Lagrangian Analysis of a Class of Quadratic Liénard-Type Oscillator Equations with Exponential-Type Restoring Force function

J. Akande ${ }^{1}$, D. K. K. Adjaï ${ }^{1}$, L. H. Koudahoun ${ }^{1}$,Y. J. F. Kpomahou ${ }^{2}$, M. D. Monsia ${ }^{1}$

1. Department of Physics, University of Abomey-Calavi, Abomey-Calavi, 01.B.P. 526, Cotonou, BENIN.
2. Department of Industrial and Technical Sciences, ENSET-Lokossa, University of Lokossa, Lokossa, BENIN

Abstract

This research work proposes a Lagrangian and Hamiltonian analysis for the unique class of position-dependent mass oscillator characterized by a harmonic periodic solution and parabolic potential energy and its inverted version admitting a position-dependent mass dynamics. 1. Analysis of the class of quadratic Liénard-type harmonic nonlinear oscillator equations

This section is devoted to the analysis of a class of quadratic Liénard-type nonlinear dissipative oscillator equations that admits exact analytical harmonic periodic solutions. Consider the equation [1, 2] $\ddot{x}-\gamma \varphi^{\prime}(x) \dot{x}^{2}+\omega^{2} x e^{2 \gamma \varphi(x)}=0$

that represents the class of equations under analysis. γ and ω are arbitrary parameters, and $\varphi(x)$ is an arbitrary function of x. The dot over a symbol means differentiation with respect to time, and prime holds for differentiation with respect to x. By restriction of $\varphi(x)=\ln f(x)$ and $\gamma=-\frac{1}{2}$, the equation (1),yields

$$
\begin{equation*}
\ddot{x}+\frac{1}{2} \frac{f^{\prime}(x)}{f(x)} \dot{x}^{2}+\frac{\omega^{2} x}{f(x)}=0 \tag{2}
\end{equation*}
$$

where $f(x) \neq 0$, is an arbitrary function of x. The equation (1) is of the general form
$\ddot{x}+F(x) \dot{x}^{2}+G(x)=0$
for which the Lagrangian is given by $[3,4]$

$$
\begin{equation*}
L(\dot{x}, x)=\frac{1}{2} \dot{x}^{2} M(x)-V(x) \tag{4}
\end{equation*}
$$

where
$M(x)=e^{2 \int F(x) d x}$

[^0]and
\[

$$
\begin{equation*}
V(x)=\int M(x) G(x) d x \tag{6}
\end{equation*}
$$

\]

designate the position dependent mass and the potential function respectively.
The Lagrangian of the equation (1) becomes

$$
\begin{equation*}
L(\dot{x}, x)=\frac{1}{2} \dot{x}^{2} e^{-2 \gamma \varphi(x)}-\frac{1}{2} \omega^{2} x^{2} \tag{7}
\end{equation*}
$$

Applying the Euler-Lagrange equation formula in [4]

$$
\begin{equation*}
\ddot{x}+\frac{1}{2} \frac{M^{\prime}(x)}{M(x)} \dot{x}^{2}+\frac{1}{M(x)} \frac{\partial V(x)}{\partial x}=0 \tag{8}
\end{equation*}
$$

to the equation (7), gives the equation (1). By restricting $V(x)$ to the harmonic potential, that is $V(x)=\frac{1}{2} m_{0} \omega^{2} x^{2}$, with unit mass, $m_{0}=1$, the equation (8) becomes identical to the equation (2), with the position-dependent mass function $M(x)=f(x)$. In this regard, the equation (1) represents the unique class of position-dependent mass oscillators exhibiting not only exact harmonic periodic solution but also a harmonic potential function.

Now, using [3]
$H(p, x)=\frac{p^{2}}{2 M(x)}+V(x)$
one may deduce from (5) and (6) the Hamiltonian

$$
\begin{equation*}
H(p, x)=\frac{p^{2}}{2} e^{2 \gamma \varphi(x)}+\frac{1}{2} \omega^{2} x^{2} \tag{10}
\end{equation*}
$$

Let us now consider, as illustration, some specific examples of (1). Let $\varphi(x)=x$. Then (1) becomes

$$
\begin{equation*}
\ddot{x}-\dot{x}^{2}+\omega^{2} x e^{2 \gamma x}=0 \tag{11}
\end{equation*}
$$

The equation (10) admits the position dependent mass and the potential
$M(x)=e^{-2 \gamma x}$, and $V(x)=\frac{1}{2} \omega^{2} x^{2}$
respectively, which provides the Lagrangian function
$L(\dot{x}, x)=\frac{1}{2} \dot{x}^{2} e^{-2 x x}-\frac{1}{2} \omega^{2} x^{2}$
The application of the Euler-Lagrange equation (8) to (13) gives, as expected, (11) . In this regard the Hamiltonian associated to (11) takes the form

$$
\begin{equation*}
H(p, x)=\frac{p^{2}}{2} e^{2 \cdot x}+\frac{1}{2} \omega^{2} x^{2} \tag{14}
\end{equation*}
$$

So, the Hamilton equations

$$
\left\{\begin{array}{l}
\dot{x}=\frac{\partial H}{\partial p} \tag{15}\\
\dot{p}=-\frac{\partial H}{\partial x}
\end{array}\right.
$$

yield for (14)

$$
\left\{\begin{array}{l}
\dot{x}=p e^{2 \gamma x} \tag{16}\\
\dot{p}=-\gamma p^{2} e^{2 \gamma x}-\omega^{2} x
\end{array}\right.
$$

The explicit expression for the conjugate momentum p, as a function of x and \dot{x} takes then the form

$$
\begin{equation*}
\dot{p}=-e^{-2 x x}\left(\dot{x}^{2}+\omega^{2} x e^{22 x}\right) \tag{17}
\end{equation*}
$$

Putting now $\varphi(x)=\frac{1}{2} x^{2}$, into (1), one may obtain as equation

$$
\begin{equation*}
\ddot{x}-\gamma x \dot{x}^{2}+\omega^{2} x e^{\gamma x^{2}}=0 \tag{18}
\end{equation*}
$$

The position dependent mass and the potential of (18) take then the form

$$
\begin{equation*}
M(x)=e^{-\gamma x^{2}} \text { and } V(x)=\frac{1}{2} \omega^{2} x^{2} \tag{19}
\end{equation*}
$$

respectively.
The associated Lagrangian becomes

$$
\begin{equation*}
L(\dot{x}, x)=\frac{1}{2} \dot{x}^{2} e^{-\gamma x^{2}}-\frac{1}{2} \omega^{2} x^{2} \tag{20}
\end{equation*}
$$

The application of the Euler-Lagrange equation (8) to (20) gives with satisfaction (18). So, the associated Hamiltonian may be written as
$H(p, x)=\frac{p^{2}}{2} e^{\gamma x^{2}}+\frac{1}{2} \omega^{2} x^{2}$
such that the Hamilton equations take the form
$\left\{\begin{array}{l}\dot{x}=p e^{\gamma x^{2}} \\ \dot{p}=-\gamma p^{2} x e^{\gamma x^{2}}-\omega^{2} x\end{array}\right.$
The relation between \dot{x} and \dot{p} reads in this perspective
$\dot{p}=-x e^{-\gamma x^{2}}\left(\gamma \dot{x}^{2}+\omega^{2} e^{\gamma x^{2}}\right)$
2. Analysis of inverted versions

Consider now the inverted version of (1)
$\ddot{x}+\gamma \varphi^{\prime}(x) \dot{x}^{2}+\omega^{2} x e^{2 \gamma \varphi(x)}=0$
which gives for $\varphi(x)=x$, the following equation
$\ddot{x}+\dot{x}^{2}+\omega^{2} x e^{2 x x}=0$
The position dependent mass and potential function of (25) may be then deduced from (4) as
$M(x)=e^{2 \gamma x}$ and $V(x)=\frac{\omega^{2}}{4 \gamma} x e^{4 x x}-\frac{\omega^{2}}{16 \gamma^{2}} e^{4 \gamma x}$
respectively.
Therefore, the Lagrangian for (25) may be written in the form
$L(\dot{x}, x)=\frac{1}{2} \dot{x}^{2} e^{2 \gamma x}+\frac{\omega^{2}}{16 \gamma^{2}} e^{4 x x}-\frac{\omega^{2}}{4 \gamma} x e^{4 \alpha x}$

In this perspective, it may be verified that the application of the Euler-Lagrange equation (8) to (27) yields, as expected, (25) . The Hamiltonian for (25) may also be computed as

$$
\begin{equation*}
H(p, x)=\frac{p^{2}}{2} e^{-2 / x}+\frac{\omega^{2}}{4 \gamma} x e^{4 x x}-\frac{\omega^{2}}{16 \gamma^{2}} e^{4 x x} \tag{28}
\end{equation*}
$$

which gives the Hamiltonian equations

$$
\left\{\begin{array}{l}
\dot{x}=p e^{-2 \gamma x} \tag{29}\\
\dot{p}=\gamma p^{2} e^{-2 \gamma x}-\omega^{2} x e^{4 \gamma x}
\end{array}\right.
$$

from which the conjugate momentum becomes

$$
\begin{equation*}
\dot{p}=e^{2 \gamma x}\left(\dot{x}^{2}-\omega^{2} x e^{2 \gamma x}\right) \tag{30}
\end{equation*}
$$

By analysis, other forms of equations are also suggested by the previous studied equations. So, the following equations may also be considered in the perspective of this study, that is
$\ddot{x}+\gamma x \dot{x}^{2}+\omega^{2} x e^{\mu x^{2}}=0$
or in general
$\ddot{x}+\gamma \varphi^{\prime}(x) \dot{x}^{2}+\omega^{2} x e^{\gamma \varphi(x)}=0$
$\ddot{x}-\gamma \varphi^{\prime}(x) \dot{x}^{2}+\omega^{2} x e^{\gamma \varphi(x)}=0$
Finally one may consider the following more generalizations
$\ddot{x}+\gamma \varphi^{\prime}(x) \dot{x}^{2}+\omega^{2} h(x) e^{\gamma \varphi(x)}=0$
$\ddot{x}-\gamma \varphi^{\prime}(x) \dot{x}^{2}+\omega^{2} h(x) e^{\gamma \varphi(x)}=0$
$\ddot{x}+\gamma \varphi^{\prime}(x) \dot{x}^{2}+\omega^{2} h(x) e^{2 \gamma \varphi(x)}=0$
$\ddot{x}-\gamma \varphi^{\prime}(x) \dot{x}^{2}+\omega^{2} h(x) e^{2 \gamma \varphi(x)}=0$
$\ddot{x}+\gamma \varphi^{\prime}(x) \dot{x}^{2}+\omega^{2} h(x) e^{-\gamma \varphi(x)}=0$
$\ddot{x}+\gamma \varphi^{\prime}(x) \dot{x}^{2}+\omega^{2} h(x) e^{-\gamma \varphi(x)}=0$
$\ddot{x}+\gamma \varphi^{\prime}(x) \dot{x}^{2}+\omega^{2} h(x) e^{-2 \gamma \varphi(x)}=0$
These equations will be investigated in a subsequent work.

References

[1] M. D. Monsia, J. Akande, D. K. K. Adjaï, L. H. Koudahoun, Y. J. F. Kpomahou, A class of position-dependent mass Liénard differential equations via a general nonlocal transformation, viXra:1608.0226v1.(2016).
[2] M. D. Monsia, J. Akande, D. K. K. Adjaï, L. H. Koudahoun, Y. J. F. Kpomahou, Exact Analytical Periodic Solutions with Sinusoidal Form to a Class of Position-Dependent Mass Liénard-Type Oscillator Equations, viXra: 1608.0368v1.(2016).
[3] V. C. Ruby, V. K. Chandrasekar, M. Senthilvelan and M. Lakshmanan, Removal of ordering ambiguity for a class of position dependent mass quantum systems with an application to the quadratic Liénard type nonlinear oscillators, arXiv:1411.7152v1 (2014).
[4] Omar Mustafa, Position-dependent mass Lagrangians: nonlocal transformations, EulerLagrange invariance and exact solvability, arXiv: 1411.4405v3 (2015).

[^0]: ${ }^{1}$ Corresponding author.
 E-mail address : jeanakande7@gmail.com

