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We demonstrate the fulfilment of the conservation laws with respect to fluxes of 

momentum, energy, spin, and photons when a plane circularly polarized 

electromagnetic wave reflects from a receding mirror at normal incidence. 
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1. Introduction 

The reflection of light from a moving mirror is essentially exhaustively investigated in a famous 

paper [1]. Nevertheless, it seems interesting to demonstrate the implementation of the conservation 

laws with respect to fluxes of momentum, energy, spin, and number of photons within such a 

reflection. The Maxwell tensor in Minkowski space [2],  
µλ
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αβλβ

µλ
αµαβ += FFgFFgT ,                                   (1.1) 

is used for the calculation of momentum and energy, and the canonical spin tensor [3,4], 
νµλλµν −=Υ ][2 FA ,                                             (1.2) 

is used for the calculation of spin. Here µλF  is the electromagnetic field tensor, and λA is the 

magnetic vector potential. The number of photons is calculated by means of a division of energy by 

ωh  or by means of a division of spin by h . We confine ourselves by the normal incidence of light 

on a mirror and, for concreteness, we consider the case of a receding mirror. Due to the spin count, 

we consider the incident plane wave of circular polarization   

)exp()( 1111 tizikiE ω−+= yxE  [V/m],    101 EH ciε−=  [A/m],    11 ω=ck             (1.3) 

and, respectively, the reflected wave 
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 As is well known [1], the frequency ratio of the reflected and incident waves coincides with 

the ratio of the amplitudes of these waves and is given by the formula 
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where cv /=β , and v  is the speed of the mirror. 

 

2. Momentum flux density, i.e. pressure P  

The wave, which impinges on the moving mirror, has the frequency related to the mirror, according 

to the Doppler effect [5, § 48],  
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and, respectively, has the amplitude 
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We consider the mirror to be superconducting, thus the magnetic field doubles on the mirror under a 

zero electric field 

)exp()(2 0000 tiicE ω−+ε= yxH .                                        (2.3) 

Therefore the pressure on the mirror is defined by the formula  =0P 2/2

0 ><µ>=< HT
zz

 and 

turns out to be equal to 
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 In addition to the momentum flux, which gives pressure on the mirror, there is a filling of 

the space vacated by the moving mirror by momentum. The volume density of the filling, 

>+=< ztztz TTG 21 , consists of two parts, belonging to the incident and to the reflected waves:  
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This filling requires the momentum flux density vG
z , which we will callP

~
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The total flux density is equal to: 
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 This total flux density is provided by the oncoming flux density >+=< zzzz TT 21P . Really, in 

accordance with the formula (1.1), we have expressions such as 
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for the incident or reflected waves. Thus the total momentum flux density, 
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coincides with expression (2.8).  

 

3. Law of Conservation of Energy 

The pressure on the mirror 0P  (2.4) produces a work because of the movement of the mirror. The 

corresponding mass-energy flux density is equal to: 
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 In addition, there is a filling of the space vacated by the moving mirror by mass-energy. The 

volume density of this filling, >+=< tttt TTu 21 , consists of two parts, belonging to the incident and 

to the reflected waves. Taking into account formula (1.1), we have expressions such as  
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for the incident or reflected waves. Thus the total volume mass-energy equals: 
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This filling requires the mass-energy flux density, which we call uv=Π
~

, 
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 The total mass-energy flux density,  
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is provided by the Poynting vector >+=<Π tztz TT 21 . Really, 
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The value (3.8) coincides with (3.6). 

 

4. Conservation of the number of photons 

The volume density of photons, n , in the space, vacated by the moving mirror, is obtained by 

dividing the portions of the energy density (3.4) by the energy of a single photon, i.e. by 1ωh  or by 

2ωh  
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Due to the motion of the mirror the number of the photons increases. This requires the photon 

number flux density  
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This flux density is provided by the difference of Poynting vectors from formula (3.8) 
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Photon number flux density (4.3) coincides with flux density (4.2). 

 

5. Conservation of spin 

The number of photons can be calculated not only on the basis of wave energy, but also on the basis 

of wave spin. The volume density of wave spin is given by the component of the canonical spin 

tensor (1.2) 
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and the spin flux density is given by the component 
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Note that the lowering of the spatial index of the vector potential is related to the change of the sign 

in the view of the metric signature )( −−−+ . 

 Since for a monochromatic field ∫ ω−=−= /kkk iEdtEA , densities (5.1), (5.2) can be 

expressed through the electromagnetic field: 
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In our case of reflection from a moving mirror (1.3), (1.4) volume density of the spin is equal to: 
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and the photon density is given through the division by h  and coincides with the value (4.1).  

The spin flux density is equal to:  
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and the photon flux density is given through the division by h  and coincides with the value (4.3). 

Naturally, the increase in the amount of spin is provided by the spin flux: 
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6. Conclusion 

The given calculations show that spin occurs to be the same natural property of a plane 

electromagnetic wave, as energy and momentum. Recognizing the existence of photons with 

momentum, energy and spin in a plane electromagnetic wave (1.3), it is strange to deny the 

existence of spin in such a wave, as is done in modern electrodynamics. 

 

I am eternally grateful to Professor Robert Romer, having courageously published my question: 

"Does a plane wave really not carry spin?” [6], and to the reviewer of JMO, who evaluated my 

paper [7] positively.  

 See also "Note" in http://khrapkori.wmsite.ru/ftpgetfile.php?id=9&module=files 
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