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Abstract 

Despite being supported by overwhelming evidence, the Standard Model (SM) of particle physics is 

challenged by many foundational questions. The root cause of its gauge structure and of discrete 

symmetry breaking continues to be unknown. Here we show how these questions may be approached 

using the multifractal geometry of the SM near the electroweak scale.  
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1. Introduction 

For the last few decades, the Standard Model of electroweak and strong interaction (SM) 

has been tested with remarkable accuracy. Although the SM has been successful in 

describing experimental observations so far, it is confronted by many foundational 

questions which resist explanation. The prevailing view is that the SM embodies an 

effective Lagrangian to a more fundamental theory, whose formulation is yet to be 

developed. The hope is that future extension(s) of the SM will satisfactorily address 

these puzzles, while recovering the SM physics in the low-energy limit.  A prime 

example of long-standing issues relates to the origin of SM symmetries. Drawing on the 
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multifractal geometry of the SM near the electroweak scale [1-3], here we focus on 

seeking clues to the following questions:  

1) Why is the SM described by the SU(3) x SU(2) x U(1) gauge group? 

2) Why are there discrete symmetries in the SM (C, P and T) and why are these 

symmetries broken while the overall CPT symmetry remains exact? 

The paper is organized the following way: the first section contains a brief introduction 

to multifractal theory; the second and third sections elaborate on the connection 

between multifractals, statistical physics and perturbative quantum field theory (QFT). 

Section four outlines the set of assumptions on which the paper is built. This enables 

development of next sections, where scaling flows are shown to generate Lie groups and, 

implicitly, be linked to the continuous and discrete symmetries of the SM.  A discussion 

of results and open questions follows in section eight. Two appendix sections are also 

included. Appendix A deals with discrete scale invariance (DSI) in statistical mechanics 

and Renormalization Group (RG), whereas Appendix B considers the link between 

multifractal geometry of the SM and stochastic quantization [4, 5]. The paper ends with 

a list of abbreviations used throughout the text.     

The reader is cautioned that this work is solely meant to be a preliminary investigation. 

As such, it lacks the rigor and level of completion that one should expect from a 

comprehensive research project. Our only goal is to sketch up a novel perspective on the 

gauge and discrete symmetries of the SM, with no attempt to cover all technical aspects 

of these topics. Further analysis, on both theoretical and experimental sides, is needed 

to substantiate, reject or expand the body of ideas presented here.  
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2. Basics of multifractal theory 

This section contains a brief overview of fractal and multifractal sets, with the intent of 

making the paper accessible and self-contained. 

The box-counting dimension defines the main scaling property of fractal sets and is a 

measure of their self-similarity. Consider a fractal set S  covered with a collection of 

boxes characterized by a local size r . The number of boxes needed to cover the set is 

given by 

 ( )N r ~ Dr  (1) 

where D  stands for the scaling dimension of the set, 
1log ( ) log( )D N r r   .  If S  is 

instead composed by a global mixture of fractal subsets, the single scaling dimension is 

replaced by a continuous spectrum of dimensions min max     such that, for each 

value min max[ , ]   , the number of boxes of size r  covering the set takes the form 

 ( )rN  ~ ( )rfr   (2) 

Relation (2) shows that self-similarity of multifractals is defined in terms of a 

multifractal spectrum ( )
r

f   describing the overall distribution of dimensions  . 

Two complementary methods for characterization of multifractals have been devised. 

The first one is based on the recursive construction of multifractal sets from 1,2...,i N  

local scales ir  with probabilities ip . Using this method, the definition of the box-

counting dimension leads to [6, 7]   
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Here, q  and ( )q  are two arbitrary exponents and the latter is given by 

 ( ) (1 )  qq q D   (5) 

where qD   plays the role of generalized dimension. The second method appeals to the 

( )f   spectrum evaluated as continuous function of  . The two methods are related 

through the Legendre transform [8] 

 ( ( )) ( ) ( )f q q q q     (6) 

where the following relations hold 
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In a broader context, multifractal analysis may be regarded as the study of invariant 

sets and is a powerful tool for the characterization of generic dynamical systems. In 

general, a strange attractor is an attractive limit set with unstable trajectories. The 
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emergence of strange attractors is a typical signature of transition to chaos in the 

behavior of nonlinear dynamical systems [8, 9].  

3. QFT as analog of multifractal sets 

Starting from (3) and (6), it can be shown that classical statistical mechanics offers a 

straightforward analog of multifractal analysis. In particular, temperature ( )T , entropy 

( )S , internal energy ( )U  and free energy ( )F  are respectively echoed in multifractal 

theory by , , ( )q f  and ( )q [6, 8]. Considering this analogy, the connection 

 ( , ) ( , )F T V U S V TS   (9) 

becomes a replica of (6), where V stands for volume and  

 
V

U
dU TdS pdV T

S

 
 
 


   


 (10) 

In what follows, we further expand this analogy by using the known relationship 

between statistical mechanics and quantum field theory (QFT) [10, 11].  For the sake of 

simplicity, we focus on a Legendre transform like (6) as applied to four-dimensional 

scalar field theory. This transform connects the generating functional of the theory 

[ ]W J  to its effective action [ ]  and to the field and current content expressed by ( )x  

and ( ) [ ]( )J x J x , respectively [10, 11] 

 4[ ] [ ] ( ) ( )W J d x J x x      (11) 

Here, the field is given by the first functional derivative of [ ]W J , 
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and the current by the first functional derivative of the effective action, 

 
[ ]

( )
( )

J x
x

 




   (13) 

Taken together, relations (7) to (13) reveal a meaningful comparison between 

multifractals, statistical mechanics and QFT, as captured in Tab. 1 below. 

Multifractals Statistical Mechanics QFT 

q  1T q  J  

  S    

( )f   ( )U S  [ ]  

( )q  ( )F T T  [ ]W J  

Tab.1: Linking multifractals, statistical mechanics and QFT. 

4. Assumptions 

The defining attribute of multifractals is that their geometry remains nearly self-similar 

upon consecutive scaling operations. Likewise, RG leads to a flow of observables from 

the ultraviolet to the infrared sector of field theory, where the flow is expected to reach a 

state insensitive to scale transformations. Accordingly, it makes sense to proceed with 

the following set of assumptions inspired by the route to scale invariance in both 

multifractal theory and RG:     
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1. All variables listed in Tab. 1 are considered analytic functions of the energy scale 

 . Given an arbitrary reference scale ref , the running scale is defined as 

ref




  with 1  . 

2. The field entry in Tab.1 represents the vector of field operators  1 2, ,...O O  . 

Likewise, the current entry stands for the vector of quantum currents present in 

the theory  1 2, ,...J j j . 

3. The textbook description of multifractals, statistical mechanics and effective QFT 

corresponds to the equilibrium regime of low energies ( 1 ). An alternative 

motivation for this ansatz is given in Appendix B. 

4. The global nature of multifractal sets implies that the flow of variables occurs on 

multiple scales ( i ) which are coupled to each other.  

5. Lie Groups from scaling flows 

Previous considerations and the content of Tab. 1 point out that multifractals (as well as 

their QFT counterparts) are composite structures built from interconnected entities. 

Continuous transformations within multifractals or QFT variables may be broadly 

viewed as flows in an appropriate multi-dimensional phase-space. There is a four-

parameter group of transformations on a four-dimensional space defined as 

 1 2 3 4 1 2 3 4' ( , , , ; , , , )i ix f x x x x     ,    1,2,3, 4i   (14) 

where the phase-space coordinates are given by 

 ( , , ( ), ( ))x q q f    or ( , , [ ], [ ])x J W J    (15) 
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Here, per the first assumption above, each evolution parameter i  represents the 

running energy scale normalized to a reference energy scale, that is,   

 i
i

ref





  (16) 

In what follows, we refer to (14) as scaling flows, asymptotically reaching stationarity in 

the limit 1i  . The aim of this section is to explicitly show how Lie groups arise from 

(14). 

To this end, assume that one of the running scales i  varies from some fixed value 0  

while all the other scales are held constant [12]. This is equivalent to stating that the 

flow relative to i  is faster than the flow relative to all other scales, that is, i k      

for i k . Next, examine the effect of infinitesimal coordinate transformations on an 

arbitrary differentiable function F  
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The coefficient multiplying id  in this expression can be identified as the differential 

operator  
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 ,   1,2,3, 4i   (18) 

iX  represent the generators of the Lie group, which are non-commuting via the closure 

relation    
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  , m

l k lk mX X c X ,    , , 1, 2,3, 4l k m    (19) 

where m

l kc  are the structure constants. Additional insights into the topic of flows in phase 

space and their association to Lie groups may be found in [13, 19]. 

6. Connection to the SM gauge group  

Any new framework of ideas built exclusively on scalar field theory, such as the one 

developed in section 5, cannot be a realistic expansion of QFT and SM. Spin 1 and spin 

½ fields and their interactions must be obviously included in the picture and properly 

accounted for. However, the Landau-Ginzburg theory of critical behavior, used in 

conjunction with the mapping theorem, enable a reduction in complexity near the 

infrared limit of field theory and provides a reasonable baseline for model building [1]. 

Pursuing this line of inquiry, it can be shown that the repetitive structure of the particle 

masses and flavors arises from the universal period-doubling route to chaos in 

nonlinear dynamics [1-3, 14]. Close to the electroweak scale, SM behaves like a tightly 

constrained multifractal set, with field and coupling components acting as generators of 

the set. 

These observations suggest that it makes sense to generalize (14) to (19) to 4p   and 

arrive at a framework that can accommodate Lie groups of dimensionality 1, 2 and 3. 

The aim of this section is to explore this scenario. 

We begin by extending (14) to 

 1 2 1 2' ( , ,..., ; , ,..., )i i p px f x x x    ,   1,2,...,i p ,   4p       (20) 

and recalling that elements of the Lie group can be written as  
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 1 2

1

( , ,...., ) exp( )
p

p j j

j

E i X   


   (21) 

where j  are continuous parameters and jX  the group generators [12]. In particular, 

the group SU(2) is the set of all two-dimensional, complex unitary matrices with unit 

determinant. The group elements are defined by three generators and three parameters, 

 1 2 3( , , ) exp( )j jE i X     ,    1,2,3j   (22) 

where the summation convention has been applied. The generators of SU(2) form a set 

of linearly independent, traceless 2 x 2 Hermitian matrices 

                              1

0 11

1 02
X

 
  

 
       2

01

02

i
X

i

 
  

 
        3

1 01

0 12
X

 
  

 
                             (23) 

Likewise, the group (3)SU  is the set of all three dimensional, complex unitary matrices 

having unit determinant. The group is defined by eight parameters and generators 

                                            1 2 8( , ,..., ) exp( )j jE i X     ,     1,2,...,8j                                   (24)                    

The generators of (3)SU  form a set of eight linearly independent and traceless 

Hermitian matrices and are a generalization of (23). 

The onset of gauge symmetries is reflected in the covariant derivative operator D  

entering the SM Lagrangian. This correspondence can be presented as 

(1) :U    1
2

Y
D ig B     ,     1 1g Y X ,      1j      
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                               (2) :SU    2
2

j jW
D ig



 
 

   ,     2 j jg X  ,    1,2,3j                         (25)             

(3) :SU     
3

2

j

jD ig G  


    ,      3 j jg X   ,     1,2,...,8j   

Here, , ,j jY    stand for the generators of the (1), (2)U SU  and (3)SU  groups, , jB W   and 

jG  are the gauge bosons of the electroweak model and quantum chromodynamics 

(QCD), coupled to their respective generators via 1 2,g g  and  3g . Comparing (18) to (25) 

hints that the three gauge symmetries of the SM derive from the scaling flows (20). The 

multifractal content of the SM, derived in [1, 3, 20] from the Feigenbaum scenario, is 

organized around (25). This is the main result of our work. 

7. Connection to the discrete symmetries of the SM 

To simplify the ensuing derivation, we now return to scalar field theory (relations (14) to 

(19)) and take the fastest running scale to be 4 . In addition, we assume that, near the 

equilibrium regime 
4 1  , the effective action retains its dependence on currents, fields 

and generating functional as in 

 4( , , , [ ])J W J    ,    4 1   (26) 

with the provision that the Legendre transform (11) holds exactly at 4 1  .  Demanding 

that the effective action approaches scale invariance in this limit amounts to   

 1 2 3 4

4

( ) 0
d

d J W
   

 

  
     

  
,   4 1   (27) 
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To maintain internal consistency of the model defined by (26), in the following we 

demand that, regardless of 4 , the effective action stays strictly scale invariant as the 

scaling flow approaches the equilibrium point, i.e. 

                                                          4

4 4

0, 1
d

d


 

 
  


                                                     (29a) 

or, 

 2 3 4( ) 0
J W

  


  
  

  
 (29b) 

The number of independent beta-functions describing the field theory can be reduced 

from four to three on account of the Legendre transform (11). Further demanding that 

the remaining 2,3,4  flows stay nearly insensitive to 4  as 4 1   can be expressed 

generically as [15, 16, Appendix A] 

 4 0

1
( ) ( ) ( )y y y

a
      (30) 
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Here, the observable vector is ( , , [ ])y J W J , 4 ref    is the running energy scale 

associated with [ ] , 0  is an initial energy scale and a  a scaling factor. It is helpful to 

work with normalized quantities, hence we rewrite (30) as 

                                                   4 0

1
( ) ( ) ( )y z y z y z

a
  ,     

0

z



                                             (31)                

For the specific choice 0 ( ) 0y z  , (31) has a power-law solution of the form  

                                                         ( ) sy z Cz ,      
1

4

log ( )

log

a
s





                                                (32)           

It is seen that 4
4

( )

( )

sy z

y z


 , which means that the relative value of y  is nearly 

independent of the normalized energy scale z . This feature is an essential attribute that 

links power laws to self-similarity of multifractal structures and the onset of critical 

behavior [8, 15]. Inserting (32) into (31) yields the condition 

                                           4 41 exp( 2 )
s s

i n
a a

 
   ,     0, 1, 2,...n                                       (33)     

from which we obtain 

                                                           
1

4 4

log( ) 2

log log

a n
s i



 



                                                         (34)    

The case 0n   corresponds to the traditional continuous scale invariance encountered 

in critical phenomena. For n  ≠ 0 , the solution (34) is complex and it relates to discrete 

scale invariance (DSI) with the preferred scale 4  [16]. The rationale for the emergence 
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of DSI lies in the linearization of the RG equation describing the evolution of the 

observable y  near the fixed point.  Typically, DSI exhibits lacunarity, in the sense that 

it leads to a geometric series of preferred scales  i  [16].  Appendix A outlines the 

justification for DSI in terms of the Mellin transform. 

It is apparent that a preferred energy scale 4 4 ref    automatically induces a non-

vanishing cutoff in the spacetime domain, 1

4( )x O    . This cutoff leads to a violation of 

Lorentz invariance if the resolution of spacetime measurements is on the order of x . 

The situation replicates the way discrete spacetime near the Planck scale breaks 

relativistic invariance in Loop Quantum Gravity [17]. If 4  does not fall too far from 1  

and if the reference scale is substantially closer to the electroweak scale, ( )ref EWO M  , 

the onset of x  necessarily breaks the translation and reflection symmetries of 

spacetime coordinates as the scaling flow converges to the electroweak scale EWM .  

Hence, we arrive at a couple of new conclusions: 

1. DSI offers a plausible explanation of discrete symmetry breaking in particle 

reactions involving the electroweak interaction. 

2. While partial reflection symmetries P  and T  are broken because of DSI, the 

overall Lorentz and CPT  symmetries must stay unbroken. This conclusion can 

be traced back to the constraint (29), which forces the effective action to be 

insensitive to any choice of 4 .  

8. Discussion 

Our tentative findings may be summarized as follows: 
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1. The SM gauge group SU(3) x SU(2) x U(1)  arises from the infrared regime of  

scaling flows (20). 

2. DSI generates (at least) one preferred energy scale near the equilibrium point of 

(20) and is the root cause of discrete symmetry breaking in the SM.             

There is a host of open questions requiring further scrutiny and clarifications. Here are 

some of them: 

a. The amplitude of log-periodic scale corrections is assumed to decay exponentially 

fast as a function of harmonics [16]. Does this remain true for the onset of DSI in 

the SM? 

b. Does the lacunarity property of DSI imply that there are other scales beside the 

electroweak scale that are bound to show up below EWM  or be entirely 

suppressed? 

c. Are these additional scales related to the full spectrum of SM particle masses, 

gauge charges and flavors? Note that this question arises because log-periodic 

corrections are consistent with the Feigenbaum scenario of bifurcations in 

nonlinear dynamics [14, 16].    

d. QCD exhibits chiral symmetry breaking, in which the light ,u d  and s  quarks 

develop condensates in the vacuum and acquire larger “constituent masses”. How 

is the emergence of preferred scales in DSI linked to this mechanism? Is DSI a 

substitute of dimensional transmutation in the SM? 

e. What other insights are there, as related to RG and its unexplored implications 

[19]? 
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Table 2 below contains a condensed description of continuous scaling flows and their 

associated discrete symmetries in multifractals and QFT (SM).     

Continuous 

 

4 4( , ); ( , , ( ), ( ))x f x x q q f        

 
4 4( , ); ( , , [ ], [ ])x f x x J W J        

 Discrete  4 , 1,2,....i i    , ,C P T  and  CPT  

Tab. 2: Scaling flows and discrete symmetries in multifractals and QFT(SM). 

Appendix A 

Following [18], let ( )y z  denote a generic field dependent on the set of variables indexed 

by z . Renormalization of ( )y z  implies the existence of an equation of the form 

  ( ) ( ) ( )y z y z u z    (A1) 

in which   is a linear renormalization operator and ( )u z  a smooth field. The fixed point 

solution of (A1) after n  operator iterations is denoted by ( )y z  and satisfies 

  
1

( ) ( ) ( )n

n

y z u z y z






    (A2) 

It can be shown that the solution of (A2) displays DSI. The proof is based on the Mellin 

transform, which is used in the study of functions exhibiting scaling symmetry. The 

Mellin transform of (A1) reads 

 1

0
( ) ( )sY s z y z dz


   (A3) 
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where the variable s  has the meaning of a relative scale (
'

zs
z

 ). Close to a fixed point 

0z  of the renormalization sequence (A2), the operator   is well approximated by  

   0 0 0

1
( ) ( ( ))y z y z z z

a
     (A4) 

Assuming 0 0z   for simplicity, the Mellin transform (A3) takes the form 

 
1

0

1
( ) ( ) ( )

1 s
Y s U s Y s

a 




 


 (A5)  

The first term of (A5) presents a series of poles in Mellin scales for integer n  

 
1

0 0

log( ) 2

log log
n

a n
s i



 



    (A6) 

indicating the onset of the preferred scale 0 . The behavior of ( )y z  is determined by 

the complex poles of (A5), which have been identified with the complex valued 

dimensions of fractal structures [15]. It is instructive to note that the spectrum of the 

Mellin transform is singular, the same way the Fourier spectrum of periodic signals is 

also singular.   

Appendix B 

The object of this Appendix section is to delve into the connection between multifractal 

geometry of the SM and stochastic quantization, the latter being founded on the analogy 

between Euclidean QFT and equilibrium statistical mechanics [4-5]. Stochastic 

quantization identifies the Euclidean path integral measure of QFT,
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   exp / D expE ES S  , (with 1 ) with the stationary distribution of a stochastic 

process. This interpretation implies that Euclidean Green functions of QFT are 

indistinguishable from to the correlation functions of equilibrium statistical mechanics 

(see B4 below). 

The key premise of stochastic quantization is that the fields ( )x  are supplemented with 

an additional coordinate called “fictitious” time  . Fields become coupled to a fictitious 

heat reservoir which relaxes to thermal equilibrium as   . In this picture, the 

fictitious time evolution of ( )x  in four-dimensional Euclidean space resembles a 

continuous random walk. It is described by a stochastic differential equation of the 

Langevin or Fokker-Planck type. For example, 

 
( , )

( , )
( , )

Ex S
x

x

 
 

  

 
  

 
 (B1) 

Here, ES  is the Euclidean action of the system, obtained by integration over   

 4 ( , )
( ( , ), )E

x
S d d x L x

x

 
  




  (B2) 

and ( , )x   stands for delta-correlated Gaussian noise. In the equilibrium limit   , 

equal time correlation functions of the fields are shown to be identical to the 

corresponding quantum Green functions, i.e. 

 
1 1( , )... ( , ) ( )... ( )lim k kx x x x


     


  (B3) 

where 
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1

1

D exp( ) ( )... ( )
( )... ( )

D exp( )

E k

k

E

S x x
x x

S

  
 











 (B4) 

It was shown in [1, 2] that, near the electroweak scale 
EWM , the spectrum of particle 

masses 
im  entering the SM satisfies the closure constraint 

 
16 16

2 2

1 1

( ) 1i
i

i i EW

m
r

M 

    (B5) 

Since (B5) reflects a typical relationship in the theory of multifractal sets, it allows for a 

direct connection between multifractal geometry of the SM and stochastic quantization. 

To this end, let us start from the reciprocal of the evolution parameters defined in 

section four and (16). It reads  

 1 2 2 2

01 1 ( ) ( ) 1 (1)i EW
i i i

EW UV

m M
r O

M
         


,   2

0 (4 ) 1i ir O D       (B6) 

in which 0  represents an arbitrarily small deviation from the four-dimensionality of 

classical spacetime and UV  is the high-energy scale [1, 2]. The fictitious time of 

stochastic quantization can be then interpreted as i  , with 1( )i iO   . 

Conventional formulation of QFT is recovered in the deep infrared limit i   , 

0i  , where spacetime dimensionality settles at  4D  .  

Abbreviations list   

SM = Standard Model of High-Energy Physics 

QFT = Quantum Field Theory 
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RG = Renormalization Group 

DSI = Discrete Scale Invariance 

EW = Electroweak 

QCD = Quantum Chromodynamics 
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