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Abstract 

This research work proposes a Lagrangian and Hamiltonian analysis for  the unique class of 

position-dependent mass oscillator characterized by a harmonic periodic solution and 

parabolic potential energy and its inverted version admitting a position-dependent mass 

dynamics.  

1. Analysis of the class of quadratic Liénard-type harmonic nonlinear oscillator equations 

This section is devoted to the analysis of a class of quadratic Liénard-type nonlinear 

dissipative oscillator equations that admits exact analytical harmonic periodic solutions. 

Consider the equation [1, 2] 
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that represents the class of equations under analysis.    and    are arbitrary parameters, and 

)(x is an arbitrary function of x . The dot over a symbol means differentiation with respect to 

time, and prime holds for differentiation with respect to x . By restriction of      xfx ln

and ,
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where   0xf , is an arbitrary function of x . The equation )1( is of the general form  
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 for which the Lagrangian is given by [3,4] 
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designate the position dependent mass and the potential function respectively.  

The Lagrangian of the equation (1) becomes 
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Applying the Euler-Lagrange equation formula in [4] 
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to the equation )7( , gives the equation )1( . By restricting  xV  to the harmonic potential, that 

is   ,
2
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0 xmxV   with unit mass, 10m , the equation )8(  becomes identical to the 

equation )2( , with the position-dependent mass function    xfxM  . In this regard, the 

equation )1( represents the unique class of position-dependent mass oscillators exhibiting not 

only exact harmonic periodic solution but also a harmonic potential function. 

Now, using [3]   
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one may deduce from )5(  and )6(  the Hamiltonian  
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Let us now consider, as illustration, some specific examples of )1( . Let xx )( . Then )1(  

becomes 
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The equation )10(  admits the position dependent mass and the potential 

  xexM 2 , and   22

2

1
xxV                                                                  )12(              

respectively, which provides the Lagrangian function 
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The application of the Euler-Lagrange equation )8(  to )13(  gives, as expected, )11( . In this 

regard the Hamiltonian associated to )11(  takes the form 
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So, the Hamilton equations  
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yield for )14(
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The explicit expression for the conjugate momentum p , as a function of x  and x  takes then 

the form  
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Putting now 2

2

1
)( xx  , into )1( , one may obtain as equation 
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The position dependent mass and the potential of )18(  take  then the form 
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respectively.                  

The associated  Lagrangian becomes 
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The application of the Euler-Lagrange equation )8( to )20(  gives with satisfaction )18( . So, 

the associated Hamiltonian may be written as 
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such that the Hamilton equations take the form 











xexpp

pex

x

x

22 2

2

 






                                                                                                     )22(  

The relation between x and p  reads in this perspective 
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2. Analysis of inverted versions 

Consider now the inverted version of (1) 
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which gives for xx )( , the following equation 
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The position dependent mass and potential function of )25(  may be then deduced from )4(  as 

xexM 2)(  and    xx exexV 
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respectively.                         

Therefore, the Lagrangian for )25(  may be written in the form 

xxx xeeexxxL 
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In this perspective, it may be verified that the application of the Euler-Lagrange equation )8(  

to )27(  yields, as expected, )25( . The Hamiltonian for )25( may also be computed as  
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which gives the Hamiltonian equations  
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from which the conjugate momentum becomes 
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By analysis, other forms of equations are also suggested by the previous studied equations. 

So, the following equations may also be considered in the perspective of this study, that is 
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or in general                       
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Finally one may consider the following more generalizations 
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These equations will be investigated in a subsequent work. 
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