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Abstract 

 

This short note seeks to draw together and clarify the author’s early papers on the matter of an error in 

use of the formalism of quantum mechanics in the No-communication theorem (NCT). The enquiry 

occurred from the investigation of two interferometer based communication systems: one two photon 

entanglement, the other single photon path entanglement. The state vector treatment confirmed the 

communication protocol but the NCT, couched in the density matrix treatment forbade it. Since both 

state vector and density matrix formalisms contain the same treatment of quantum mechanics, which of 

course, has been extensively tested, the only conclusion is the NCT has an error in the use of the 

formalism of density matrices. Here we clarify that error cogently and with brevity. 

 

1. Introduction 

 

The author investigated two entangled 

communication schemes[1, 2] and is currently 

seeking partners to corroboration the latter path-

entangled method. Mathematically the two 

entangled polarised photon system is identical to 

the one photon path-entangled system, as both are 

forms of the Bell states[3].  

 

 
1 2 1 2

1 2 1 2

1 1
0 0 1 1

2 2

1 1
0 1 1 0

2 2

±

±

Φ = ±

Ψ = ±

 eqn. 1 

 

The author has directly interacted with two of the 

founders of the No-communications theorem 

(NCT), Michael Hall (Australian patent office, 

whom granted a patent) and Giancarlo Ghirardi, 

whom tried to offer a repost[4]. In this note, 

Ghirardi used the density matrix treatment which 

the author set about responding to[5-7]. We seek to 

represent those arguments more coherently and 

concisely.   

 

2. The state vector approach 

 

We are interested in two endpoints of 

communication, so the joint evolution of a two 

particle system is used
‡
. The state vector formalism 

gives this as: 

 

 
1 1 1 1 2 1

O Oψ ψ ψ ψ′ ′⊗ = ⊗  eqn. 2 

 

Where the operators O1 and O2 (which themselves 

may be several operators) act on their respective 

quantum states, be they unitary or non-unitary. 

                                                           
‡
 Though for the second apparatus, one particle evolution is 

sufficient, although one could model the absence of a particle, 

the vacuum state, as a quasi-particle. 

The ensuing bone of contention, as we shall see, 

arises when the states can’t be factorised and we 

shall discuss the first apparatus[1] in this context
§
. 

The evolution (not writing explicitly the tensor 

product symbol) is then: 

 

 
12 1 2 12

O Oψ ψ′ =  eqn. 3 

 

Thus for the first apparatus, the evolution is: 
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  eqn. 4 

Where, 

 

� The first photon travels through free 

space:
1

Û  

 

� The polarising beam-splitter is the 

projection: 
2 2 2 2

ˆ
PBS

U H H V V= +  

 

� The Faraday rotators (there can be just one 

with angle π/2) are shown: 4
i

e

π
−

 and 4
i

e

π
+

 

 

� Then the phase plate to adjust the 

interference fringe is: i
e

θ−  

 

Before measurement, the state is (D represents the 

diagonal basis) : 

 

 ( )12 1 2 1 2

1

2

i
H e D V D

θψ −= ⊗ + ⊗ eqn. 5 

                                                           
§
 Indeed, Michael Hall said to Cornwall in private 

communication, “you don’t think that one of the pair of photons 

goes through the interferometer as though it is in the diagonal 

basis?” We find it does. 
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And one final operation gives the effect of the 

detector by the number operator †

2 2 2
ˆ ˆ ˆn a a=  

projecting into the number basis: 

 

 

( )

12 1 2 12

12 1 1 2

ˆ ˆ

ˆ 1 1i

U n

U e θ

ψ ψ

ψ ψ −

′ =

⇒

′ = ⊗ −

 eqn. 6 

 

It is easy to then trace out system one to see system 

two: 

 
( )2 21 1

i
e

θψ −= −
 eqn. 7 

Measurement on either system and the spectral 

theory yield the mixed state: 

 

( )1 2
 

2

iRand

ie
H e Dθ

−
−⊗    

or    ( )1 2
  

2

iRand
e

V D
−

⊗  

 

Where iRand
e

− is the random phase relation between 

them. The number operator and trace out yields 

(the phase of individual events is not important nor 

is there superposition) at the detector: 

 

 
2 2

1
1

2
ψ =  eqn. 8 

 

The state vector approach permits discernment of 

distant measurement on an entangled system (not 

least a single photon path entangled[2]) and this 

should give identical results to density matrix 

analysis. 

 

3. The density matrix approach 

 

The state vector and density matrix formulations of 

quantum mechanics are of course identical[8]. If 

we can write: 

 
†

 and U Uψ ψ ψ ψ′ ′= =  

 

Then it is correct to write: 

 

 

†

U U

or

U U

ψ ψ ψ ψ

ρ ρ

′ ′ =

′ =

 eqn. 9 

 

Considering only two particles (though the results 

are extensible to any number of particles), if the 

states were separable, we’d write the evolution as: 

 

 † †

1 2 1 1 1 2 2 2
U U U Uρ ρ ρ ρ′ ′⊗ = ⊗  eqn. 10 

If the states cannot be factorised, the evolution is: 

 

 †

12 12 12 12
U Uρ ρ′ =  eqn. 11 

 

These results, eqn. 10 and eqn. 11 are no different 

than eqn. 2 or eqn. 3, respectively. Let us now 

explore the NCT which is couched in terms of the 

density matrix treatment. 

 

4. The NCT and the flaw it contains 

 

The NCT[9, 10] essentially performs this 

mathematical sleight-of-hand: 
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( )
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ρ
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= ⊗
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 eqn. 12 

 

The implication is: a system can only perform local 

operations and these are not affected by a remote 

system. The operator U2 can be any type of 

operator. The partial trace procedure renders any 

entangled non-factorisable state to a mixed state.  

 

In some people’s minds, the partial 

trace procedure has become 

synonymous with measurement 

operators (Appendix 1). 

 

However the NCT and all that cite the NCT, 

implicate the separable density matrix evolution 

form eqn. 10 at step 2, in eqn. 12. The irony and 

glaring inconsistency here is that, the very thing 

the NCT was set up to work with, entangled 

systems, can’t be factored. 

 

The system before measurement and during 

measurement evolves jointly. The procedure of 

taking the partial trace should then look like this: 

 

 ( )†

2 1 12 12 12tr U Uρ ρ′ =  eqn. 13 

 

We shall prove that the density matrix formulation 

gives the same result as the state vector approach 

considered in section 2 – it must; this showed the 

distant system 1 could affect system 2.  

 

The foundation of the NCT has a flaw for this 

reason (step 2 eqn. 12) :- 

 

 ( ) ( )† † †

2 1 12 12 12 1 1 1 1 2 2 2  tr U U tr U U U Uρ ρ ρ ρ′ = ≠ ⊗   

  ineqn. 14 

 

Where
12 1 2

U U U= ⊗ , as it must, because systems 

1 and 2 have independent apparatus. It is quite 
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apparent that if all the matrices are unitary the trace 

of either form in ineqn. 14 is unity. 

 

However if we write for the 1
st
 system operator 

NU1, a non-unitary operator to simulate 

measurement, the situation for the ineqn. 14 is: 

 

( ) ( )( )†

2 1 1 2 12 1 2
1tr NU U NU Uρ ρ′ = ⊗ ⊗ ≠  

 

And 

( )† †

2 1 1 1 1 2 2 2 1tr NU NU U Uρ ρ ρ′ = ⊗ =  

 

This glaring error, effectively implying a 

separable system when the mandate was for an 

entangled system, is in the NCT proofs.  

 

Furthermore it is obviously apparent that the distant 

system affects the local measurement with the 

measurement/no-measurement protocol[1, 2] to 

send digital data over a quantum channel: 

 

 

( ) ( )( )

( ) ( )( )

†

 2 1 1 2 12 1 2

†

2 1 1 2 12 1 2

1
NO MEASUREMENT

MEASUREMENT

tr U U U U

tr NU U NU U

ρ ρ

ρ ρ

′ = ⊗ ⊗ =

≠

′ = ⊗ ⊗

  

  ineqn. 15 

 

For the incredulous reader, we list out the 

components for a two state, two particle system in 

Appendix 2.  

 

 

5. Conclusion 

 

The No-communication theorem since its inception 

has been extensively cited. The simple and 

obviously correct proof herein shows a glaring flaw 

in it and the slavish, unthinking citing of it must 

cease. 

 

Single particle path-entanglement experiments 

alone[2], without all the machinery of multi-

particle quantum systems, show obvious known 

experimental fact; yet if one transforms it into a 

two particle system by considering the vacuum 

state as a quasi-particle and uses the incorrectly 

applied density matrix rationale of the NCT, we 

arrive at a result not just in abeyance of 

experimental fact and not just in abeyance of the 

state vector treatment for a multi-particle system 

but also in abeyance of the state vector treatment 

for a single particle system too. This is a ridiculous 

situation. 

 

Appendix 1. Hermitian operators, the partial trace 

and measurement 

 

Hermitian operators deliver real values that reflect 

measurement and that inevitably leads to the trace. 

Using the state vector approach, if M is our 

measurement operator then: 

 
†

M and Mψ ψ ψ ψ′ ′= =  

 

But †M M= and hence the norm is real.  

 

 
† †

M M M Mψ ψ ψ ψ′ ′= =  eqn. 16 

 

Whereupon the spectral decomposition of 

experimental outcomes, which express the 

expectation of the operator, is inevitably 

synonymous with the trace because of the inner 

product. Thus the partial trace procedure in the 

main text, “acts like a measurement” operator. 

 

The density matrix form of measurement is just: 

 

 ( ) ( )† † †
M M tr M M tr M Mψ ψ ρ= =   

  eqn. 17 

 

Appendix 2. Proof by listing out matrix 

components 

 

In a nutshell for the density matrix approach before 

measurement, 

 

( ) ( )
†

ˆ ˆ ˆ ˆ        
A B AB AB A B AB AB

ψ ψ ψ ψ′ ′⊗ ⊗ →U U U U

 

Whereupon unitary operators for system A will 

have no effect on system B, other than a global 

phase when the partial trace is performed.  

 

Let us show the evolution of a 2 state to particle 

system to grasp this intuitively. 

 

11 11 11 12 12 11 12 12

11 21 11 22 12 21 12 22

21 11 21 12 22 11 22 12

21 21 21 22 22 21 22 22

11 11 11 12 12 11 12 12

11 21 11 22 12 21 12 22

21 11 21 12 22 11 22 12

21 21 21 22 2

AB

A B A B A B A B

A B A B A B A B

A B A B A B A B

A B A B A B A B

a b a b a b a b

a b a b a b a b

a b a b a b a b

a b a b a

ρ ′ =

 
 
 ×
 
 
 

2 21 22 22

†

11 11 11 12 12 11 12 12

11 21 11 22 12 21 12 22

21 11 21 12 22 11 22 12

21 21 21 22 22 21 22 22

b a b

A B A B A B A B

A B A B A B A B

A B A B A B A B

A B A B A B A B

 
 
 ×
 
 
 

 
 
 
 
 
 
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The left-hand 4x4 is the tensor product of 

11 12 11 12

21 22 21 22

A A B B

A A B B

   
⊗   

   
 for joint evolution of the 

individual operators for system A and B. The right-

hand matrix is the complex transpose. The middle 

matrix is the density matrix.  

 

 

11 11 11 12 12 11 12 12

11 21 11 22 12 21 12 22

21 11 21 12 22 11 22 12

21 21 21 22 22 21 22 22

11 11 22 11 11 12 22 12

1

     

and so   

AB

B

a b a b a b a b

a b a b a b a b

a b a b a b a b

a b a b a b a b

a b a b a b a b

a

ρ

ρ

′ ′ ′ ′ ′ ′ ′ ′ 
 ′ ′ ′ ′ ′ ′ ′ ′ ′ =
 ′ ′ ′ ′ ′ ′ ′ ′
 

′ ′ ′ ′ ′ ′ ′ ′ 

′ ′ ′ ′ ′ ′ ′ ′+ +
′ =

′
1 21 22 21 11 22 22 22b a b a b a b

 
 ′ ′ ′ ′ ′ ′ ′+ + 

  

  eqn. 18 

 

 

If one or both of the evolution matrices is non-

unitary (this implies a measurement), the joint state 

function will collapse and the evolution is not trace 

preserving. Even when the partial trace is taken to 

isolate a sub-system that has evolved 

unitarily,
B A AB

Trρ ρ= , it is still affected.  

 

Let’s see this intuitively by writing out the previous 

system with a non-unitary evolution on one or the 

other matrix by zeroing the A11 and A22 elements in 

A, as follows: 

 

A non-unitary process in system A: 

 

11

12 11 12 12

12 21 12 22

21 11 21 12 22 11 22 12

21 21 21 22 22 21 22 22

11 11 11 12 12 11 12 12

11 21 11 22 12 21 12 22

21 11 21 12 22 11 22 12

21 21 21 22 22 21 22 22

 A 0

0 0

0 0

AB

CASE

A B A B

A B A B

A B A B A B A B

A B A B A B A B

a b a b a b a b

a b a b a b a b

a b a b a b a b

a b a b a b a b

ρ

=

′ =

 
 
 ×
 
 
 

†

12 11 12 12

12 21 12 22

21 11 21 12 22 11 22 12

21 21 21 22 22 21 22 22

0 0

0 0

A B A B

A B A B

A B A B A B A B

A B A B A B A B

 
 
 ×
 
 
 

 
 
 
 
 
 

 

 

 

OR 

22

11 11 11 12 12 11 12 12

11 21 11 22 12 21 12 22

21 11 21 12

21 21 21 22

11 11 11 12 12 11 12 12

11 21 11 22 12 21 12 22

21 11 21 12 22 11 22 12

21 21 21 22 22 21 22 22

 A 0

0 0

0 0

AB

CASE

A B A B A B A B

A B A B A B A B

A B A B

A B A B

a b a b a b a b

a b a b a b a b

a b a b a b a b

a b a b a b a b

ρ

=

′ =

 
 
 ×
 
 
 

†

11 11 11 12 12 11 12 12

11 21 11 22 12 21 12 22

21 11 21 12

21 21 21 22

0 0

0 0

A B A B A B A B

A B A B A B A B

A B A B

A B A B

 
 
 ×
 
 
 

 
 
 
 
 
 

 

 

 

Then the partial trace to obtain system B after 

(respectively) zeroing the A11 and A22 elements in 

A is: 

 

11

11 11 11 12 12 11 12 12

11 21 11 22 12 21 12 22

21 11 21 12 22 11 22 12

21 21 21 22 22 21 22 22

22

 A 0

   

or

   

 A 0

AB

A

CASE

a b a b a b a b

a b a b a b a b

a b a b a b a b

a b a b a b a b

CASE

ρ

ρ

=

′′′ ′′′ ′′′ ′′′ ′′ ′′ ′′ ′′ 
 ′′′ ′′′ ′′′ ′′′ ′′ ′′ ′′ ′′ ′ =
 ′ ′ ′ ′ ′ ′ ′ ′
 

′ ′ ′ ′ ′ ′ ′ ′ 

=

′

11 11 11 12 12 11 12 12

11 21 11 22 12 21 12 22

21 11 21 12 22 11 22 12

21 21 21 22 22 21 22 22

B

a b a b a b a b

a b a b a b a b

a b a b a b a b

a b a b a b a b

′ ′ ′ ′ ′ ′ ′ ′ 
 ′ ′ ′ ′ ′ ′ ′ ′ =
 ′′ ′′ ′′ ′′ ′′′ ′′′ ′′′ ′′′
 

′′ ′′ ′′ ′′ ′′′ ′′′ ′′′ ′′′ 

 

 

The apostrophes denote, firstly: that the density 

matrix has transformed, secondly: that a row 

suffered the effect of multiplication with a row 

containing zeros and thirdly: that it suffered two 

such multiplications. 

 

A non-unitary process (a measurement) happened 

on system A and so we trace out system A to see 

the effect on system B: 
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11

11 11 22 11 11 12 22 12

11 21 22 21 11 22 22 22

22

11 11 22 11 11 12 22 12

11 21 22 21 11 22 2

 A 0

 or  

 A 0

B

B

CASE

a b a b a b a b

a b a b a b a b

CASE

a b a b a b a b

a b a b a b a

ρ

ρ

=

′′′ ′′′ ′ ′ ′′′ ′′′ ′ ′+ + 
′ =  ′′′ ′′′ ′ ′ ′′′ ′′′ ′ ′+ + 

=

′ ′ ′′′ ′′′ ′ ′ ′′′ ′′′+ +
′ =

′ ′ ′′′ ′′′ ′ ′ ′′′+ +
2 22

 
b

 
 ′′′ 

  

  eqn. 19 

 

 

Compare this (eqn. 19) with eqn. 18. So system B 

has been affected by system A’s measurement 

which can force it into a mixed state before B’s 

measurement.  
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