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Abstract 

 

This short note seeks to draw together and clarify the author’s early papers on the matter of an error in use of the 

formalism of quantum mechanics in the No-communication theorem (NCT). The enquiry occurred from the 

investigation of two interferometer based communication systems: one two photon entanglement, the other single 

photon path entanglement. The state vector treatment confirmed the communication protocol but the NCT, couched 

in the density matrix treatment forbade it. Since both state vector and density matrix formalisms contain the same 

treatment of quantum mechanics, which of course, has been extensively tested, the only conclusion is the NCT has 

an error in the use of the formalism of density matrices. Here we clarify that error cogently and with brevity. 

 

1. Introduction 

 

The author investigated two schemes using entangled 

communication [1, 2]
†
 and is currently seeking 

partners to corroboration the latter path-entangled 

method. Mathematically the two entangled polarised 

photon system is identical to the one photon path-

entangled system, as both are forms of the Bell 

states[3].  
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 eqn. 1 

 

The author has directly interacted with two of the 

founders of the No-communications theorem (NCT), 

Michael Hall (Australian patent office, whom granted 

a patent) and Giancarlo Ghirardi, whom offered a 

repost[4]. In this note, Ghirardi used the density 

matrix treatment. We seek to counter those arguments 

coherently and concisely.   

 

2. The state vector approach 

 

We are interested in two endpoints of 

communication, so the joint evolution of a two 

particle system is used
‡
. The state vector formalism 

gives this as: 
 

 
1 1 1 1 2 1

O Oψ ψ ψ ψ′ ′⊗ = ⊗  eqn. 2 

 
Where the operators O1 and O2 (which themselves 

may be several operators) act on their respective 

quantum states, be they unitary or non-unitary. 

The ensuing bone of contention, as we shall see, 

arises when the states can’t be factorised and we shall 

discuss the first apparatus[1] in this context
§
. The 

evolution (not writing explicitly the tensor product 

symbol) is then: 
 

 
12 1 2 12

O Oψ ψ′ =  eqn. 3 

 
For the first apparatus[1], if the input is: 
 

 ( )12 1 2 1 2

1

2
H V V Hψ = ⊗ + ⊗  eqn. 4 

                                                           
†
 Diagrams/schematics of the apparatus: 

   http://webspace.qmul.ac.uk/rocornwall/protocol.jpg  

   http://webspace.qmul.ac.uk/rocornwall/Flyer_QSE1.gif  

 
‡
 Though for the second apparatus, one particle evolution is 

sufficient, although one could model the absence of a particle, the 

vacuum state, as a quasi-particle. 

 
§
 Indeed, Michael Hall said to Cornwall in private communication, 

“You don’t think that one of the pair of photons goes through the 

interferometer as though it is in the diagonal basis?” We find it 

does. 

Then the evolution is: 
1 2 12 12

O O ψ ψ ′→  
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  eqn. 5 

Where, 

 

� The first photon travels through free 

space:
1

Û  

 

� The polarising beam-splitter is the 

projection: 
2 2 2 2

ˆ
PBS

U H H V V= +  

 

� The Faraday rotators (there can be just one 

with angle π/2) are shown: 4
i

e

π
−

 and 4
i

e

π
+

 

 

� Then the phase plate to adjust the 

interference fringe is: i
e

θ−  

 

Before measurement, the state is (D represents the 

diagonal basis) : 

 

 ( )12 1 2 1 2

1

2

i
H e D V D

θψ −= ⊗ + ⊗ eqn. 6 

 

And one final operation gives the effect of the 

detector by the number operator †

2 2 2
ˆ ˆ ˆn a a=  projecting 

into the number basis: 

 

 

( )

12 1 2 12
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U n
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ψ ψ −

′ =

⇒

′ = ⊗ −

 eqn. 7 

 

It is easy to then trace out system one to see system 

two: 

 ( )2 2

1
1 1

2

ie θψ −= −
 eqn. 8 

Measurement on either system and the spectral 

theory yield the mixed state: 

 

( )1 2
 

2

iRand
ie

H e D
θ

−
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or    ( )1 2   
2

iRand
e

V D
−

⊗  

 

Where iRand
e

− is the random phase relation between 

them. The number operator and trace out yields (the 
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phase of individual events is not important nor is 

there superposition) at the detector: 
 

 
2 2

1
1

2
ψ =  eqn. 9 

 
The state vector approach permits discernment of 

distant measurement on an entangled system (not 

least a single photon path entangled[2]) and this 

should give identical results to density matrix 

analysis. 

 

3. The density matrix approach 

 
The state vector and density matrix formulations of 
quantum mechanics are of course identical[5]. If we 
can write: 

†
 and U Uψ ψ ψ ψ′ ′= =  

 
Then it is correct to write: 

 

 

†

U U

or

U U

ψ ψ ψ ψ

ρ ρ

′ ′ =

′ =

 eqn. 10 

 

Considering only two particles (though the results are 

extensible to any number of particles), if the states 

were separable, we’d write the evolution as: 

 

 † †

1 2 1 1 1 2 2 2
U U U Uρ ρ ρ ρ′ ′⊗ = ⊗  eqn. 11 

 

If the states cannot be factorised, the evolution is: 

 †

12 12 12 12
U Uρ ρ′ =  eqn. 12 

 

These results, eqn. 11 and eqn. 12 are no different 

than eqn. 2 or eqn. 3, respectively. Let us now 

explore the NCT which is couched in terms of the 

density matrix treatment. 

 

4. The NCT and the flaw it contains 

 

The NCT[6, 7] essentially performs this 

mathematical sleight-of-hand
**

: 
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†
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†
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2
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tr
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ρ ρ

ρ ρ
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 ′ = ⊗ ⊗
 

= ⊗

′= ⊗

′=

I I

 eqn. 13 

 

The implication is: a system can only perform local 

operations and these are not affected by a remote 

system. The operator U2 can be any type of operator. 

The partial trace procedure renders any entangled 

non-factorisable state to a mixed state.  

 

In some people’s minds, the partial trace 

procedure has become synonymous with 

measurement operators (Appendix 1). 

 

 

However the NCT and all that cite the NCT, 

implicate the separable density matrix evolution form 

eqn. 11 at step 2, in eqn. 13. The irony and glaring 

inconsistency here is that, the very thing the NCT 

was set up to work with, entangled systems, can’t be 

factored. 

                                                           
**

 This particularly trite example is due to sources such as 

Wikipedia and what they cite or summarise or is the “vernacular” 

summary of it in current research, with the proof handed down 

generations nth-hand. 

Source papers[6, 7] do better than use the steps 

depicted in eqn. 13 and use the joint evolution 

(eqn. 12) but then do the following approach with 

their operators, to ensure they operate on their 

respective spaces: 

 

 ( )( ) ( ) ( )
† †

12 1 2 12 1 2
U U U Uρ ρ′ = ⊗ ⊗ ⊗ ⊗I I I I   

  eqn. 14 

 

Even though the density matrix isn’t “slyly” 

factorised, the partial trace can only lead to the result: 

 

( ) ( )

( ) ( )

†

2 1 2 12 2

†

1 2 2 2
   

tr U U

tr U U

ρ ρ

ρ

 ′ = ⊗ ⊗
 

 = ⊗ ⊗
 

I I

I I
 

 

This, of course also applies to system 1 too. The 

argument is a truism and fallacy resulting from the 

operators being setup at the start to commute, to then 

lead to the desired result or inference - eqn. 13.  

 

The system before measurement and during 

measurement evolves jointly. The procedure of 

taking the partial trace should then look like this: 

 

 ( )†

2 1 12 12 12tr U Uρ ρ′ =  eqn. 15 

 

We shall prove that the density matrix formulation 

gives the same result as the state vector approach 

considered in section 2 – it must; this showed the 

distant system 1 could affect system 2.  

 

The foundation of the NCT has a flaw for this reason 

(step 2 eqn. 13) :- 

 

 ( ) ( )† † †

2 1 12 12 12 1 1 1 1 2 2 2  tr U U tr U U U Uρ ρ ρ ρ′ = ≠ ⊗   

  ineqn. 16 

 

Where
12 1 2

U U U= ⊗ , and is factored, as it must, 

because systems 1 and 2 have independent apparatus. 

It is quite apparent that if all the matrices are unitary 

the trace of either form in ineqn. 16 is unity. 

 

However if we write for the 1
st
 system operator NU1, 

a non-unitary operator to simulate measurement, the 

situation for the ineqn. 16 is: 

 

( ) ( )( )†

2 1 1 2 12 1 2
1tr NU U NU Uρ ρ′ = ⊗ ⊗ ≠  

 

And 

( )† †

2 1 1 1 1 2 2 2 1tr NU NU U Uρ ρ ρ′ = ⊗ =  

 

This glaring error, effectively implying a separable 

system when the mandate was for an entangled 

system, is in the NCT proofs.  

 

Furthermore it is obviously apparent that the distant 

system affects the local measurement with the 

measurement/no-measurement protocol[1, 2] to send 

digital data over a quantum channel: 

 

( ) ( )( )

( ) ( )( )

†

 2 1 1 2 12 1 2

†

2 1 1 2 12 1 2

1
NO MEASUREMENT

MEASUREMENT

tr U U U U

tr NU U NU U

ρ ρ

ρ ρ

′ = ⊗ ⊗ =

≠

′ = ⊗ ⊗

  

  ineqn. 17 
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For the incredulous reader, we list out the 

components for a two state, two particle system in 

Appendix 2.  

 

 

 

 

5. Conclusion 

 

The No-communication theorem since its inception 

has been extensively cited. The simple and obviously 

correct proof herein shows a glaring flaw in it and the 

slavish, unthinking citing of it must cease. 

 

Single particle path-entanglement experiments 

alone[2], without all the machinery of multi-particle 

quantum systems, show obvious known experimental 

fact; yet if one transforms it into a two particle 

system by considering the vacuum state as a quasi-

particle and uses the incorrectly applied density 

matrix rationale of the NCT, we arrive at a result not 

just in abeyance of experimental fact and not just in 

abeyance of the state vector treatment for a multi-

particle system but also in abeyance of the state 

vector treatment for a single particle system too. This 

is a ridiculous situation. 

 

 

 

 

 

 

 

 

Appendix 1. Hermitian operators, the partial trace 

and measurement 

 

Hermitian operators deliver real values that reflect 

measurement and that inevitably leads to the trace. 

Using the state vector approach, if M is our 

measurement operator then: 

 
†

M and Mψ ψ ψ ψ′ ′= =  

 

But †
M M= and hence the norm is real.  

 

 
† †

M M M Mψ ψ ψ ψ′ ′= =  eqn. 18 

 

Whereupon the experimental outcomes, by spectral 

decomposition, express the expectation of the 

operator; it is inevitably synonymous with the trace 

because of the inner product. Thus the partial trace 

procedure in the main text, “acts like a measurement” 

operator. 

 

The density matrix form of measurement is just: 

 

 ( ) ( )† † †
M M tr M M tr M Mψ ψ ρ= =   

  eqn. 19 

 

 

 

 

 

 

 

 

 

 

 

 

 

Appendix 2. Proof by listing out matrix components 

 

In a nutshell for the density matrix approach before 

measurement, 

 

( ) ( )
†

ˆ ˆ ˆ ˆ        
A B AB AB A B AB AB

ψ ψ ψ ψ′ ′⊗ ⊗ →U U U U

 

Whereupon unitary operators for system A will have 

no effect on system B, other than a global phase 

when the partial trace is performed.  

 

Let us show the evolution of a 2 state to particle 

system to grasp this intuitively. 

 

11 11 11 12 12 11 12 12

11 21 11 22 12 21 12 22

21 11 21 12 22 11 22 12

21 21 21 22 22 21 22 22

11 11 11 12 12 11 12 12

11 21 11 22 12 21 12 22

21 11 21 12 22 11 22 12

21 21 21 22 2

AB

A B A B A B A B

A B A B A B A B

A B A B A B A B

A B A B A B A B

a b a b a b a b

a b a b a b a b

a b a b a b a b

a b a b a

ρ ′ =

 
 
 ×
 
 
 

2 21 22 22

†

11 11 11 12 12 11 12 12

11 21 11 22 12 21 12 22

21 11 21 12 22 11 22 12

21 21 21 22 22 21 22 22

b a b

A B A B A B A B

A B A B A B A B

A B A B A B A B

A B A B A B A B

 
 
 ×
 
 
 

 
 
 
 
 
 

 

 

The left-hand 4x4 is the tensor product of: 

 

11 12 11 12

21 22 21 22

A A B B

A A B B

   
⊗   

   
 

 

for joint evolution of the individual operators for 

system A and B. The right-hand matrix is the 

complex transpose. The middle matrix is the density 

matrix.  

 

 

11 11 11 12 12 11 12 12

11 21 11 22 12 21 12 22

21 11 21 12 22 11 22 12

21 21 21 22 22 21 22 22

11 11 22 11 11 12 22 12

1

     

and so   

AB

B

a b a b a b a b

a b a b a b a b

a b a b a b a b

a b a b a b a b

a b a b a b a b

a

ρ

ρ

′ ′ ′ ′ ′ ′ ′ ′ 
 ′ ′ ′ ′ ′ ′ ′ ′ ′ =
 ′ ′ ′ ′ ′ ′ ′ ′
 

′ ′ ′ ′ ′ ′ ′ ′ 

′ ′ ′ ′ ′ ′ ′ ′+ +
′ =

′
1 21 22 21 11 22 22 22b a b a b a b

 
 ′ ′ ′ ′ ′ ′ ′+ + 

  

  eqn. 20 

 

 

If one or both of the evolution matrices is non-unitary 

(this implies a measurement), the joint state function 

will collapse and the evolution is not trace 

preserving. Even when the partial trace is taken to 

isolate a sub-system that has evolved 

unitarily,
B A AB

Trρ ρ= , it is still affected.  

 

Let’s see this intuitively by writing out the previous 

system with a non-unitary evolution on one or the 

other matrix by zeroing the A11 and A22 elements in 

A, as follows: 
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A non-unitary process in system A: 

 

11

12 11 12 12

12 21 12 22

21 11 21 12 22 11 22 12

21 21 21 22 22 21 22 22

11 11 11 12 12 11 12 12

11 21 11 22 12 21 12 22

21 11 21 12 22 11 22 12

21 21 21 22 22 21 22 22

 A 0

0 0

0 0

AB

CASE

A B A B

A B A B

A B A B A B A B

A B A B A B A B

a b a b a b a b

a b a b a b a b

a b a b a b a b

a b a b a b a b

ρ

=

′ =

 
 
 ×
 
 
 

†

12 11 12 12

12 21 12 22

21 11 21 12 22 11 22 12

21 21 21 22 22 21 22 22

0 0

0 0

A B A B

A B A B

A B A B A B A B

A B A B A B A B

 
 
 ×
 
 
 

 
 
 
 
 
 

 

 

 

OR 

 

22

11 11 11 12 12 11 12 12

11 21 11 22 12 21 12 22

21 11 21 12

21 21 21 22

11 11 11 12 12 11 12 12

11 21 11 22 12 21 12 22

21 11 21 12 22 11 22 12

21 21 21 22 22 21 22 22

 A 0

0 0

0 0

AB

CASE

A B A B A B A B

A B A B A B A B

A B A B

A B A B

a b a b a b a b

a b a b a b a b

a b a b a b a b

a b a b a b a b

ρ

=

′ =

 
 
 ×
 
 
 

†

11 11 11 12 12 11 12 12

11 21 11 22 12 21 12 22

21 11 21 12

21 21 21 22

0 0

0 0

A B A B A B A B

A B A B A B A B

A B A B

A B A B

 
 
 ×
 
 
 

 
 
 
 
 
 

 

 

Then the partial trace to obtain system B after 

(respectively) zeroing the A11 and A22 elements in A 

is: 

 

11

11 11 11 12 12 11 12 12

11 21 11 22 12 21 12 22

21 11 21 12 22 11 22 12

21 21 21 22 22 21 22 22

 A 0

AB

CASE

a b a b a b a b

a b a b a b a b

a b a b a b a b

a b a b a b a b

ρ

=

′′′ ′′′ ′′′ ′′′ ′′ ′′ ′′ ′′ 
 ′′′ ′′′ ′′′ ′′′ ′′ ′′ ′′ ′′ ′ =
 ′ ′ ′ ′ ′ ′ ′ ′
 

′ ′ ′ ′ ′ ′ ′ ′ 

 

 

OR 

 

22

11 11 11 12 12 11 12 12

11 21 11 22 12 21 12 22

21 11 21 12 22 11 22 12

21 21 21 22 22 21 22 22

 A 0

AB

CASE

a b a b a b a b

a b a b a b a b

a b a b a b a b

a b a b a b a b

ρ

=

′ ′ ′ ′ ′ ′ ′ ′ 
 ′ ′ ′ ′ ′ ′ ′ ′ ′ =
 ′′ ′′ ′′ ′′ ′′′ ′′′ ′′′ ′′′
 

′′ ′′ ′′ ′′ ′′′ ′′′ ′′′ ′′′ 

 

 

 

 

 

The apostrophes denote, firstly: that the density 

matrix has transformed, secondly: that a row suffered 

the effect of multiplication with a row containing 

zeros and thirdly: that it suffered two such 

multiplications. 

 

A non-unitary process (a measurement) happened on 

system A and so we trace out system A to see the 

effect on system B: 

 

 

 

11

11 11 22 11 11 12 22 12

11 21 22 21 11 22 22 22

22

11 11 22 11 11 12 22 12

11 21 22 21 11 22 2

 A 0

 or  

 A 0

B

B

CASE

a b a b a b a b

a b a b a b a b

CASE

a b a b a b a b

a b a b a b a

ρ

ρ

=

′′′ ′′′ ′ ′ ′′′ ′′′ ′ ′+ + 
′ =  ′′′ ′′′ ′ ′ ′′′ ′′′ ′ ′+ + 

=

′ ′ ′′′ ′′′ ′ ′ ′′′ ′′′+ +
′ =

′ ′ ′′′ ′′′ ′ ′ ′′′+ +
2 22

 
b

 
 ′′′ 

  

  eqn. 21 

 

 

Compare this (eqn. 21) with eqn. 20. So system B has 

been affected by system A’s measurement which can 

force it into a mixed state before B’s measurement.  
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