A General type of Liénard Second Order Differential Equation : Classical and Quantum Mechanical Study

Biswanath Rath ${ }^{1}$, P. Mallick ${ }^{1}$, Jean Akande ${ }^{2}$, D.K.K. Adjaї ${ }^{2}$, L.H. Koudahoun ${ }^{2}$, Y.J.F Kpomahou ${ }^{3}$ and Marc D. Monsia ${ }^{2 \dagger}$
1. Department of Physics, North Orissa University, Takatpur, Baripada -757003, Odisha, INDIA(* E.mail:biswanathrath10@gmail.com).
2. Department of Physics, University of Abomey- Calavi, Abomey-Calavi, 01.B.P.526, Cotonou, BENIN (Corresponding author \dagger E.mail:monsiadelphin@yahoo.fr).
3. Department of Industrial and Technical Sciences, ENSET-Lokossa, University of Abomey, Abomey, BENIN.

We generate a general model of Liénard type of second order differential equation and study its classical solution. We also generate Hamiltonian from the differential equation and study its stable eigenvalues.

PACS: (i) $02.30 . \mathrm{Hq}$: Ordinary differential equations.
(ii) $02.60-\mathrm{x}$: Numerical approximation and analysis.
(iii)03.65. Ge: Solutions of wave equations and bound states.
(iv)03.65.-w: Quantum theory; quantum mechanics.

Keywords: Liénard differential equation, classical solution, Hamiltonian, eigenvalues, matrix diagonalisation method.

I. Introduction

Liénard equations are widely used in many branches of science and engineering to model various types of phenomena like oscillations in mechanical and electrical systems. Particulary, more than fifty years, there has been a continued interest among different authors for paying attention of Liénard type differential equation $[1,2]$

$$
\begin{equation*}
\frac{d^{2} x}{d t^{2}}+f(x)\left(\frac{d x}{d t}\right)^{2}+g(x) x=0 \tag{1}
\end{equation*}
$$

where $f(x)$ and $g(x)$ are functions of x since it admits position-dependant mass dynamics useful for several applications of quantum physics. These types of second order differential equation are interesting for physicists provided one generates suitable Hamiltonian. For all possible values of $f(x)$ and $g(x)$, it may not be possible to generate Hamiltonian having stable eigenvalues. Secondly a classical model solution can also be obtained using He's approximation [3-6] by using procedure given below

$$
\begin{equation*}
\frac{d^{2} x}{d t^{2}}+f(x)\left(\frac{d x}{d t}\right)^{2}+g(x) x=R(t) \tag{2}
\end{equation*}
$$

Let us consider now two different values of x as

$$
\begin{equation*}
x_{1}=A \cos w_{1} t \tag{3}
\end{equation*}
$$

and

$$
\begin{equation*}
x_{2}=A \cos w_{2} t \tag{4}
\end{equation*}
$$

then

$$
\begin{equation*}
w^{2}=w_{2}^{2}=\frac{R_{2}(0) w_{1}^{2}-R_{1}(0) w_{2}^{2}}{R_{2}(0)-R_{1}(0)} \tag{5}
\end{equation*}
$$

here $w_{1}=1$. In this paper, we address the above differential equation by selecting a general type of values on $f(x)$ and $g(x)$, and generate suitable Hamiltonian and study its stable eigenvalues.

II. General type of Differential Equation and Solution

Here we consider a general type of differential equation as

$$
\begin{equation*}
\frac{d^{2} x}{d t^{2}}+\frac{N \lambda x^{N-1}}{2\left(1+\lambda x^{N}\right)}\left(\frac{d x}{d t}\right)^{2}+w_{0}^{2} \frac{K x^{K-1}}{2\left(1+\lambda x^{N}\right)}=0 \tag{6}
\end{equation*}
$$

where $N, K=2,4,6, \ldots \ldots$. In this equation one has to fix the value of K and vary N or vice versa. Let us consider that the general solution of this differential equation be

$$
\begin{gather*}
x=A \cos w t \tag{7}\\
w=w_{0}^{2} \frac{K A^{K-2}}{2\left(1+\lambda A^{N}\right)} \tag{8}
\end{gather*}
$$

III. Hamiltonian generation

In order to generate Hamiltonians we multiply the differential equation by \dot{x} and rewrite it as

$$
\begin{equation*}
\frac{d\left[\frac{\dot{x}^{2}\left(1+\lambda x^{N}\right)+w_{0}^{2} x^{K}}{2}\right]}{d t}=0 \tag{9}
\end{equation*}
$$

Let the bracket term be denoted as H where

$$
\begin{equation*}
H=\frac{1}{2}\left[\dot{x}^{2}\left(1+\lambda x^{N}\right)+w_{0}^{2} x^{K}\right] \tag{10}
\end{equation*}
$$

Now define momentum p as

$$
\begin{equation*}
p=\frac{\partial H}{\partial \dot{x}} \tag{11}
\end{equation*}
$$

Hence one can be write

$$
\begin{equation*}
H=\frac{1}{2}\left[\frac{p^{2}}{\left(1+\lambda x^{N}\right)}+w_{0}^{2} x^{K}\right] \tag{12}
\end{equation*}
$$

One can interpret this Hamiltonian as a model in which mass varies with distance [3].

IV. Eigenvalues of Generated Hamiltonian

Here we solve the eigenvalue relation

$$
\begin{equation*}
H \Psi=E \Psi \tag{13}
\end{equation*}
$$

using matrix diagonalisation method [7]. In fact one will notice that the above Hamiltonian is not invariant under exchange of momentum p and $\frac{1}{1+\lambda x^{N}}$. Hence following the literature [8] we write the invariant Hamiltonian as

$$
\begin{equation*}
H=\frac{1}{2}\left[p \frac{1}{\left(1+\lambda x^{N}\right)} p+w_{0}^{2} x^{K}\right] \tag{14}
\end{equation*}
$$

and reflect the first four states eigenvalues in table-1.
Table -1 : First four eigenvalues of Hamiltonians with $w_{0}=1$, $\lambda=1$

Hamiltonian	Eigenvalues
$H=\frac{1}{2}\left[p \frac{1}{\left(1+x^{2}\right)} p+x^{2}\right]$	0.355026280
	1.226397537
	1.846999994
	2.445481398
$H=\frac{1}{2}\left[p \frac{1}{\left(1+x^{4}\right)} p+x^{2}\right]$	0.338179394
	1.199312190
	1.770479342
	2.154962590
$H=\frac{1}{2}\left[p \frac{1}{\left(1+x^{6}\right)} p+x^{2}\right]$	0.320091281
	1.169152075
	1.662103201
	1.897043406
$H=\frac{1}{2}\left[p \frac{1}{\left(1+x^{2}\right)} p+x^{4}\right]$	0.342163615
	1.447762223
	2.733381643
	3.824351590
$H=\frac{1}{2}\left[p \frac{1}{\left(1+x^{4}\right)} p+x^{4}\right]$	0.326786311
	1.447762223
	2.733381643
	3.824351590
$H=\frac{1}{2}\left[p \frac{1}{\left(1+x^{6}\right)} p+x^{4}\right]$	0.306713747
	1.392267754
	2.676140588
	3.519246808
$H=\frac{1}{2}\left[p \frac{1}{\left(1+x^{2}\right)} p+x^{6}\right]$	0.354476360
	1.652542050
	3.294555429
	5.270061821
$H=\frac{1}{2}\left[p \frac{1}{\left(1+x^{4}\right)} p+x^{6}\right]$	0.341508635
	1.617435142
	3.393428656

V. Phase portrait in the (x, p) plane

Phase trajectories of the system (12) are represented in the following figures for different parametric choices.

VI. Conclusion

In this paper we have generated a general form of differential equation which can be termed as Liénard type. Further we find classical solution and quantum eigenvalues of the generated system. We hope interested reader can follow the present approach and generate many similar type of Hamiltonians. Last but not the least present analysis reveals the quantum behaviour in classical differential equation.

References

[1] T. Harko, F.S.N. Lobo and M.K. Mak, Uni.Jour.Appl.Math 1(2), 101 (2013)(References cited there in).
[2] M.D. Monsia, J. Akande, D.K.K. Adjaï, L.H. Koudahoun and Y.J.F. Kpomahou, viXra:1608.0226v1 (2016); 1608.0368v1 (2016).
[3] J.H. He, Int.J.Mod.Phys, B22(21), 3487(2008).
[4] L. Geng and Xu-Chu Cai, Eur.J.Phys 28, 923 (2007).
[5] J.H. He. Eur.J.Phys 29, L-19 (2008).
[6] B. Rath, Orissa. Jour.Phys 18(1), 109(2011).
[7] Rath B., Mallick P. and Samal P. K. 2014 The African.Rev.Phys $9: 0027$ 201; Rath B. 2016 The African.Rev.Phys (Accepted for publication).
[8] B. Rath, Phys.Scr 78, 065012(2008).

Figure 1: Phase trajectories of the Hamiltonian system (12) with $\omega_{0}=$ $\lambda=1, N=K=2$, for various values of $E=H$.

Figure 2: Phase trajectories of the Hamiltonian system (12) with $\omega_{0}=$ $\lambda=1, N=4, K=2$, for various values of $E=H$.

Figure 3: Phase trajectories of the Hamiltonian system (12) with $\omega_{0}=$ $\lambda=1, N=6, K=2$, for various values of $E=H$.

Figure 4: Phase trajectories of the Hamiltonian system (12) with $\omega_{0}=$ $\lambda=1, N=2, K=4$, for various values of $E=H$.

Figure 5: Phase trajectories of the Hamiltonian system (12) with $\omega_{0}=$ $\lambda=1, N=K=4$, for various values of $E=H$.

Figure 6: Phase trajectories of the Hamiltonian system (12) with $\omega_{0}=$ $\lambda=1, N=6, K=4$, for various values of $E=H$.

Figure 7: Phase trajectories of the Hamiltonian system (12) with $\omega_{0}=$ $\lambda=1, N=2, K=6$, for various values of $E=H$.

Figure 8: Phase trajectories of the Hamiltonian system (12) with $\omega_{0}=$ $\lambda=1, N=4, K=6$, for various values of $E=H$.

