsmme extent unfair Copenhagen
dominated monocular vision (loss of one scientfye) of objective reality has raised



many questions about the basic concepts of obgctality and especially abotlite
principle of causality In the land of the blind, the one-eyed scientisty be a king.
Still, the one-sided and restricted Copenhagen dated approach to objective reality
is neither necessary nor mathematically the onbsitbe way, how to see the world’
Finally, a radically different perspective is posédve try to assure compatibility
between quantum mechanics and general relativityr fthe beginning. Thus far, we
define a quantum mechanical operator of curvatdemoted as C, of preliminary
unknown (mathematical) structure. Further, we defiquantum mechanical operator
denoted as E, of preliminary unknown (mathematictucture. In this way, the
following relationship may hold:

C=C=C+0=C X+ X (27)

where C denotethe quantum mechanical operator of curvatamed X denotes the
position operator. We define tlmti operatorof the position operator X, denoted as
X, (the'local hidden variablebf X) such that

X=C-X (28)

In other words, there is no third between the pmsibperator X and the anti position
operator _X, a third is not given (Aristotle’s pripe of the exluded middle
(principium exlusii tert)). In the context of the curvature operator Chalt X is
regarded as X. We obtain

C=X+X (29)
The commutation relation changes to
_h
[Crl= g (30)

where C denotes the curvature operator, p denbg&esnbmentum operator, i is the
imaginary unit, h denotes Planck's constant whitkenotes the mathematical constant
pi. In other words, it is

h

[(x+X).p]=ix5 (31)
In the same respect, we define a quantum mechapeahtor E such that
E= p+p (32)

where p is the momentum operator and p denotearitienomentum operator. Under
conditions of general relativity mattemfmenturn causes space-time how to curve
(curvature while curved space-timecy(rvaturg causes matter how to move
(momentumwhich is the epistemological background of thgimgcurvature equals
momentum and vice vers@his principle is valid under conditions of quamt
mechanics too. Thus far, the general relativity patible commutation relation
follows as



[C.8]=[(x+X).(p+ )] = " (33)

2xTT
In fact, only under conditions, where thati position operatoX = 0 and where the
anti momentum operatop=0 we obtain the one-sided and restricted Copgerha
dominated view of the world as

[C,E]:[(X+X7:0),(p+pi(ﬂ:[X,d: x

but not in general. The question is, what is theccete mathematical structure of the
operators C and E. In the following lines of thappr, the operatd@ may denote a
cause while the operator E may denote an e#feqiostulated before.

h
2%

(34)

Definition 8. The wave function

Let f(oC;) denote any kind of a (complex, composite et egterathematical function
of preliminary unknown properties. In this contettte element,C; is called the
argument of the (mathematical) function f. For eacjumentsC;, a corresponding
function value y in given and abbreviated such that

y=f(oC\) (35)

In this context,oC; can denote (the expectation value of) a randonahig, a
(quantum mechanical) observable, a quantum mecdhlaoigerator, a tensor (of
general relativity) or any other mathematical objdet W(o,C,) denote the wave
function ofC,. In general, we define the wave function,&f as

f(oC.) C

LIJ(O(:l) = Ocl = Oclx 1= Ocle (OCI) = f (OO(:ll)x f(O Q) (36)

Remark 1Such a definition of the wave function is a theicadtattempt to provide a
contribution to solve the problems as related wile wave functions as such.
Whether such a definition of the wave function nekay sense or not is a point of
further research. The solution of the problem afseaand effect as presented in this
publication is independent of the previous defimitof the wave function. In fact, the
above definition of the wave function is followirige simple chain rulén Leibniz
(1646-1716) notation knowing to be defined somehiike

dz=—xd
dy y (37)



2.2.1  Axiom | (Lex identitatis)

+1=+1 (38)

2.2.2  Axiom Il (Lex negationis)

1oy 39
— = T00

0 (39)
2.2.3  Axiom lll (Lex contradictionis)

+0
+0

1]
+
=

(40)

3 Results

3.1 Theorem: The relationship between the complecoefficient and probability

Thesis (Claim).
In general, based on the definition before, we ialitze following relationship. It is

c(a)xw(‘q):[%"@]xé(iq)xuf(i 0 (41)

Proof by contradiction.
The starting point of this theorem is axiom I. THais it is

+1=+1 (42)



After multiplication, we obtain

clia)xc(i¢)=di¢)xc(i o= 9

c(iq)xc(ic)=w(i¢)xw ( ¢)=n ©

From this equation it follows that

cy=cla) oy Plhg)
MO Y MR Y
In other words, it is equally
o e1=¥ )y o= Pla)
() c(q) via) ¢(i¢)

Quod erat demonstrandum.

3.2 Theorem: The collapse of the wave functioW(oC;)

Thesis (Claim).
In general, the collapse of the wave function iedained by the equation

(C(iQ)xw(iQ)):q”(o Q)X(l—W]

Proof by contradiction.

(43)

(44)

(45)

(46)

(47)

(48)



As a starting point in understanding the collapg¢he wave function of quantum
mechanics, we start with axiom I. Thus far, it is

+1=+1 (49)
After multiplication by the wave function, we oltai
+1xW(,C)=+1x¥(, G) (50)
or
W(6C)=%¥(oC) (51)

According to the so-callegxpansion postulatea fundamental postulate of quantum
mechanics, the equation before changes to

W(oC)=(c(,c)xw(,q)*+(d,q)xw(,¢)+( ¢ Jxw(s )+ (52)

which can be simplified as

W(oC)=(czc)*w(10))+(d. &) xw(. Q) +( €2 9xw(, )+ -

(53)

W(eC)= (c(ia)xw(,q))+ (6 9xw(,9)

where c(c,) denotes the complex coefficient of aptj and Q(,¢;) denotes the anti-
eigenfunction. Rearranging equation before yields

c(.0) 0 (.c) ]
(sC) | (,C) 8 wio) &9

In other words, it is



=i (55)
o
(c(lct)xwuct)):w<oct)x[1—(°‘l°"x”’(lq”] 56)
Quod erat demonstrandum.

Remark 2The term
(c(ic)xw(;q)) (57)

denotes the situation after the collapse of theewfanction ¥(oC,), while the wave
function itself denotes the situation before thibapse of itself into an eigenvalue and
an eigenfunction. Under some circumstances, thiepse of the wave function may
pass over into the Lorenz transformation as

(1_(0(1‘31)’“1’(10[))} _1- 2 (58)

¥(oC)

The notioncollapse of the wave functiaa discussed by philosophers since ancient
times under the notion negation or negation ofriagation.

3.3 Theorem: The expansion postulate of the wavenction W(rE;)

Thesis (Claim).
In general, the generic stat§rE;) can be expressed asw@perposition of eigenstates
Y(ie). In other words, every wave functidb(rE;)) can be expanded as a series



involving all of the eigenfunctionsj(;e) of an operatogE; (the expansion postulate)
such that

i=+N

W(cE)=2 (c(ie)xw( ¢)) (59)

i=+1

Proof by contradiction.
Again, we start with axiom I. Thus far, it is

+1=+1 (60)

After multiplication by the expectation value, wetain

+1xE(r E)=+1x H E) (61)

or

E(xE)=E(:E) (62)

According to mathematical statistics and probabiltheory, this equation is
equivalent with

E(rE)=E(,e)+ H,¢)+ B, 9+ . (63)

Multiplying equation by the expectation valugeg(of particular eigenvalug, by the
associated eigenfunctiap(;e) without changing the equation before it followeait

Jleogfd e oitd) e

~

=(o5)=| El.e) e

~

or that

SRR e

Due to our general definition ofie = E(e)/ (&), the equation before changes to




C(RET)X‘P(RE[):(dlq)XlJJ(l ))"'( ¢. 9xu(, 9)*’( € gu(s t)%"' (66)

Especially under conditions wheregrE()=1, the expansion postulate of the wave
function follows as

W(E)=(c(a)xw(.e))+( €. xw(, 9)+( € gxuw(, P+ (67)

or as

i=+N

W(cE)=2 (c(ie)xw( ¢)) (68)

i=+1

Quod erat demonstrandum.

3.4 Theorem: The determination of the complex cdiécient c(ic,)

Thesis (Claim).
In general, the complex coefficient as associateth whe eigenvalugc, can be
calculated as

c(lct):%xm(lq) (69)

Proof by contradiction.
Again, we start with axiom I. Thus far, it is

+1=+1 (70)
After multiplication by the complex coefficient,c{), we obtain
+1xc(,6) =+1x d; ¢) (71)

or



c(,c)=d,q) (72)

Multiplying by the c¢(,c), the complex conjugate of the complex coefficiest
associated with the eigenvaliit is

C(lct)xé(lct): c(l q)x *C(1 ) (73)

Due to Born'’s rule, this is equivalent with

C(1Ct)x6(1ct):¢'(1(%)xqf(1Q) (74)

and the the complex coefficientcj follows as

C(lct)=T;)xw(1q) (75)

Quod erat demonstrandum.

3.5 Theorem: The determination of an eigenvalug;

Thesis (Claim).
In general, the eigenvalyg is determined by the equation

(76)

Proof by contradiction.
Again, we start with axiom I. Thus far, it is

+1=+1 (77)



After multiplication by the complex coefficient;cj, we obtain

+1xc(,q)=+1x q, ¢) (78)
or
c(,c)=c(.q) (79)

According to our definition our definition it is ) = c(c) x Y(ic) with the
consequence thaticf = E(c)/ Y(;ic). Thus far, the equation before is equivalent with

C(lct):E(lct):qJ(lct)xl CtXL|J (1Ct) (80)
ll“'(lct) ll“'(lct)
Simplifying this equation, we obtain
c(,¢)= cxy (,0) (81)

Thus far, if our definition that k) = c(c) x Y(cy) is correct it is G€) = E(c)/ W(ic)
and we must accept too that

G Ty (82)

Quod erat demonstrandum.

3.6 Theorem: The determination of an eigenvalug;

Thesis (Claim).
In general, the eigenvalyg is determined by the equation



16 = C* (1Ct) (83)
Proof by contradiction.
Again, we start with axiom I. Thus far, it is
+1=+1 (84)
After multiplication by the complex coefficient;cj, we obtain
+1xc(1q):+1x C(1 Q) (85)
or
c(,c)=d,q) (86)
According to one of the theorems before, this equas equivalent with
1Ctqu* (1Ct) = C(lct) (87)

Due to another theorem before, the complex coefiict(c;) can be substituted and
the equation changes to

1Ct><llJ* (lCt) :TE)XLU(&) (88)
1%t

(89)
)

Quod erat demonstrandum.



3.7 Theorem: The definition E(c;) = c(c,) % Y(ic;) is correct.

Thesis (Claim).
In general, the definition

E(c)=c(,q)xw(,q) (90)

is correct.

Proof by contradiction.
Again, we start with axiom I. Thus far, it is

+1=+1 (92)
After multiplication by the complex coefficient;c(), we obtain
+1xc(,6)=+1x d, ¢) (92)

or

c(,¢)=c(,q) (93)

Multiplying by the c(;c), the complex conjugate of the complex coefficiest
associated with the eigenvaliit is

c(:6)x¢(,6)=q,6)x c(, 9 (94)

Due to Born'’s rule, this is equivalent with

C(lct)xd(1Ct)=LU(1Q)xL|J*(1Q) (95)

Rearranging equation, we obtain



= (96)

16 = = =G (97)

and simplifies as

1C =1 G (98)
Subtractingc, it is
.61 G =+0=+1-1 (99)
or
+1=+1 (10())

Quod erat demonstrandum.

Remark 3This proof is based on the definition,&Ec(c)xP(;c) and that the same
is correct. Based on this definition we were ablalérive a correct conclusion, i. e.
+1=+1. Thus far, we must conclude, thacfEtc(ic)xy(ic) and thus far that gf) =
E(c)/ W(ic) is indeed correct.



3.8 Theorem: The multiplication by zero is not geerally valid

Thesis (Claim).
The multiplication by zero is not generally valid.

Proof by contradiction.
To demonstrate the problems as associated witlmthgplications by zero we start
with an incorrecfAnsatz(claim), something which cannot be accepted affallis far,
let us claim that

+2=+43 (101)

Multiplying this equation by +0, we obtain

+2x0=+3x 0 (102)

which is equivalent with the equation

+0=+0 (103)
or in other word with
+1-1=+1-1 (104)
Atthe end it is
+1=+1 (105)

Quod erat demonstrandum.

Remark 4.In general, it should banpossibleto have a false conclusion if all the
premises are true and no technical errors can éetifebd. Still, invalid arguments
come in all sorts of flavors and it is difficult tee aware of the many different types.
Consequently, the above type of an invalid argumezt+3 is simply a logical
fallacy. Multiplying this equation by the number +®e obtain the equation
(+2)x(+2)= (+3)(+2) which is equivalent with +4=+6. Subtracting & obtain
+0=+2. Dividing by +2 it is +0=+1. From somethingcorrect follows something
incorrect which is acceptable. Thus far, it is tlg multiplication by a number as



such which changes something incorrect to sometlimgect but especially the
multiplication by zero. The multiplication by zelwms the potential to result in a
logical fallacy especially if it is not assured tththe starting pointder Ansatz is
correct. Because of this, the multiplication bya@erust be treated very carefully and
cannot be regarded as being generally valid.

3.9 Theorem: The equivalence of multiplication at conjunction
The logical conjunctiongnd (in set theory: intersection), denoted by thgnsh, is
related to the ‘and’ of natural languages. The gogiion of two expressions and;g,
is denoted byc; n &, while the expressions, and;e are called the conjunctive terms
of ic; n je. Let the sigrx denote the mathematical multiplication betwgerand;e, as
iCt X j&. The method of truth tables is a conventional mémphe of proving and
determining the validity of (propositional) formslai. e. with respect to
(mathematical) logic.

Thesis (Claim).
The logical conjunction and the mathematical miitiggion are identical. In general,
we obtain

iGx &= 6¢n; € (106)

Proof by contradiction.
Again, our starting pointder Ansatyis axiom I. Thus far, it is

+1=+1 (107)
Multiplying by the eigenvalue of the causg we obtain
+1xi G = +1xi G (108)
or
iG = G (109)

Multiplying this equation by an eigenvalue of afeet;g, it is



iG% 85 6% € (110)

The normal usage of the logical conjunction in (meatatical) logic corresponds to
the following truth table:

Bernoulli trial t iCt i€ iCt X & iCt n &
1 1 1 1 1
2 1 0 0 0
3 0 1 0 0
4 0 0 0 0
N

As can be seen, the logical conjunction and thehemaatical multiplication are
identical. In general, we obtain

iGx 65 6¢n; € (111)

Quod erat demonstrandum.

3.10 Theorem: The equivalence of cause and effect

The intention of this article is not to give a mewi of the history of the identity law
(principium identitatiy. Since the relationship between cause and effact be
derived from the identity law it makes sense tobetate on this point in view
sentences. Hessen claims that the principle ofadityiscan be derived from the
identity law. “Eine Begrindung des Kausalprinzips$ Hilfe des Identitatssatzes ist ...
moglich ..." [47] Historically, one of the firstttempts to mathematize the identity
law can be ascribed to Leibnitz. Gottfried Wilhelwon Leibniz (1646-1716)
expressed the law of identity by claiming that gteing is that what it is. “Chaque
chose est ce gqu’elle est. Et dans autant d’exentplem voudra A est A, B est B”
[48]. If we substitute the French wor@st by the mathematical sign “=" we obtain
A=A, B=B et cetera. In ‘The problems of philosopt{$912) Bertrand Russell (1872-
1970) himself elaborates about the law of iderititthe following sense. “... three of
these Principles have been singled out by traditioder the name of ‘Laws of
Thought.” They are as follows :

(1) The law of identity: ‘Whatever is, is.’

(2) The law of contradiction: ‘Nothing can both &ed not be.’

3) The law of excluded middle: ‘Everything mustheir be or not be.” “ [49].
Historically, principium contradictionishas been used to derive the principle of
causality. ,Wie das Identitatsgesetz, so hat marh alas Widerspruchsgesetz bei der
Begrindung des Kausalprinzips verwertet.” [50], ][5S5till, the principium



contradictionisas the starting point to derive the principle afigality is not generally
accepted. ,Ubereinstimmend mit Hume ist Kant derifdeg, daR sich das Prinzip
Kausalitat nicht aus dem Satz des Widerspruchstablg3t.” [52]

Thesis (Claim).
The equivalence of cause and effect, an identitytwd which are different,
mathematically expressed as

iGx 6= 6¢n; € (112)
is the foundation of a deterministic relationshgiveeen cause and effect.

Proof by contradiction.

When philosophers, mathematicians, physicist arterobre engaged in
deductive reasoning about the relationship betvoaeise and effect, classic logic can
be a common foundation. On a view like this, logis,a branch of mathematics and
equally as branch of philosophy, can help us togeize the basics of causality. The
method of truth tables is a technique for deterngnihe fundamental relationship
between cause and effect. In particular, to stéh,we regard circumstances where
there is only one cause and one effect. Againstanting point der Ansatxis axiom
I. Thus far, it is

+1=+1 (113)
Multiplying by the eigenvalue of the causg we obtain
+1x ¢ =+1x ¢ (114)
or
iG =G (115)

Multiplying this equation by an eigenvalue of afeet;g, it is
iGx &= 6% € (116)

Due to the identity of multiplication and conjugatias proofed by a theorem before
we obtain

iGx 6= 6¢n; € (117)

To demonstrate the equivalence of cause and effexequivalence of two which are
different, we perform a thought experiment. Afteme thought measurements, we
obtained the following results:

Bernoulli trial t CauseiC Effect ;& iCause n jEffect; Cﬁﬂs”évifdniﬁé’&o
1 1 1 1 Yes.
2 1 0 0 No.




3 0 1 0 No
4 0 0 0 Yes.
N

As can be seen, it is the equivalence of cause effett or in other words
iCausg=jEffect; = jCause n jEffect; which is the foundation of a deterministic
relationship between a cause and its own effect.

Quod erat demonstrandum.

Remark 5Under circumstances, where there is only one caundgeone effect, it is
easy to analyze the relationship between causeffi@ct. In any case, the concept of
causality is inseparable from the assumption oétemininistic relationship between
cause and effect.

Bernoulli trial t=1

Thus far at the Bernoulli trial t=1 we measurecaase and at the same time we were
able to measure an effect which is exactly what dee understand under the
deterministic relationship between cause and effeatause has an effect and vice
versa. An effect has a cause, we obt@iause n jeffect = 1. Still, the co-occurrence
of cause and effect alone, as demonstrated by ¢neoRBlli trial = 1, is not enough to
explain causation. Two events which occur togetheist because of this not be
caused by each other. A concept of a determinisftionship between cause and
effect which would rely only on the co-occurrendecause and effect and thus far on
Bernoulli trial 1 would end up at the so calledmn hoc ergo propter hdellacy and is

of very limited value.

Bernoulli trial t=2

Under conditions of only one cause and one effectweasured a cause but failed to
detect an effect. Under circumstances where therenany causes and many effects
such an measurements could be justified. Stillaveeunder conditions of one cause
and one effect. Under these conditions, the cawse ot able to produce an effect
which contradicts the assumption of a deterministiationship between cause and
effect. A cause must have an effect but the caisaat had an effect. Thus far, the

Bernoulli trial t=2 documents that we are not akalvo talk about a deterministic

relationship between cause and effect, we oltausen jeffect = 0.

Bernoulli trial t=3

At the Bernoulli trial t=3 we were able to detelot teffect, while there was no cause
to be measured. An effect exists without a causd, 8n effect which can occur



without a cause means that uncaused changes aiblpaw theoretically allowed. In
this case, we don’t need causality at all. In patfér, an effect must have a cause. An
effect without a cause is not an effect and vicsaeA cause without an effect is not
a cause. In this case, we cannot talk about ardetistic relationship between cause
and effect, we obtaigausen jeffect = 0.

Bernoulli trial t=4

At the Bernoulli trial t=4 there iso cause and no effedf a cause must have an
effect it is justified to assume that when theradscause that there is no effect too.
This measurement does not contradict the assumpfi@ndeterministic relationship
between cause and effect, still we obtaausen jeffect = 0. Evidenly, whatever else
it may be, the terntausen jeffect alone is not enough to justify the assumption of
deterministic relationship between cause and efficthe Bernoulli trial t=2 and t=3,
we cannot talk about the deterministic relationdigtween cause and effect and the
term;causen jeffect is equal to 0. The same tefwausen jeffect is equal to O at the
Bernoulli trial t=4, where we are allowed to tallkoait the deterministic relationship
between cause and effect. Clearly, the tgranse n jeffect alone is not enough to
explain all the possible aspects of the relatiomdietween cause and effect. In real
life, we are confronted with more than one causkwith more than one effect. Thus
far, a more complex concept of causality is needed.

3.11 Theorem: The mathematical formula of the casal relationship k

The mathematical formula of the causal relationskipublished several [26], [53],
[54], [55], [56], [57], [58] times. The purpose thfis publication is to provide a proof
strictly from the standpoint of quantum theory.

Thesis (Claim).
The deterministic relationship between cause arfdcefis determined by the
mathematical formula of the causal relationship, ké) as

Pleie))-(debe) _ oleus) o
%/p(ict)x(l_ s ¢ Q))x F(,- ?)x( £ (’i té) o(ict)xc(jq)

k(i6. )
Proof by contradiction.

Again, our starting pointder Ansatgis axiom I. Thus far, it is

+1=+1 (119)
Multiplying by the eigenvalue of the causg we obtain



+1xi G :+1xi G

or
iCt :i Cl
Multiplying this equation by an eigenvalue of afeet;g, it is
ictxj €= ij €

The eigenvalue of the effegt is known to be defined as

Substituting this relationship into the equatiofiolbe, we obtain
o(;e)

xf/p(jg)x(l_ F(j ‘?))

The eigenvalue of the causeis known to be defined as

= G% &

- gp(e)x(1-( ¢))
Substituting this relationship into the equatiofobe, it is

0(ict) O(iet)
Jole)<(1-6 ) ol e)x(x o, )

The product of the two eigenvaluesand effecje, was derived as

=G % 8

o,q¢)

(p(ice))-(Ho o) d, )

iGx &=

Substituting this relationship into the equatioffiolbe, it follows that

%m %@ _ o,

(-0 0) qole) »(%MQ%EWV¢%

The equation can be simplified as

(120)

(121)

(122)

(123)

(124)

(125)

(126)

(127)

(128)



(p(ie18))-(d €)x d; #) o.c.6)

Pl )=, o= & ) ole)o(ie) (29
The mathematical formula of the causal relationgi, ) follows as
k(ic.;q)= (p(iq,je))—( i) i, te)) _ o(ic.8) (130)
fola)x(-rl ) (= £ g) olelxolie)
Quod erat demonstrandum.
Remark 6The range of the causal relationship is
-1<k(,G. g)<+1 (131)

4  Discussion

This mathematical approach to the relationship betwcause and effect is grounded
on the law of independence known as

p(i%‘?)f o €)x r(,- te) (132)

while the mathematical formula of the causal relahip k(c, &) even at quantum

level follows as
PR C K00 AL X I
ST b e (= g oleeolie)

These consideration of a deterministic relationdi@pveen cause and effect follows
Einstein’s principle of locality and is primary @&chl-realistic approach to the
relationship between cause and effect. Still, thapproach to causality neither
disproof nor disables non-locality. Meanwhile, ttmathematical formula of causal
relationship k is formulated even under conditiohgeneral theory of relativity [59]

while the electromagnetic field is geometrized [&). The problem of the physical
meaning of the wave function [61] with the possibito geometrize the gravitational
field is solved. Still, other problems have to lmnsidered. Especially the behavior

(133)



and the meaning of Newton’s gravitational cons{ahtjuantum level) is not clear. To
see the problems clearly, let us perform the follgwthought experiment. Two
space-ship in deep space with the masamd m are accelerating while the distance
between both is d and the net force is F. Accortiinjewton’s law of gravitation we
obtain

Xm, Xm
p= XM XM, e (134)
wherey denotes Newton'’s constant of gravitation. Reairangquation we obtain

Fx o
m, xm,

=y (135)

After a period of time the acceleration of both sess(i.e. space-ships) ends, the net
force F becomes zero while the distance d and Heses are different from zero. We
obtain

ns;d;z = (136)

or

0=y (137)
Dividing by Newton’s constant of gravitation, it is

O_y

; = ; (138)
or

0=1 (139)

Consequently, if we accept Newton’s constant asrstant, we must accept too that
+0=+1 or logical contradictions in nature. Thus, fdrere is already some evidence
that Newton’s gravitational constant is not [62B3] a constant. Form these
considerations follows thaitheran accelerated system (i.e. conditions of the igéne
theory of relativity) cannot change into the stafea non- accelerated system (i.e.
conditions of the special theory of relativitgy Newton’s gravitational constant
cannot be treated as a constant. No reasonabégstadding of physical reality could
expect to permit the first case. The first is netnly the case, we are left with the
alternative stated.



5 Conclusion

Recent years have seen a proliferation of differefinements of the basic idea to
achieve a closer match with commonsense judgeraboist causation
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