Lagrangian Analysis of a Class of Quadratic Liénard-Type Oscillator Equations with Exponential-Type Restoring Force function

J. Akande ${ }^{1}$, D. K. K. Adjaï ${ }^{1}$, L. H. Koudahoun ${ }^{1}$, Y. J. F. Kpomahou ${ }^{2}$, M. D. Monsia ${ }^{1}$

1. Department of Physics, University of Abomey-Calavi, Abomey-Calavi, 01.B.P. 526, Cotonou, BENIN.
2. Department of Industrial and Technical Sciences, ENSET-Lokossa, University of Lokossa, Lokossa, BENIN

Abstract

This research work proposes a Lagrangian and Hamiltonian analysis for a class of exactly integrable quadratic Liénard-type harmonic nonlinear oscillator equations and its inverted version admitting a position-dependent mass dynamics. 1. Analysis of the class of quadratic Liénard-type harmonic nonlinear oscillator equations

This section is devoted to the analysis of a class of quadratic Liénard-type nonlinear dissipative oscillator equations that admits exact analytical harmonic periodic solutions. Consider the equation [1, 2] $$
\begin{equation*} \ddot{x}-\gamma \varphi^{\prime}(x) \dot{x}^{2}+\omega^{2} x e^{2 \gamma \varphi(x)}=0 \tag{1} \end{equation*}
$$

that represents the class of equations under analysis. γ and ω are arbitrary parameters, and $\varphi(x)$ is an arbitrary function of x. The dot over a symbol means differentiation with respect to time, and prime holds for differentiation with respect to x. The equation(1) is of the general form

$$
\begin{equation*}
\ddot{x}+f(x) \dot{x}^{2}+g(x)=0 \tag{2}
\end{equation*}
$$

for which the first integral is given by [3]

$$
\begin{equation*}
\mathrm{I}(\dot{x}, x)=\dot{x}^{2} e^{2 \int f(x) d x}+2 \int g(x) e^{2 \int f(x) d x} d x \tag{3}
\end{equation*}
$$

So, a first integral of (1) may be written as

$$
\begin{equation*}
\mathrm{I}(\dot{x}, x)=\dot{x}^{2} e^{-2 \gamma \varphi(x)}+\omega^{2} x^{2} \tag{4}
\end{equation*}
$$

By application of the formula [4]
$L(\dot{x}, x)=\dot{x} \int^{\dot{x}} \frac{\mathrm{I}(\dot{x}, x)}{\dot{x}^{2}} d \dot{x}$

[^0]the Lagrangian of the equation (1) becomes
$L(\dot{x}, x)=\dot{x}^{2} e^{-2 \gamma \varphi(x)}-\omega^{2} x^{2}$
Applying the Euler-Lagrange equation
$\frac{d}{d t}\left(\frac{\partial L}{\partial \dot{x}}\right)-\frac{\partial L}{\partial x}=0$
to the equation (6), gives the equation (1). Now, using [3]
$H(p, x)=p \dot{x}-L(x, \dot{x})$
one may deduce from (6) the Hamiltonian
\[

$$
\begin{equation*}
H(p, x)=\frac{p^{2}}{4} e^{2 \gamma \varphi(x)}+\omega^{2} x^{2} \tag{9}
\end{equation*}
$$

\]

Let us now consider, as illustration, some specific examples of (1). Let $\varphi(x)=x$. Then (1) becomes
$\ddot{x}-\dot{x}^{2}+\omega^{2} x e^{2 \gamma x}=0$
The equation (10) admits the first integral

$$
\begin{equation*}
\mathrm{I}(\dot{x}, x)=\dot{x}^{2} e^{-2 \gamma x}+\omega^{2} x^{2} \tag{11}
\end{equation*}
$$

which provides the Lagrangian function

$$
\begin{equation*}
L(\dot{x}, x)=\dot{x}^{2} e^{-2 \gamma x}-\omega^{2} x^{2} \tag{12}
\end{equation*}
$$

The application of the Euler-Lagrange equation (7) to (12) gives, as expected, (10) .In this regard the Hamiltonian associated to (10) takes the form

$$
\begin{equation*}
H(p, x)=\frac{p^{2}}{4} e^{2 \gamma x}+\omega^{2} x^{2} \tag{13}
\end{equation*}
$$

So, the Hamilton equations

$$
\left\{\begin{array}{l}
\dot{x}=\frac{\partial H}{\partial p} \tag{14}\\
\dot{p}=-\frac{\partial H}{\partial x}
\end{array}\right.
$$

yield for (13)

$$
\left\{\begin{array}{l}
\dot{x}=\frac{p}{2} e^{2 \gamma x} \tag{15}\\
\dot{p}=-\frac{p^{2}}{2} \gamma x e^{2 \gamma x}-2 \omega^{2} x
\end{array}\right.
$$

The explicit expression for the canonically conjugate momentum p, as a function of x and \dot{x} takes then the form

$$
\begin{equation*}
\dot{p}=-2 e^{-2 x x}\left(\dot{x}^{2}+\omega^{2} x e^{2 x x}\right) \tag{16}
\end{equation*}
$$

Putting now $\varphi(x)=\frac{1}{2} x^{2}$, into (1), one may obtain as equation

$$
\begin{equation*}
\ddot{x}-\dot{x}^{2} x+\omega^{2} x e^{\gamma x^{2}}=0 \tag{17}
\end{equation*}
$$

A first integral of (17) takes then the form

$$
\begin{equation*}
\mathrm{I}(\dot{x}, x)=\dot{x}^{2} e^{-\gamma x^{2}}+\omega^{2} x^{2} \tag{18}
\end{equation*}
$$

The associated Lagrangian becomes

$$
\begin{equation*}
L(\dot{x}, x)=\dot{x}^{2} e^{-\gamma x^{2}}-\omega^{2} x^{2} \tag{19}
\end{equation*}
$$

The application of the Euler-Lagrange equation (7) to (19) gives with satisfaction(17). So, the associated Hamiltonian may be written as

$$
\begin{equation*}
H(p, x)=\frac{p^{2}}{4} e^{\gamma x^{2}}+\omega^{2} x^{2} \tag{20}
\end{equation*}
$$

Such that the Hamilton equations take the form

$$
\left\{\begin{array}{l}
\dot{x}=\frac{p}{2} e^{\gamma x^{2}} \tag{21}\\
\dot{p}=-\frac{p^{2}}{2} x e^{\gamma x^{2}}-2 \omega^{2} x
\end{array}\right.
$$

The relation between \dot{x} and \dot{p} reads in this perspective

$$
\begin{equation*}
\dot{p}=-2 x e^{-\gamma x^{2}}\left(\gamma \dot{x}^{2}+\omega^{2} e^{\gamma x^{2}}\right) \tag{22}
\end{equation*}
$$

2. Analysis of inverted versions

Consider now the inverted version of (1)

$$
\begin{equation*}
\ddot{x}+\gamma \varphi^{\prime}(x) \dot{x}^{2}+\omega^{2} x e^{2 \gamma \varphi(x)}=0 \tag{23}
\end{equation*}
$$

which gives for $\varphi(x)=x$, the following equation
$\ddot{x}+\dot{x}^{2}+\omega^{2} x e^{2 \not 2 x}=0$
The first integral of (24) may be then deduced from (3) as
$\mathrm{I}(\dot{x}, x)=\dot{x}^{2} e^{2 \gamma x}+\frac{\omega^{2}}{2 \gamma} x e^{4 x x}-\frac{\omega^{2}}{8 \gamma^{2}} e^{4 x x}$

Therefore, the Lagrangian for (24) may be written in the form
$L(\dot{x}, x)=\dot{x}^{2} e^{2 \gamma x}+\frac{\omega^{2}}{8 \gamma^{2}} e^{4 x x}-\frac{\omega^{2}}{2 \gamma} x e^{4 \gamma x}$
In this regard, it may be verified that the application of the Euler-Lagrange equation (7) to (26) yields, as expected, (24). The Hamiltonian for (24) may also be computed as
$H(p, x)=\frac{p^{2}}{4} e^{-22 x}+\frac{\omega^{2}}{2 \gamma} x e^{4 x x}-\frac{\omega^{2}}{8 \gamma^{2}} e^{4 x x}$
which gives the Hamiltonian equations

$$
\left\{\begin{array}{l}
\dot{x}=\frac{p}{2} e^{-2 \gamma x} \tag{28}\\
\dot{p}=\frac{p^{2}}{2} \gamma x e^{-2 \gamma x}-2 \omega^{2} x e^{4 \gamma x}
\end{array}\right.
$$

from which the canonically conjugate momentum becomes

$$
\begin{equation*}
\dot{p}=2 e^{2 x x}\left(\dot{x}^{2}-\omega^{2} x e^{2 x x}\right) \tag{29}
\end{equation*}
$$

By analysis, other forms of equations are also suggested by the previous studied equations. So, the following equations may also be considered in the perspective of this study, that is
$\ddot{x}+\dot{x}^{2} x+\omega^{2} x e^{\not x^{2}}=0$
or in general

$$
\begin{align*}
& \ddot{x}+\gamma \varphi^{\prime}(x) \dot{x}^{2}+\omega^{2} x e^{\gamma \varphi(x)}=0 \tag{31}\\
& \ddot{x}-\gamma \varphi^{\prime}(x) \dot{x}^{2}+\omega^{2} x e^{\gamma \varphi(x)}=0 \tag{32}
\end{align*}
$$

Finally one may consider the following more generalizations

$$
\begin{align*}
& \ddot{x}+\gamma \varphi^{\prime}(x) \dot{x}^{2}+\omega^{2} h(x) e^{\gamma \varphi(x)}=0 \tag{33}\\
& \ddot{x}-\gamma \varphi^{\prime}(x) \dot{x}^{2}+\omega^{2} h(x) e^{\gamma \varphi(x)}=0 \tag{34}
\end{align*}
$$

$$
\begin{align*}
& \ddot{x}+\gamma \varphi^{\prime}(x) \dot{x}^{2}+\omega^{2} h(x) e^{2 \gamma \varphi(x)}=0 \tag{35}\\
& \ddot{x}-\gamma \varphi^{\prime}(x) \dot{x}^{2}+\omega^{2} h(x) e^{2 \gamma \varphi(x)}=0 \tag{36}
\end{align*}
$$

These equations will be investigated in a subsequent work.

References

[1] M. D. Monsia, J. Akande, D. K. K. Adjaï, L. H. Koudahoun, Y. J. F. Kpomahou, A class of position-dependent mass Liénard differential equations via a general nonlocal transformation, viXra:1608.0226v1.(2016).
[2] M. D. Monsia, J. Akande, D. K. K. Adjaï, L. H. Koudahoun, Y. J. F. Kpomahou, Exact Analytical Periodic Solutions with Sinusoidal Form to a Class of Position-Dependent Mass Liénard-Type Oscillator Equations, viXra: 1608.0368v1.(2016).
[3] M. Lakshmanan and V. K. Chandrasekar, Generating Finite Dimensional Integrable Nonlinear Dynamical Systems, arXiv: 1307.0273v1 (2013) 1-26.
[4] G.V. Lopez, P. Lopez, X.E. Lopez, Ambiguities on the Hamiltonian Formulation of the Free Falling Particle with Quadratic Dissipation, Adv. Studies Theor. Phys., Vol.5, 2011, no.6, 253-268.

[^0]: ${ }^{1}$ Corresponding author.
 E-mail address : jeanakande7@gmail.com

