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Abstract. The political attitude and the ideology of a very small elite of 
physicists (Niels Bohr, Werner Heisenberg, Max Born and view other) played a 
major role in the construction of the Copenhagen Interpretation of quantum 
mechanics in the 1920s. Lastly, the hegemonic standard acausal Copenhagen 
Interpretation of quantum mechanics abandoned the principle of causality in 
quantum mechanics and opened a very wide door to mysticism, logical fallacies 
and wishful thinking in physics and in science as such. Historically, the Second 
International Congress for the Unity of Science (Copenhagen, June 21-26, 
1936) tried to solve the problem of causality within physics but without a 
success. Thus far, 80 years after the Second International Congress for the 
Unity of Science this contribution at the Linnaeus University in 2016 in Växjö 
Sweden will make an end too Bohr's and Heisenberg's dogma of non-causality 
within quantum mechanics and re-establish the unrestricted validity of the 
principle of causality at quantum level and under conditions of relativity theory 
by mathematizing the relationship between cause and effect in the form of the 
mathematical formula of the causal relationship k. In contrast to Bohr, 
Heisenberg and other representatives of the Copenhagen interpretation quantum 
mechanics, a realistic interpretation of quantum theory grounded on the 
unrestricted validity of the principle of causality will expel any kind of 
mysticism from physics and enable a quantization of the gravitational field.  
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1   Introduction 

The theory of causality is deeply connected with our understanding of objective 
reality, the causal investigations and the explanatory ambitions of objective reality 
especially by physical sciences.  

1.1  Causality and philosophy   

A good deal of the theoretical work in the theory of causality has been developed by 
several, well known philosophers. One of the first documented attempts to present a 
rigorous theory of causation came from the Greek philosopher and scientist Aristotle 
(384–322 BC). Aristotle developed a theory of causality commonly referred to as the 
doctrine of four causes. Many aspects and general features of Aristotle’s  logical 
concept of causality are meanwhile extensively and critically debated in secondary 



literature. Among other outstanding authors who worked on the problem of Causality 
David Hume is still present. Hume's (1711-1776) skeptical conception of causality is 
commonly known as the regularity theory of causation. According to Hume  [1], 
 
“we may define a cause to be an object, followed by another, and where all the 
objects similar to the first are followed by objects similar to the second. Or in other 
words where, if the first object had not been, the second never had existed.”  
 
Roughly speaking, Hume’s understanding of causality is grounded on the post hoc 
ergo propter hoc fallacy. A day follows the night but because of this the day is not the 
cause or a cause of the night and vice versa. Hume’s claim that “if the first object had 
not been, the second never had existed” is widely used as the foundation of the 
counterfactual analysis of causation (i. e. David Lewis [2]). Paul-Henri Thiry, Baron 
d'Holbach (1723-1789), a philosopher of the French Enlightenment, notorious for his 
atheism and criticisms of Christianity, developed in his philosophical writings an one 
sided, mechanistic and deterministic theory of causality in which causality is 
grounded on an uninterrupted succession of causes and effects.  
 
“L’univers, ce vaste assemblage de tout ce qui existe, ne nous offre partout  que  de  
la  matière  et  du  mouvement :  son  ensemble  ne  nous montre  qu’une  chaîne  
immense  et  non  interrompue  de  causes  et d’effets :  quelques-unes  de  ces  causes  
nous  sont  connues  … d’autres  nous  sont  inconnues …” [3] 
 
In broken English:  
 
“The universe, that vast assemblage of every thing that exists, presents only matter 
and motion: the whole offers to our contemplation, nothing but an immense, an 
uninterrupted succession of causes and effects; some of these causes are known to us, 
… others are unknown to us ... ”  
 
d’Holbach links cause and effect to changes as such:  
 
“Une  cause,  est  un  être  qui  en  met  un  autre  en  mouvement,  ou  qui produit  
quelque  changement  en  lui.  L’effet  est  le  changement  qu’un corps produit dans 
un autre à l’aide du mouvement.” [4] 
 
In broken English:  
 
“A cause is a being which puts another in motion, or which produces some change in 
it. The effect is the change produced in one body, by the motion or presence of 
another.” 

 
The 19th Century German philosopher, G.W.F. Hegel (1770–1831) provided a very 
abstract and idealistic philosophical account of the nature of causality [5] while 
relying on the dialectical method. 

 



“Daher hat zwar die Ursache eine Wirkung, und ist zugleich selbst Wirkung, und die 
Wirkung hat nicht nur eine Ursache, sondern ist auch selbst Ursache. Aber die 
Wirkung, welche die Ursache hat, und die Wirkung, die sie ist – ebenso die Ursache, 
welche die Wirkung hat, und die Ursache, die sie ist -, sind verschieden.“ [6] 
 
In broken English: 
 
‚Therefore, though the cause has an effect and is at the same time itself effect, and the 
effect not only has a cause but is also itself cause, yet the effect which the cause has, 
and the effect which the cause is, are different, as are also the cause which the effect 
has, and the cause which the effect is.‘ 
 
Some other authors (e.g. Reichenbach [7], Suppes [8], Salmon [9]) preferred a 
probabilistic approach to the theory of causation. Stiehle himself is following Hegel. 
“Eine Einheit von Gegensätzen verkörpert die Beziehung von Ursache und Wirkung 
…” [10].  Barukčić is of the position that the dualism and unity between cause and 
effect is the foundation of the relationship between cause and effect. “Ohne einander 
kein Gegeneinander. Ursache und Wirkung bilden innerhalb dieses Zusammenhangs 
Gegensätze.“ [11] We shall not discuss neither these nor other best known theories of 
causality in detail. Still, the relationship between cause and effect is not solved, 
neither philosophically nor mathematically. The aim of this publication is to 
characterize the relationship between cause and effect while using the tools of 
probability theory. The motivation for probabilistic approaches to causation is of 
fundamental and far reaching importance, since such an approach, if successful, 
would be compatible with quantum theory while achieving a closer match with 
commonsense judgements about causation too.  The attempt to analyze and 
understand causation in terms of probability theory cannot be successful without 
addressing a couple of preliminary issues. What is a cause or what is the cause, what 
is an effect or what is the effect? In principle, may an effect occur in the absence of a 
cause? And the other way, may an effect fail to occur in the presence  of  a  cause?  In 
so  far,  what  does  constitute  a  causal relation? On the other hand, if it is unclear 
what does constitute the causal  relation,  can  we answer  the  question,  what  does  
not constitute  a  causal  relation.  Can a  cause  as  such  be independent from its own 
effect and vice versa, under conditions where a deterministic causal  relationship is 
assumed?   
   
 

 
 

1.2.  Causality and mathematics  
 
The concept of independence is of fundamental importance in probability theory and 
in science as such. Historically, the mathematical concept of independence is  
backgrounded  by  De  Moivre  too. De  Moivre defines independence of events in the 
following way. 
 



“Two Events are independent, when they have no connexion one with the other, and 
that the happening of one neither  forwards  nor  obstructs  the  happening  of  the  
other. Two  events  are  dependent,  when  they  are  so  connected together as that the 
Probability of either's happening is altered by  the  happening  of  the  other.”  [12] In 
last consequence, De Moivre mathematizes independence in the form of an example 
as follows: 
 
“those  two  Events  being independent, the Probability of their both happening will 
be  1/13  ×  1/13  =  1/169” [13] 
  
In the following, one of the first detailed mathematical trials to mathematize co-
relation can be ascribed to the French physicist Auguste Bravais [14],[15] (1811-
1863), Francis Galton (1822 – 1911), the 1909 knighted English Victorian statistician 
and anthropologist, and at the end to Karl Pearson (1857 – 1936). In fact, following 
Karl Pearson himself Bravais developed a complete theory of correlation. “The 
fundamental theorems of correlation were for the first time and almost exhaustively 
discussed by BRAVAIS (‘Analyse mathernatique sur les probabilités des erreurs de 
situation d’un point.’ Mémoires par divers Savans, T. IX., Paris, 1846, pp. 255-332) 
nearly half a century ago. He deals completely with the correlation of two and three 
variables.” [16] Pearson's alternative mathematical account to non-causation is 
presented especially by his publication of the correlation coefficient [16], first 
conceived by Francis Galton [17], and Person’s publication of the mean square 
contingency [18] as  
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introduced by Pearson as a response to Yules [19] association of two attributes. 
Pearson’s ongoing battle against causation was motivated by the goal to exterminate 
any kind causation from statistics and science as such. Altogether, according to 
Pearson, “We are now in a position, I think, to appreciate the scientific value of the 
word cause. Scientifically, cause ... is meaningless ...” [20]. In general, “there is ... no 
true cause and effect” [21]. The reader who is still not hardly impressed by Pearson 
denial of any kind of causation, may consider Pearson’s concept of causality as 
follows. “No phenomena are causal” [22]. Finally, “The wider view of the universe 
sees all phenomena as correlated, but not causally related.” [23] Thus far, for Pearson, 
causation is not the major issue and Pearson’s approach the problem of causation can 
be summarized  by his demand that “... there is association but not causation.” [24]. 
Pearson’s methodological  reductionism  of  causation to correlation became  a  
heritage  of  modern  statistics and mathematics and had some crucial 
epistemological and ontological implications. Generations of scientists, 
mathematicians and  philosophers were influenced by Pearson’s rejection of  any 
kind of causality and  the substitution of causation by correlation. In summary, 
Pearson's very transparent and dogmatic hostility towards causation is derived 



from his own philosophical point of view and still not abandoned by mathematics 
and statistics. “Pearson’s philosophy discouraged him from looking too far behind 
phenomena” [25]. In particular, neither Pearson’s correlation coefficient nor his mean 
square contingency can be regarded as the mathematical formula of the causal 
relationship k. Pearson failed to provide or to derive a self-consistent mathematical 
proof of a mathematical formula of the causal relationship [26]. Meanwhile many 
publications demonstrated that correlation is not identical with causation. One of the 
many very convincing [27], easy to read and yet innovative contributions to this topic 
was published by Sober. The sea levels in Venice and the bread prices in Britain have 
increased steadily with time with the consequence that higher than average bread 
prices tend to be associated with higher than average sea levels. Sober found a highly 
significant correlation between the sea levels in Venice and the bread prices in 
Britain, in other words a highly significant correlation between two causally 
independent processes. Finally, the fundamental mathematical and historical 
breakthrough in the concept of independence an thus far the mathematical foundation 
of causality can be ascribed to the measure-theoretic contributions to the mathematics 
of probability theory by the 20th-century Russian mathematician Andrei 
Nikolajewitsch Kolmogorow (1903-1987). In fact, it is insightful to view some of 
Kolmogorow’s theorectical approaches to the concept of independence. “The concept 
of mutual independence of two or more experiments holds, in a certain sense, a 
central position in the theory of probability.” [28] And rightly too. However, 
Kolmogorov's axiomatization of the Theory of Probability is a cornerstone of the 
assimilation of measure theory to probability theory. The concept of independence is 
still of strategic and central importance. “In consequence, one of the most important 
problems in the philosophy of the natural sciences is - in addition to the well-known 
one regarding the essence of the concept of probability itself - to make precise the 
premises which would make it possible to regard any given real events as 
independent.” [29] Thus far, neither Heisenberg’s uncertainty principle, nor Bell’s 
theorem nor CHSH-inequality have refuted the law of independence [30] of 
probability theory or Kolmogorov's probability calculus.  

1.3.  Causality and physics 

 
At least the law of independence is the point where (quantum) physics meet 
probability theory and vice versa.  According to Einstein, the law of independence is 
the foundation of physical sciences. “Ohne  die  Annahme  einer  …  Unabhängigkeit  
der  …  Dinge  voneinander … wäre  physikalisches  Denken  …  nicht  möglich.“ 
[31] Einstein’s position in broken English: “Without the assumption of ... 
independence of ... things from each other ... physical thinking ... is not possible.” 
Einstein is elaborating on the principle of locality as follows: „Für  die  relative  
Unabhängigkeit  räumlich  distanter  Dinge  (A  und  B) ist  die  Idee  characteristisch:  
äussere  Beeinflussung  von  A  hat  keinen  unmittelbaren  Einfluss  auf  B;  dies  ist  
als «Prinzip  der Nahewirkung»  bekannt, das  nur  in  der  Feld-Theorie  konsequent  
angewendet  ist.  Völlige  Aufhebung dieses Grundsatzes  würde  die  Idee von  der 
Existenz  (quasi-)  abgeschlossener Systeme  und  damit  die Aufstellung  empirisch  



prüfbarer  Gesetze in  dem  uns geläufigen  Sinne  unmöglich  machen.“ [32] In 
broken English: ‘For the relative independence of spatially distant things (A and B) 
the following principle is characteristic: any external influence of A has no direct 
influence on B; This is known as a ‘principle of locality’ which is only applied 
consistently in field theory. This principle completely abolished would disable the 
possibility of the existence of (nearly-) closed systems and the establishment of 
empirically verifiable laws in the common sense.’ A further position Einstein’s on the 
principle of locality is the following: “But on  one  supposition we  should,  in  my  
opinion,  absolutely hold fast:  the  real factual situation of the system  S2 is 
independent of what is done  with  the system  S1,  which  is spatially separated from 
the former.” [33] Einstein is linking the principle of locality to the law of 
independence of probability theory. Due to Einstein, both are identical. However, 
Heisenberg's uncertainty principle, endorsed especially by the founding fathers of the 
so-called Copenhagen interpretation of quantum mechanics, Bohr, Born and other 
plays an important role in many discussions on the theoretical implications of 
quantum mechanics. In particular the consistency of the principle of causality is one 
striking aspect of Heisenberg's uncertainty principle and the Copenhagen dominated 
quantum mechanics. According to Heisenberg and his own uncertainty principle, 
quantum mechanics has refuted the principle of causality definitely. “... so wird      
durch die Quantenmechanik die Ungültigkeit des Kausalgesetzes definitiv 
festgestellt“ [34]. Bohr supported Heisenberg's position. In fact, Bohr in his striving 
to find a common ground for a causal description for physics and our knowledge in 
general, addressed the assembly of scientists by demanding that the “so-called 
indeterminacy relations explicitly bear out the limitation of causal analysis“[35] In 
fact, a characteristic feature of Bohr's point of view and his special account of the 
principle of causality is the demand that “physics ... forces us to replace ... causality 
by ... complementarity“ [36] Deep doubts about the unlimited validity of the principle 
of causality were implied by the Copenhagen dominated interpretation of quantum 
mechanics. Historically, a so-called Second International Congress for the Unity of 
Science organized in Copenhagen (June 21-26, 1936) was dedicated to the problem of 
causality in physics but did succeed to find a solution. “The Second International 
Congress for the Unity of Science was to deal primary with the problem of 
causality“[37] Under these circumstances, we are faced with the necessity of a radical 
revision of the foundation for explanation and description of natural phenomena. 
Among Einstein and many others too, Hans Reichenbach (1891-1953) states this 
straightforward as “Quantenmechanik  [hat, author]   zu  Zweifeln  an der 
unumschränkten  Gültigkeit      des  Kausalprinzips  geführt“  [38] Independent of 
Heisenberg’s uncertainty, Bell’s theorem too excludes causality. “The paradox of 
Einstein, Podolsky and Rosen was advanced as an argument that quantum  mechanics 
could not be a  complete theory  but should be supplemented by  additional variables. 
These additional variables were to restore to the theory  causality and locality …  It is 
the requirement of locality …  that creates the essential difficulty .” [39] Indeed, in 
theoretical quantum mechanics, principles and theorems (no-go theorem) like 
Heisenberg's uncertainty principle, Bell's theorem, the CHSH inequality et cetera  
state with respect to the principle of causality are demanding that a deterministic 
relationship between cause and effect is physically not possible. Today, these 
quantum mechanical no-go theorems are already at or just before the level of accepted 



wisdom. Just a minority of dissenters try to dispute these no-go wisdom. In particular, 
wrong scientific positions shouldn't make it through history. Today, the refutation of 
the main no-go principles of the Copenhagen dominated interpretation of quantum 
mechanics like Heisenberg's uncertainty principle [40],[41],[42] Bell's theorem  
[43],[44] the CHSH inequality [43],[44] are simply being ignored or not being 
referred to by scientists. Thus far, a solution of the problem of a deterministic 
relationship between cause and effect at quantum level is not in sight. With regard to 
new conclusions and insights, this paper is organized as follows. In the section, 
Material and methods, I will give some basic quantum mechanical and mathematical 
definitions and a terminological distinction only as much as is necessary for a better 
understanding of this paper due to the immense amount of literature known. In the 
section, Axioms, I will introduce the most simple and the most abstract fundamental 
statements which are taken to be true without any further proof and which equally 
serve as the starting point from which the theorems in the section Results are logically 
derived. It is important to note that an axiom in one system may be only a theorem in 
another system and vice versa. The relationship between cause and effect will be 
fused into a single mathematical formula while using the language of quantum theory 
and equally following a deductive-hypothetical approach. In the section Discussion, 
the meaning of the result and the relationship to concrete problems will be discussed. 
In the following of this investigation I will restrict myself to a one-dimensional 
treatment and the discrete case in order to decrease the amount of notation needed, 
since in all cases, whether the observable has a discrete or continuous set of 
eigenvalues, the generalization to four (i.e. quantum mechanics) or n-dimensions (i.e. 
quantum field theory) will be equally simple. 

2 Material and methods 

2.1   Definitions 

Definition 1. Bernoulli trials 
A Bernoulli trial (or binomial trial) denotes a random experiment with exactly two 
possible outcomes, either a concrete eigenvalue or not a concrete eigenvalue i. e. all 
but the concrete eigenvalue. The mathematical formalization of the Bernoulli trial is 
denoted as the Bernoulli process. A random experiment may consists of performing n 
Bernoulli trials, each with the probability p(jet) as associated with the eigenvalue jet, i. 
e. it is t = +1, ..., +N. 
 

Definition 2. Bernoulli observable 
Let a Bernoulli random variable or a Bernoulli quantum mechanical observable be 
associated with a quantum mechanical operator. Let the Bernoulli quantum 
mechanical observable be determined by the fact that the same observable can take 



only two eigenvalues either +1 or +0 associated with some adequate probabilities and 
eigenfunctions. 
 
Property. In the language of set theory we obtain i. e. OCt ={+0, +1}. 
 

Definition 3. The expectation value of an effect 
Let jet (an effect) denote an eigenvalue of a quantum observable REt. More precisely, 
let REt denote the set of all possible eigenvalues jet at one single Bernoulli trial t,  i. e. 
all possible outcomes of a measurement. Let E(REt) denote the denote the expectation 
value of the quantum observable REt.  Let  Ψ(REt) denote the wave function of REt. Let  
Ψ∗(REt) denote the complex-conjugate of the wave function of REt. Let c(jet) denote 
the complex coefficient as associated with the eigenvalue jet while satisfying some 
normalization condition. Let c*(jet) denote complex conjugate of the complex 
coefficient as associated with the eigenvalue jet. Let ψ(jet) denote the eigenfunction as 
associated with an eigenvalue jet while satisfying some normalization condition. Let 
ψ*(jet) denote complex conjugate of the eigenfunction as associated with the 
eigenvalue jet while satisfying normalization. Let p(jet) denote the probability as 
associated with the eigenvalue jet. Let E(jet) denote the expectation value of an 
eigenvalue jet. Let σ(jet)² denote the variance of an eigenvalue jet. Let σ(jet) denote the 
standard deviation of an eigenvalue jet. In general, it is 
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Properties.  
Under conditions where p(jet) = 1 it is E(jet) = jet. Further, from the definition above it 
follows that  
 

( ) ( )
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j t
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E e
c e

e
≡

ψ
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According to mathematical statistics, the proof of following relationships can be 
found in literature. In general, it is 
 

( ) ( ) ( ) ( ) ( ) ( )2 2 * 2 * 2
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The variance σ(jet)² of an eigenvalue jet follows as 
 



( ) ( ) ( ) ( )( ) ( )( )22 22 2
j t j t j t j t j t j t j te E e E e e p e e p eσ ≡ − = × − ×  (5) 

 
which is equivalent with 
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From this relationship, the eigenvalue jet can be derived as 
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(7) 

 
while the standard deviation σ(jet) of an eigenvalue jet is defined as 
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The definition of variance leads to the equation that 
 

( ) ( ) ( )2 22
j t j t j tE e E e e≡ + σ  (9) 

 
which can be rearranged and yields the normalisation of the variance in general as 
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This relationship can be simplified as 
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The probability p(jet) as associated with an eigenvalue jet can be calculated in general 
as 
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or with respect to the Chebyshev's inequality [45] as 
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while the associated eigenfunction ψ(jet) follows from the relationship 
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as 
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Definition 4. The expectation value of a cause 
Let ict (a cause) denote an eigenvalue of a quantum observable OCt. In particular, let 
OCt denote the set of all possible eigenvalues ict at one single Bernoulli trial t,  i. e. all 
possible outcomes of a measurement. Let E(OCt) denote the denote the expectation 
value of the quantum observable OCt.  Let  Ψ(OCt) denote the wave function of OCt. 
Let Ψ∗(OCt) denote the complex-conjugate of the wave function of OCt. Let c(ict) 
denote the complex coefficient as associated with the eigenvalue ict while satisfying 
some normalization condition. Let c*(ict) denote complex conjugate of the complex 
coefficient as associated with the eigenvalue ict. Let ψ(ict) denote the eigenfunction as 
associated with an eigenvalue ict while satisfying some normalization condition. Let 
ψ*(ict) denote complex conjugate of the eigenfunction as associated with the 
eigenvalue ict while satisfying normalization. Let p(ict) denote the probability as 
associated with the eigenvalue ict. Let E(ict) denote the expectation value of an 
eigenvalue ict. Let σ(ict)² denote the variance of an eigenvalue ict. Let σ(ict) denote the 
standard deviation of an eigenvalue ict. In general, it is 
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Properties.  
Under conditions where p(ict) = 1 it is E(ict) = ict. According to mathematical 
statistics, the following relationships are proofed as correct. 
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The variance of an eigenvalue ict follows as 
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which is equivalent with 
 

( ) ( )( ) ( )( ) ( ) ( )( )( )22 2 2
i t i t i t i t i t i t i t i tc c p c c p c c p c 1 p cσ ≡ × − × = × × −  (19) 

 
From this relationship, the eigenvalue ict can be derived as 
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while the standard deviation of an eigenvalue ict is defined as 
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i t i t i t i t i t i t i t i tc c p c c p c c p c 1 p cσ ≡ × − × = × × −  (21) 

Definition 5. The co-variance of cause and effect 
 
The covariance of two different eigenvalues ict and jet, denoted by σ(ict , jet), is known 
to be defined as 
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where E(ict , jet) denotes the expectation value of the two different eigenvalues ict and 
jet. This equation can be simplified as 
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where p(ict , jet) denotes the joint probability function between  the eigenvalues ict and 
jet. The joint probability function between the eigenvalues ict and jet can be equal to 
zero. From this relationship, the product of the eigenvalues ict and jet can be derived as 
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i t j t i t j t

c , e
c e

p c , e p c p e

σ
× ≡

− ×

 
(24) 

 
It is easy to extend these definitions to n-dimensional cases. 
 

Definition 6. The causal relationship k(ict, iet) 

 
The deterministic relationship between cause and effect (even at quantum level) is 
determined by the mathematical formula of the causal relationship k(ict, iet) as 
 

( ) ( )( ) ( ) ( )( )
( ) ( )( ) ( ) ( )( )

( )
( ) ( )

i t j t i t j t i t j t

i t j t
2 i t j ti t i t j t j t

p c , e p c p e c , e
k c , e

c ep c 1 p c p e 1 p e

− × σ
≡ =

σ × σ× − × × −
 

(25) 

 

Definition 7. The commutation relation 

 
Today, the Copenhagen dominated interpretation of quantum mechanics, mostly 
regarded as synonymous with indeterminism, has posed innumerable problems to 
scientist and challenges at least our imagination. In fact, the question of what kind of 
reality the Copenhagen dominated interpretation of quantum mechanics describes, 
however, is controversial. In particular, one pillar of the mathematical formalism of 
the Copenhagen dominated interpretation of quantum mechanics is the canonical 
commutation relation which is attributed to Max Born [46]. The canonical 
commutation relation is by definition such that 
 
 

[ ] h
X,p i

2
= ×

× π
 

(26) 

 
where X denotes the position operator, p denotes the momentum operator, i is the 
imaginary unit, h denotes Planck's constant while π denotes the mathematical constant 
pi. The Copenhagen dominated interpretation of quantum mechanics reduces more or 
less the whole quantum mechanics to the relationship between position and 
momentum and forces us to study objective reality only through this one and only 
scientific eye. The implications of the at least to some extent unfair Copenhagen 
dominated monocular vision (loss of one scientific eye) of objective reality has raised 



many questions about the basic concepts of objective reality and especially about the 
principle of causality. In the land of the blind, the one-eyed scientist may be a king. 
Still, the one-sided and restricted Copenhagen dominated approach to objective reality 
is neither necessary nor mathematically the only possible way, ‘how to see the world’. 
Finally, a radically different perspective is posed if we try to assure compatibility 
between quantum mechanics and general relativity from the beginning. Thus far, we 
define a quantum mechanical operator of curvature, denoted as C, of preliminary 
unknown (mathematical) structure. Further, we define a quantum mechanical operator 
denoted as E, of preliminary unknown (mathematical) structure. In this way, the 
following relationship may hold: 

C C C 0 C X X= = + = − +  (27) 

where C denotes the quantum mechanical operator of curvature and X denotes the 
position operator. We define the anti operator of the position operator X, denoted as 
X , (the 'local hidden variable' of X) such that 
 

X C X= −  (28) 

In other words, there is no third between the position operator X and the anti position 
operator X, a third is not given (Aristotle’s principle of the exluded middle 
(principium exlusii tertii)). In the context of the curvature operator C all but X is 
regarded as X. We obtain 
 

C X X= +  (29) 

The commutation relation changes to 

[ ] h
C,p i

2
= ×

× π
 

(30) 

where C denotes the curvature operator, p denotes the momentum operator, i is the 
imaginary unit, h denotes Planck's constant while π denotes the mathematical constant 
pi. In other words, it is 
 

( ) h
X X ,p i

2
 + = ×  × π

 
(31) 

In the same respect, we define a quantum mechanical operator E such that 

E p p= +  (32) 

where p is the momentum operator and p denotes the anti-momentum operator. Under 
conditions of general relativity matter (momentum) causes space-time how to curve 
(curvature) while curved space-time (curvature) causes matter how to move 
(momentum) which is the epistemological background of the saying curvature equals 
momentum and vice versa. This principle is valid under conditions of quantum 
mechanics too. Thus far, the general relativity compatible commutation relation 
follows as 



[ ] ( ) ( ) h
C,E X X , p p i

2
 = + + = ×  × π

 
(33) 

In fact, only under conditions, where the anti position operator X = 0 and where the 
anti momentum operator p=0 we obtain the one-sided and restricted Copenhagen 
dominated view of the world as 

[ ] ( ) ( ) [ ] h
C,E X X 0 , p p 0 X,p i

2
 = + = + = = = ×  × π

 
(34) 

but not in general. The question is, what is the concrete mathematical structure of the 
operators C and E. In the following lines of this paper, the operator C may denote a 
cause while the operator E may denote an effect as postulated before.  

Definition 8. The wave function 
 
Let f(OCt) denote any kind of a (complex, composite et cetera) mathematical function 
of preliminary unknown properties. In this context, the element OCt is called the 
argument of the (mathematical) function f. For each argument OCt, a corresponding 
function value y in given and abbreviated such that 

( )O ty f C=  (35) 

In this context, OCt can denote (the expectation value of) a random variable, a 
(quantum mechanical) observable, a quantum mechanical operator, a tensor (of 
general relativity) or any other mathematical object. Let Ψ(OCt) denote the wave 
function of OCt. In general, we define the wave function of OCt as 

( ) ( )
( ) ( ) ( )O t O t

O t O t O t O t O t
O t O t

f C C
C C C 1 C f C

f C f C
Ψ ≡ ≡ × ≡ × ≡ ×

 
(36) 

Remark 1.Such a definition of the wave function is a theoretical attempt to provide a 
contribution to solve the problems as related with the wave functions as such. 
Whether such a definition of the wave function makes any sense or not is a point of 
further research. The solution of the problem of cause and effect as presented in this 
publication is independent of the previous definition of the wave function. In fact, the 
above definition of the wave function is following the simple chain rule in Leibniz  
(1646-1716) notation knowing to be defined something like  
 

dz
dz dy

dy
≡ ×  (37) 

 
 

 
 



2.2.1  Axiom I (Lex identitatis)  
 

1 1+ = +  (38) 

 
 

2.2.2  Axiom II (Lex negationis)  
 

1

0

+ ≡ +∞
+

 (39) 

2.2.3  Axiom III (Lex contradictionis)  
 

 

0
1

0

+ ≡ +
+

 (40) 

 

3 Results 

 

3.1   Theorem: The relationship between the complex coefficient and probability 

 
 

Thesis (Claim).   
In general, based on the definition before, we obtain the following relationship. It is 
 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )i t i t * *

i t i t i t i t* *
i t i t

c c c
c c c c c c

c c c

 ×ψ
× ψ = × × ψ  ×ψ 

 
(41) 

 
 

Proof by contradiction.  
The starting point of this theorem is axiom I. Thus far, it is 
 

1 1+ = +  (42) 

 



After multiplication, we obtain 
 

( ) ( ) ( ) ( ) ( )* *
i t i t i t i t i tc c c c c c c c p c× = × =  (43) 

or  

( ) ( ) ( ) ( ) ( )* *
i t i t i t i t i tc c c c c c p c× = ψ × ψ =  (44) 

 
From this equation it follows that 
 

( ) ( )
( ) ( ) ( )

( )
*

i t i t
i t i t* *

i t i t

c c p c
c c c

c c
ψ = × =

ψ ψ
 (45) 

In other words, it is equally 
 

( ) ( )
( ) ( ) ( )

( )
*

i t i t
i t i t* *

i t i t

c p c
c c c

c c c c

ψ
= ×ψ =  (46) 

At the end, we obtain 
 

( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

* *
i t i t i t i t * *

i t i t i t i t i t i t* * * *
i t i t i t i t

c c c c c c
c x c c c c c c c

c c c c c c

     ψ × ψ
×ψ = ×ψ × × = × × ψ          ψ × ψ     

 
(47) 

 
  

Quod erat demonstrandum.  
 
 
 

3.2   Theorem: The collapse of the wave function Ψ(OCt) 

 
 

Thesis (Claim).   
In general, the collapse of the wave function is determined by the equation 
 

( ) ( )( ) ( ) ( ) ( )( )
( )

t t1 1
i t i t O t

O t

c c c
c c c C 1

C

 × ψ
× ψ = Ψ × − 

 Ψ 

 (48) 

Proof by contradiction.  



As a starting point in understanding the collapse of the wave function of quantum 
mechanics, we start with axiom I. Thus far, it is 
 

1 1+ = +  (49) 

 
After multiplication by the wave function, we obtain 
 

( ) ( )O t O t1 C 1 C+ × Ψ = + × Ψ  (50) 

 
or 
 

( ) ( )O t O tC CΨ = Ψ  (51) 

 
According to the so-called 'expansion postulate', a fundamental postulate of quantum 
mechanics, the equation before changes to 
 

( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )( )O t 1 t 1 t 2 t 2 t 3 t 3 tC c c c c c c c c c ...Ψ = ×ψ + ×ψ + ×ψ +  (52) 

 
which can be simplified as 
 

( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )( )

( ) ( ) ( )( ) ( ) ( )( )

O t 1 t 1 t 2 t 2 t 3 t 3 t

t tR t 1 t 1 t 1 1

C c c c c c c c c c ...

                                                                                                  

C c c c             c c c

Ψ = × ψ + ×ψ + ×ψ +

Ψ = × ψ + × ψ

���������������

 

(53) 

 
where c(1ct) denotes the complex coefficient of anti 1ct and ψ(1ct) denotes the anti-
eigenfunction. Rearranging equation before yields 
 

( )
( )

( ) ( )( )
( )

( ) ( )( )
( )

t t1 t 1 t 1 1O t

O t O t O t

c c c c c cC
                    1

C C C

× ψ ×ψΨ
= + =

Ψ Ψ Ψ
 (54) 

 
In other words, it is 
 



( ) ( )( )
( )

( ) ( )( )
( )

t t1 t 1 t 1 1

O t O t

c c c c c c
1

C C

×ψ ×ψ
= −

Ψ Ψ
 (55) 

 
or 
 

( ) ( )( ) ( ) ( ) ( )( )
( )

t t1 1
1 t 1 t O t

O t

c c c
c c c C 1

C

 × ψ
×ψ = Ψ × − 

 Ψ 

 (56) 

 
Quod erat demonstrandum.  

 

Remark 2. The term  
 

( ) ( )( )1 t 1 tc c c×ψ  (57) 

denotes the situation after the collapse of the wave function Ψ(OCt), while the wave 
function itself denotes the situation before the collapse of itself into an eigenvalue and 
an eigenfunction. Under some circumstances, the collapse of the wave function may 
pass over into the Lorenz transformation as 
 

( ) ( )( )
( )

t t1 1

O t

c c c v²
1 1

C c²

 × ψ
− = − 

 Ψ 

 (58) 

The notion collapse of the wave function is discussed by philosophers since ancient 
times under the notion negation or negation of the negation. 
 
 
 
 
 

3.3   Theorem: The expansion postulate of the wave function Ψ(REt) 

 
Thesis (Claim).   

In general, the generic state Ψ(REt) can be expressed as a superposition of eigenstates  
ψ(iet). In other words, every wave function Ψ(REt) can be expanded as a series 



involving all of the eigenfunctions  ψ(iet) of an operator REt (the expansion postulate) 
such that  
 

( ) ( ) ( )( )
i N

R t i t i t
i 1

E c e e
=+

=+

Ψ = ×ψ∑  (59) 

Proof by contradiction.  
Again, we start with axiom I. Thus far, it is 
 

1 1+ = +  (60) 

 
After multiplication by the expectation value, we obtain 
 

( ) ( )R t R t1 E E 1 E E+ × = + ×  (61) 

 
or 
 

( ) ( )R t R tE E E E=  (62) 

 
According to mathematical statistics and probability theory, this equation is 
equivalent with 
 

( ) ( ) ( ) ( )R t 1 t 2 t 3 tE E E e E e E e ...= + + +  (63) 

 
Multiplying equation by the expectation value E(iet) of particular eigenvalue iet by the 
associated eigenfunction ψ(iet) without changing the equation before it follows that 
 

( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( )
( )

1 t 2 t 3 t
R t 1 t 2 t 3 t

1 t 2 t 3 t

e e e
E E E e E e E e ...

e e e

     ψ ψ ψ
= × + × + × +          ψ ψ ψ     

 (64) 

or that 
 

( )
( ) ( ) ( )

( ) ( ) ( )
( ) ( ) ( )

( ) ( )R t 1 t 2 t 3 t
R t 1 t 2 t 3 t

R t 1 t 2 t 3 t

E E E e E e E e
E e e e ...

E e e e

     
× Ψ = ×ψ + ×ψ + ×ψ +          Ψ ψ ψ ψ     

 
(65) 

Due to our general definition of c(iet) = E(iet)/ ψ(iet), the equation before changes to 
 



( ) ( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )( )R t R t 1 t 1 t 2 t 2 t 3 t 3 tc E E c e e c e e c e e ...× Ψ = ×ψ + ×ψ + ×ψ +  (66) 

 
Especially under conditions where c(REt)=1, the expansion postulate of the wave 
function follows as 
 

( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )( )R t 1 t 1 t 2 t 2 t 3 t 3 tE c e e c e e c e e ...Ψ = ×ψ + ×ψ + ×ψ +  (67) 

 
or as 
 

( ) ( ) ( )( )
i N

R t i t i t
i 1

E c e e
=+

=+

Ψ = ×ψ∑  (68) 

 
Quod erat demonstrandum.  

 
 

 

3.4   Theorem: The determination of the complex coefficient c(ict)  

 
Thesis (Claim).   

In general, the complex coefficient as associated with the eigenvalue ict can be 
calculated as 
 

( ) ( )
( ) ( )

*
1 t

1 t 1 t*
1 t

c
c c c

c c

ψ
= ×ψ  (69) 

Proof by contradiction.  
Again, we start with axiom I. Thus far, it is 
 

1 1+ = +  (70) 

 
After multiplication by the complex coefficient c(1ct), we obtain 
 

( ) ( )1 t 1 t1 c c 1 c c+ × = + ×  (71) 

 
or 
 



( ) ( )1 t 1 tc c c c=  (72) 

 
Multiplying by the c*(1ct), the complex conjugate of the complex coefficient as 
associated with the eigenvalue 1ct it is 
 

( ) ( ) ( ) ( )* *
1 t 1 t 1 t 1 tc c c c c c c c× = ×  (73) 

 
Due to Born’s rule, this is equivalent with 
 

( ) ( ) ( ) ( )* *
1 t 1 t 1 t 1 tc c c c c c× = ψ ×ψ  (74) 

 
and the the complex coefficient c(1ct) follows as 
 

( ) ( )
( ) ( )

*
1 t

1 t 1 t*
1 t

c
c c c

c c

ψ
= ×ψ  (75) 

 
Quod erat demonstrandum.  

 
 
 
 

3.5   Theorem: The determination of an eigenvalue ict 

 
Thesis (Claim).   

In general, the eigenvalue ict is determined by the equation 
 

( )
( )
1 t

1 t *
1 t

c c
c

c
=

ψ
 (76) 

Proof by contradiction.  
Again, we start with axiom I. Thus far, it is 
 

1 1+ = +  (77) 

 



After multiplication by the complex coefficient c(ict), we obtain 
 

( ) ( )1 t 1 t1 c c 1 c c+ × = + ×  (78) 

 
or 
 

( ) ( )1 t 1 tc c c c=  (79) 

 
According to our definition our definition it is E(ict) = c(ict) × ψ(ict) with the 
consequence that c(ict) = E(ict)/ ψ(ict). Thus far, the equation before is equivalent with 
 

( ) ( )
( )

( ) ( )
( )

*
1 t 1 t 1 t 1 t

1 t
1 t 1 t

E c c c c
c c

c c

ψ × ×ψ
= =

ψ ψ
 (80) 

 
Simplifying this equation, we obtain 
 

( ) ( )*
1 t 1 t 1 tc c c c= ×ψ  (81) 

 
Thus far, if our definition that E(ict) = c(ict) × ψ(ict) is correct it is c(ict) = E(ict)/ ψ(ict) 
and we must accept too that 
 

( )
( )
1 t

1 t *
1 t

c c
c

c
=

ψ
 (82) 

 
 

Quod erat demonstrandum.  
 
 

3.6   Theorem: The determination of an eigenvalue ict  

 
Thesis (Claim).   

In general, the eigenvalue ict is determined by the equation 
 



( )
( )

1 t
1 t *

1 t

c
c

c c

ψ
=  (83) 

Proof by contradiction.  
Again, we start with axiom I. Thus far, it is 
 

1 1+ = +  (84) 

 
After multiplication by the complex coefficient c(ict), we obtain 
 

( ) ( )1 t 1 t1 c c 1 c c+ × = + ×  (85) 

 
or 
 

( ) ( )1 t 1 tc c c c=  (86) 

 
According to one of the theorems before, this equation is equivalent with 
 

( ) ( )*
1 t 1 t 1 tc c c c×ψ =  (87) 

 
Due to another theorem before, the complex coefficient c(ict) can be substituted and 
the equation changes to 
 

( ) ( )
( ) ( )

*
1 t*

1 t 1 t 1 t*
1 t

c
c c c

c c

ψ
×ψ = × ψ  (88) 

 
Simplifying this equation, we obtain 
 

( )
( )

1 t
1 t *

1 t

c
c

c c

ψ
=  (89) 

 
Quod erat demonstrandum.  

 
 
 



3.7   Theorem: The definition E(ict) = c(ict) × ψ(ict)  is correct. 

 
  

Thesis (Claim).   
In general, the definition 
 

( ) ( ) ( )1 t 1 t 1 tE c c c c= ×ψ  (90) 

is correct. 
 
 

Proof by contradiction.  
Again, we start with axiom I. Thus far, it is 
 

1 1+ = +  (91) 

 
After multiplication by the complex coefficient c(1ct), we obtain 
 

( ) ( )1 t 1 t1 c c 1 c c+ × = + ×  (92) 

 
or 
 

( ) ( )1 t 1 tc c c c=  (93) 

 
Multiplying by the c*(1ct), the complex conjugate of the complex coefficient as 
associated with the eigenvalue 1ct it is 
 

( ) ( ) ( ) ( )* *
1 1 t 1 t 1 tc c c c c c c c× = ×  (94) 

 
Due to Born’s rule, this is equivalent with 
 

( ) ( ) ( ) ( )* *
1 t 1 t 1 t 1 tc c c c c c× = ψ ×ψ  (95) 

 
Rearranging equation, we obtain 
 



( )
( )

( )
( )

1 t 1 t
* *

1 t 1 t

c c c

c c c

ψ
=

ψ
 (96) 

 
Due to our theorems before, the equation is equivalent with 
 

( )
( )

( )
( )

1 t 1 t
1 t 1 t* *

1 t 1 t

c c c
c c

c c c

ψ
= = =

ψ
 (97) 

 
and simplifies as 
 
 

1 t 1 tc c=  (98) 

 
Subtracting 1ct, it is 
 
 

1 t 1 tc c 0 1 1+ − = + = + −  (99) 

or 
 
 

1 1+ = +  
(100

) 

 
 

Quod erat demonstrandum.  
 
 

Remark 3. This proof is based on the definition E(ict)=c(ict)×ψ( ict)  and that the same 
is correct. Based on this definition we were able to derive a correct conclusion, i. e. 
+1=+1. Thus far, we must conclude, that E(ict)=c(ict)×ψ( ict)  and thus far that c(ict) = 
E(ict)/ ψ( ict)  is indeed correct. 
 
 



3.8   Theorem: The multiplication by zero is not generally valid 

 
Thesis (Claim).   

The multiplication by zero is not generally valid. 
 

Proof by contradiction.  
To demonstrate the problems as associated with the multiplications by zero we start 
with an incorrect Ansatz (claim), something which cannot be accepted at all. Thus far, 
let us claim that  
 

2 3+ = +  (101) 

 
Multiplying this equation by +0, we obtain  
 

2 0 3 0+ × = + ×  (102) 

 
which is equivalent with the equation  
 

0 0+ = +  (103) 

 
or in other word with  
 

1 1 1 1+ − = + −  (104) 

 
At the end it is  
 

1 1+ = +  (105) 

 
 

Quod erat demonstrandum.  
 

Remark 4. In general, it should be impossible to have a false conclusion if all the 
premises are true and no technical errors can be identified. Still, invalid arguments 
come in all sorts of flavors and it is difficult to be aware of the many different types. 
Consequently, the above type of an invalid argument +2=+3 is simply a logical 
fallacy. Multiplying this equation by the number +2 we obtain the equation 
(+2)×(+2)= (+3)×(+2) which is equivalent with +4=+6. Subtracting +4 we obtain 
+0=+2. Dividing by +2 it is +0=+1. From something incorrect follows something 
incorrect which is acceptable. Thus far, it is not the multiplication by a number as 



such which changes something incorrect to something correct but especially the 
multiplication by zero. The multiplication by zero has the potential to result in a 
logical fallacy especially if it is not assured that the starting point, der Ansatz, is 
correct. Because of this, the multiplication by zero must be treated very carefully and 
cannot be regarded as being generally valid.  

3.9   Theorem: The equivalence of multiplication and conjunction 

The logical conjunction ‘and’  (in set theory: intersection), denoted by the sign ∩, is 
related to the ‘and’ of natural languages. The conjunction of two expressions ict and jet 
is denoted by ict ∩ jet, while the expressions ict and jet are called the conjunctive terms 
of ict ∩ jet. Let the sign × denote the mathematical multiplication between  ict and jet as 

ict × jet. The method of truth tables is a conventional technique of proving and 
determining the validity of (propositional) formulas i. e. with respect to 
(mathematical) logic. 
  

Thesis (Claim).   
The logical conjunction and the mathematical multiplication are identical. In general, 
we obtain 
 

i t j t i t j tc e c e× = ∩  (106) 

 
 

Proof by contradiction.  
Again, our starting point (der Ansatz) is axiom I. Thus far, it is 

 

1 1+ = +  (107) 

 
Multiplying by the eigenvalue of the cause ict, we obtain 
 

i t i t1 c 1 c+ × = + ×  (108) 

 
or 
 

i t i tc c=  (109) 

 
Multiplying this equation by an eigenvalue of an effect jet, it is 
 



i t j t i t j tc e c e× = ×  (110) 

 
The normal usage of the logical conjunction in (mathematical) logic corresponds to 
the following truth table:  
 

Bernoulli trial t ict jet ict × jet ict ∩ jet 
1 1 1 1 1 
2 1 0 0 0 
3 0 1 0 0 
4 0 0 0 0 
… . . . . 
N . . .  . 

 
As can be seen, the logical conjunction and the mathematical multiplication are 
identical. In general, we obtain 
 

i t j t i t j tc e c e× = ∩  (111) 

 
Quod erat demonstrandum.  

 

3.10   Theorem: The equivalence of cause and effect 

The intention of this article is not to give a review of the history of the identity law 
(principium identitatis). Since the relationship between cause and effect can be 
derived from the identity law it makes sense to elaborate on this point in view 
sentences. Hessen claims that the principle of causality can be derived from the 
identity law. “Eine Begründung des Kausalprinzips mit Hilfe des Identitätssatzes ist ... 
möglich ...“ [47]  Historically, one of the first attempts to mathematize the identity 
law can be ascribed to Leibnitz. Gottfried Wilhelm von Leibniz (1646-1716) 
expressed the law of identity by claiming that everything is that what it is. “Chaque 
chose est ce qu’elle est. Et dans autant d’exemples qu’on voudra A est A, B est B” 
[48]. If we substitute the French word “est” by the mathematical sign “=” we obtain 
A=A, B=B et cetera. In ‘The problems of philosophy’ (1912) Bertrand Russell (1872-
1970) himself elaborates about the law of identity in the following sense. “… three of 
these Principles have been singled out by tradition under the name of  ‘Laws of 
Thought.’ They are as follows : 

 
(1)  The law of identity: ‘Whatever is, is.’ 
(2) The law of contradiction: ‘Nothing can both be and not be.’ 
(3) The law of excluded middle: ‘Everything must either be or not be.’ “ [49]. 
Historically, principium contradictionis has been used to derive the principle of 
causality. „Wie das Identitätsgesetz, so hat man auch das Widerspruchsgesetz bei der 
Begründung des Kausalprinzips verwertet.“ [50], [51]. Still, the principium 



contradictionis as the starting point to derive the principle of causality is not generally 
accepted. „Übereinstimmend mit Hume ist Kant der Meinung, daß sich das Prinzip 
Kausalität nicht aus dem Satz des Widerspruchs ableiten läßt.“ [52] 
 

Thesis (Claim).   
The equivalence of cause and effect, an identity of two which are different, 
mathematically expressed as 

i t j t i t j tc e c e× = ∩  (112) 

is the foundation of a deterministic relationship between cause and effect. 
 

Proof by contradiction.  
When philosophers, mathematicians, physicist and other are engaged in 

deductive reasoning about the relationship between cause and effect, classic logic can 
be a common foundation. On a view like this, logic, as a branch of mathematics and 
equally as branch of philosophy, can help us to recognize  the basics of causality. The 
method of truth tables is a technique for determining the fundamental relationship 
between cause and effect. In particular, to start with, we regard circumstances where 
there is only one cause and one effect. Again, our starting point (der Ansatz) is axiom 
I. Thus far, it is 

1 1+ = +  (113) 

Multiplying by the eigenvalue of the cause ict, we obtain 

i t i t1 c 1 c+ × = + ×  (114) 

or 
 

i t i tc c=  (115) 

Multiplying this equation by an eigenvalue of an effect jet, it is 

i t j t i t j tc e c e× = ×  (116) 

Due to the identity of multiplication and conjugation as proofed by a theorem before 
we obtain 

i t j t i t j tc e c e× = ∩  (117) 

To demonstrate the equivalence of cause and effect, the equivalence of two which are 
different, we perform a thought experiment. After some thought measurements, we 
obtained the following results: 
 

Bernoulli trial t Cause ict  Effect jet  iCauset ∩ jEffectt 
Equivalence of 

cause and effect? 
1 1 1 1 Yes. 
2 1 0 0 No. 



3 0 1 0 No 
4 0 0 0 Yes. 
… . . . . 
N . . . . 

 
As can be seen, it is the equivalence of cause and effect or in other words 

iCauset=jEffectt = iCauset ∩ jEffectt which is the foundation of a deterministic 
relationship between a cause and its own effect. 
 

Quod erat demonstrandum.  
 

Remark 5. Under circumstances, where there is only one cause and one effect, it is 
easy to analyze the relationship between cause and effect. In any case, the concept of 
causality is inseparable from the assumption of a deterministic relationship between 
cause and effect.  

Bernoulli trial t=1  

Thus far at the Bernoulli trial t=1 we measured a cause and at the same time we were 
able to measure an effect which is exactly what we do understand under the 
deterministic relationship between cause and effect. A cause has an effect and vice 
versa. An effect has a cause, we obtain  icauset ∩ jeffectt = 1. Still, the co-occurrence 
of cause and effect alone, as demonstrated by the Bernoulli trial = 1, is not enough to 
explain causation.  Two events which occur together must because of this not be 
caused by each other. A concept of a deterministic relationship between cause and 
effect which would rely only on the co-occurrence of cause and effect and thus far on 
Bernoulli trial 1 would end up at the so called cum hoc ergo propter hoc fallacy and is 
of very limited value. 

Bernoulli trial t=2 

Under conditions of only one cause and one effect we measured a cause but failed to 
detect an effect. Under circumstances where there are many causes and many effects 
such an measurements could be justified. Still, we are under conditions of one cause 
and one effect. Under these conditions, the cause was not able to produce an effect 
which contradicts the assumption of a deterministic relationship between cause and 
effect. A cause must have an effect but the cause did not had an effect. Thus far, the 
Bernoulli trial t=2 documents that we are not allowed to talk about a deterministic 
relationship between cause and effect, we obtain icauset ∩ jeffectt = 0.  

Bernoulli trial t=3 

At the Bernoulli trial t=3 we were able to detect the effect, while there was no cause 
to be measured. An effect exists without a cause. Still, an effect which can occur 



without a cause means that uncaused changes are possible or theoretically allowed. In 
this case, we don’t need causality at all. In particular, an effect must have a cause. An 
effect without a cause is not an effect and vice versa. A cause without an effect is not 
a cause. In this case, we cannot talk about a deterministic relationship between cause 
and effect, we obtain icauset ∩ jeffectt = 0. 

Bernoulli trial t=4 

At the Bernoulli trial t=4 there is no cause and no effect. If a cause must have an 
effect it is justified to assume that when there is no cause that there is no effect too. 
This measurement does not contradict the assumption of a deterministic relationship 
between cause and effect, still we obtain icauset ∩ jeffectt = 0. Evidenly, whatever else 
it may be, the term icauset ∩ jeffectt  alone is not enough to justify the assumption of a 
deterministic relationship between cause and effect. At the Bernoulli trial t=2 and t=3, 
we cannot talk about the deterministic relationship between cause and effect and the 
term icauset ∩ jeffectt is equal to 0. The same term icauset ∩ jeffectt is equal to 0 at the 
Bernoulli trial t=4, where we are allowed to talk about the deterministic relationship 
between cause and effect. Clearly, the term icauset ∩ jeffectt  alone is not enough to 
explain all the possible aspects of the relationship between cause and effect. In real 
life, we are confronted with more than one cause and with more than one effect. Thus 
far, a more complex concept of causality is needed. 

3.11   Theorem: The mathematical formula of the causal relationship k  

The mathematical formula of the causal relationship is published several [26], [53], 
[54], [55], [56], [57], [58] times. The purpose of this publication is to provide a proof 
strictly from the standpoint of quantum theory. 

 
Thesis (Claim).   

The deterministic relationship between cause and effect is determined by the 
mathematical formula of the causal relationship k(ict, iet) as 
 

( ) ( )( ) ( ) ( )( )
( ) ( )( ) ( ) ( )( )

( )
( ) ( )

i t j t i t j t i t j t

i t j t
2 i t j ti t i t j t j t

p c , e p c p e c , e
k c , e

c ep c 1 p c p e 1 p e

− × σ
≡ =

σ × σ× − × × −
 

(118) 

 
Proof by contradiction.  
Again, our starting point (der Ansatz) is axiom I. Thus far, it is 

 

1 1+ = +  (119) 

Multiplying by the eigenvalue of the cause ict, we obtain 



i t i t1 c 1 c+ × = + ×  (120) 

or 

i t i tc c=  (121) 

Multiplying this equation by an eigenvalue of an effect jet, it is 

i t j t i t j tc e c e× = ×  (122) 

The eigenvalue of the effect jet is known to be defined as 

( )
( ) ( )( )

j t

j t
2

j t j t

e
e

p e 1 p e

σ
≡

× −

 
(123) 

Substituting this relationship into the equation before, we obtain 

( )
( ) ( )( )

j t

i t i t j t
2

j t j t

e
c c e

p e 1 p e

σ
× = ×

× −
 (124) 

The eigenvalue of the cause ict is known to be defined as 
 

( )
( ) ( )( )

i t
i t

2
i t i t

c
c

p c 1 p c

σ
≡

× −

 
(125) 

Substituting this relationship into the equation before, it is 
 

( )
( ) ( )( )

( )
( ) ( )( )

j ti t
i t j t

2 2i t i t j t j t

ec
c e

p c 1 p c p e 1 p e

σσ
× = ×

× − × −
 (126) 

The product of the two eigenvalues ict and effect jet was derived as  
 

( )
( )( ) ( ) ( )( )

i t j t

i t j t

i t j t i t j t

c , e
c e

p c , e p c p e

σ
× ≡

− ×

 
(127) 

 
Substituting this relationship into the equation before, it follows that 
 

( )
( ) ( )( )

( )
( ) ( )( )

( )
( )( ) ( ) ( )( )

j t i t j ti t

2 2 i t j t i t j ti t i t j t j t

e c , ec

p c , e p c p ep c 1 p c p e 1 p e

σ σσ
× =

− ×× − × −

 
(128) 

The equation can be simplified as 



 

( )( ) ( ) ( )( )
( ) ( )( ) ( ) ( )( )

( )
( ) ( )

i t j t i t j t i t j t

2 i t j ti t i t j t j t

p c , e p c p e c , e

c ep c 1 p c p e 1 p e

− × σ
=

σ ×σ× − × × −
 

(129) 

 
The mathematical formula of the causal relationship k(ict, iet) follows as 

( ) ( )( ) ( ) ( )( )
( ) ( )( ) ( ) ( )( )

( )
( ) ( )

i t j t i t j t i t j t

i t j t
2 i t j ti t i t j t j t

p c , e p c p e c , e
k c , e

c ep c 1 p c p e 1 p e

− × σ
≡ =

σ × σ× − × × −
 

(130) 

 
 
 

Quod erat demonstrandum.  
 

Remark 6. The range of the causal relationship is 
 

( )i t j t1 k c , e 1− ≤ ≤ +  (131) 

4 Discussion 

This mathematical approach to the relationship between cause and effect is grounded 
on the law of independence known as 

( ) ( ) ( )i t j t i t j tp c , e p c p e≡ ×  (132) 

while the mathematical formula of the causal relationship k(ict, iet) even at quantum 
level follows as 

( ) ( )( ) ( ) ( )( )
( ) ( )( ) ( ) ( )( )

( )
( ) ( )

i t j t i t j t i t j t

i t j t
2 i t j ti t i t j t j t

p c , e p c p e c , e
k c , e

c ep c 1 p c p e 1 p e

− × σ
≡ =

σ × σ× − × × −
 

(133) 

These consideration of a deterministic relationship between cause and effect follows 
Einstein’s principle of locality and is primary a local-realistic approach to the 
relationship between cause and effect. Still, these approach to causality neither 
disproof nor disables non-locality. Meanwhile, the mathematical formula of causal 
relationship k is formulated even under conditions of general theory of relativity [59] 
while the electromagnetic field is geometrized [60] too. The problem of the physical 
meaning of the wave function [61] with the possibility to geometrize the gravitational 
field is solved. Still, other problems have to be considered. Especially the behavior 



and the meaning of Newton’s gravitational constant (at quantum level) is not clear. To 
see the problems clearly, let us perform the following thought experiment. Two 
space-ship in deep space with the mass m1 and m2 are accelerating while the distance 
between both is d and the net force is F. According to Newton’s law of gravitation we 
obtain 

1 2
2

m m
F

d

γ × ×=  (134) 

 
where γ denotes Newton’s constant of gravitation. Rearranging equation we obtain 
 

2

1 2

F d

m m

× = γ
×

 (135) 

After a period of time the acceleration of both masses (i.e. space-ships) ends, the net 
force F becomes zero while the distance d and the masses are different from zero. We 
obtain 

2

1 2

0 d

m m

× = γ
×

 (136) 

or 

0 = γ  (137) 

Dividing by Newton’s constant of gravitation, it is 

0 γ=
γ γ

 (138) 

or 

0 1=  (139) 

Consequently, if we accept Newton’s constant as a constant, we must accept too that 
+0=+1 or logical contradictions in nature. Thus far, there is already some evidence 
that Newton’s gravitational constant is not [62], [63] a constant. Form these 
considerations follows that either an accelerated system (i.e. conditions of the general 
theory of relativity) cannot change into the state of a non- accelerated system (i.e.  
conditions of the special theory of relativity) or Newton’s gravitational constant 
cannot be treated as a constant.  No reasonable understanding of physical reality could 
expect to permit the first case. The first is not being the case, we are left with the 
alternative stated. 
 



5 Conclusion 

Recent years have seen a proliferation of different refinements of the basic idea to 
achieve a closer match with commonsense judgements about causation 
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