Qualitative Properties of Nonlinear Oscillations in Hamiltonian Systems Having Exponential-Type Restoring Force

D. K. K. Adjaï ${ }^{*}$, Y. J. F. Kpomahou ${ }^{* *}$, J. Akande ${ }^{*}$, L. H. Koudahoun ${ }^{*}$, M. D. Monsia ${ }^{*}$
*. Department of Physics, University of Abomey-Calavi, 01B.P.526, Cotonou, BENIN.
**. Department of Industrial and Technical Sciences, ENSET- Lokossa, University of Lokossa, Lokossa, BENIN.

Abstract

In this paper the qualitative properties of a family of an anharmonic oscillator equations of motion were carried out with phase portraits.

1- Local stability analysis
Consider the following generalized equation of motion of a particle subjected to an exponential-type restoring force.

$$
\begin{equation*}
\ddot{x}+\omega_{0}^{2} h(x) \exp (2 \gamma \varphi(x))=0 \tag{1}
\end{equation*}
$$

where γ, and ω_{0} are arbitrary parameter. $h(x)$ and $\varphi(x)$ are arbitrary functions of x. It is worth nothing that equation (1) is enough powerful to give Duffing -type oscillator equations of higher order terms than three by using a Taylor expansion [1].

Let $h(x)=x$. Then (1) takes the form [2]
$\ddot{x}+\omega_{0}^{2} x \exp (2 \gamma \varphi(x))=0$
Equation(2) reduces to the harmonic oscillator equation if the parametric choice $\gamma=0$. Let us now consider, some specific examples of (2). Let $\varphi(x)=\frac{1}{2} x^{2}$. Then(2) becomes
$\ddot{x}+\omega_{0}^{2} x \exp \left(\gamma x^{2}\right)=0$
By imposing $\dot{x}=y$, the equation (3) can be written in a system of two first order equations

$$
\left\{\begin{array}{l}
\dot{x}=y \tag{4}\\
\dot{y}=-\omega_{0}^{2} x \exp \left(\gamma x^{2}\right)
\end{array}\right.
$$

The system (4) admits as equilibrium point
$M_{0}\left\{\begin{array}{l}x_{0}=0 \\ y_{0}=0\end{array}\right.$

[^0]At present, we propose to investigate the stability of equilibrium point.
The Jacobi matrix
$J=\left(\begin{array}{ll}\frac{\partial \dot{x}}{\partial x} & \frac{\partial \dot{x}}{\partial y} \\ \frac{\partial \dot{y}}{\partial x} & \frac{\partial \dot{y}}{\partial y}\end{array}\right)$
gives for the system (4)

$$
J=\left(\begin{array}{ll}
0 & 1 \tag{6}\\
-\omega_{0}^{2} e^{\gamma x^{2}}-2 \gamma \omega_{0}^{2} x^{2} e^{\gamma x^{2}} & 0
\end{array}\right)
$$

Following the equilibrium point M_{0}, the Jacobi matrix (6) takes the form
$A=\left(\begin{array}{ll}0 & 1 \\ -\omega_{0}^{2} & 0\end{array}\right)$
The corresponding characteristic equation may be written in the form
$\lambda^{2}-\lambda \operatorname{tr}(A)+\operatorname{det}(A)=0$
so that the eigenvalues are
$\lambda= \pm i \omega_{0}$
These eigenvalues are pure imaginary numbers. Thus the fixed point is a centre.
Let $\varphi(x)=x$. Then (2) becomes
$\ddot{x}+\omega_{0}^{2} x \exp (2 \gamma x)=0$
As previously, by noting $\dot{x}=y$, the equation (10) can be written in a system of two first order equations
$\left\{\begin{array}{l}\dot{x}=y \\ \dot{y}=-\omega_{0}^{2} x \exp (2 \gamma x)\end{array}\right.$
The system (11) admits as singular point
$M_{1}\left\{\begin{array}{l}x_{1}=0 \\ y_{1}=0\end{array}\right.$
By using the equation (5), we obtain for the system (11) the following Jacobi matrix

$$
J=\left(\begin{array}{ll}
0 & 1 \tag{12}\\
-\omega_{0}^{2} e^{2 \gamma x}-2 \gamma \omega_{0}^{2} x e^{2 \gamma x} & 0
\end{array}\right)
$$

Introducing the equilibrium point M_{1} into the equation (12), the Jacobi matrix takes the form

$$
B=\left(\begin{array}{ll}
0 & 1 \tag{13}\\
-\omega_{0}^{2} & 0
\end{array}\right)
$$

The Jacobi matrix (7) and (13) are the same. Consequently, the eigenvalues for (13) are pure imaginary numbers. Thus the equilibrium point M_{1} is a centre.

2- Phase portraits

This section aims to show graphically the phase portraits of equation (3) and (10) using Matlab's routine ode 45.

Case 1: $\varphi(x)=\frac{1}{2} x^{2}$
Figure 1 represents the phase portrait of equation (3) for the parameter values $\gamma=0.5 ; \dot{x}(t=0)=v_{0}=0.1 ; \omega_{0}=0.125$ and $x_{0}=0.5 ; 1.5 ; 1.8 ; 2 ; 2.5$

Fig 1: Graphical representation showing the phase portrait of equation (3).
Case 2: $\varphi(x)=x$. The phase portrait has been obtained for $\gamma=10^{-7} ; x_{0}=1.2 ; \dot{x}(t=0)=v_{0}=10^{-3}$ and $\omega_{0}=0.125$.

Fig 2: Graphical representation showing the phase portrait of equation (10).

References

[1] M. D. Monsia, J. Akande, L.H. Koudahoun, K.K. Adjaï, Y.J.F. Kpomahou, Liénard-Type and Duffing-Type Nonlinear Oscillators Equations with Exponential-Type Restoring Force, viXra: 1609.0003v1 (2016).
[2] J. Akande, D. K. K. Adjaï, L. H. Koudahoun, Y. J. F. Kpomahou, M. D. Monsia, Lagrangian Analysis of a Class of Quadratic Liénard-Type Oscillator Equations with Exponential-Type Restoring Force function, viXra: 1609.0055v1 (2016).

[^0]: ${ }^{1}$ Corresponding author.
 E-mail: adjkolakegni@gmail.com

