Exact Analytical Periodic Solutions with Sinusoidal Form to a Class of Position-Dependent Mass Liénard-Type Oscillator Equations

M. D. Monsia ${ }^{1}$, J. Akande ${ }^{1}$, D. K. K. Adjaï ${ }^{1}$, L. H. Koudahoun ${ }^{1}$, Y. J. F. Kpomahou ${ }^{2}$
1. Department of Physics, University of Abomey-Calavi, Abomey-Calavi, 01.B.P. 526, Cotonou, BENIN.
2. Department of Industrial and Technical Sciences, ENSET-Lokossa, University of Lokossa, Lokossa, BENIN.

Abstract

This letter consists of additions to the paper " A Class of Position-Dependent Mass Liénard Differential Equations via a General Nonlocal Transformation'’. The objective is to highlight the fact that the general second-order nonlinear differential equation theory of position-dependent mass oscillators developed previously has the ability to provide exact analytical periodic solutions with sinusoidal form to the class of quadratic Liénard-type equations, like the motion of a particle on a rotating parabola and Morse-type oscillator equation, under question.

1. Consider, firstly, the general class of exactly solvable mixed Liénard-type nonlinear differential equations [1]

$$
\begin{equation*}
\ddot{x}+\left(l \frac{g^{\prime}(x)}{g(x)}-\gamma \varphi^{\prime}(x)\right) \dot{x}^{2}+\mu \dot{x} \exp (\gamma \varphi(x))+\frac{\omega^{2} \exp (2 \gamma \varphi(x)) \int g(x)^{l} d x}{g(x)^{l}}=0 \tag{1}
\end{equation*}
$$

obtained by applying the nonlocal transformation

$$
\begin{equation*}
y(\tau)=\int g(x)^{l} d x, d \tau=\exp (\gamma \varphi(x)) d t \tag{2}
\end{equation*}
$$

to the damped linear harmonic oscillator equation

$$
\begin{equation*}
y^{\prime \prime}(\tau)+\mu y^{\prime}(\tau)+\omega^{2} y(\tau)=0 \tag{3}
\end{equation*}
$$

where prime means differentiation with respect to the independent variable τ, μ, ω, l and γ are arbitrary parameters and, $g(x)$ and $\varphi(x)$ are also arbitrary functions of x. This transformation ensures exact analytical solutions to any equation that belongs to (1) as a function of the solution to damped linear harmonic oscillator equation.
2. Consider now the case where $\mu=0$, and $g(x)=1$. Then equation (1) reduces to

$$
\begin{equation*}
\ddot{x}-\gamma \varphi^{\prime}(x) \dot{x}^{2}+\omega^{2} x \exp (2 \gamma \varphi(x))=0 \tag{4}
\end{equation*}
$$

where prime denotes here differentiation with respect to the dependent variable $x(t)$, and dot over a symbol means differentiation with respect to time. It is noted in [2] that for $\varphi(x)=\ln (f(x))$, equation (4) becomes

[^0]$\ddot{x}-\gamma \frac{f^{\prime}(x)}{f(x)} \dot{x}^{2}+\omega^{2} x f(x)^{2 \gamma}=0$

Setting $f(x)=\frac{1}{\sqrt{1+\lambda x^{2}}}$, and $\gamma=1$, into (5), yields the equation of motion of a particle moving on a rotating parabola [2]
$\ddot{x}+\frac{\lambda x}{1+\lambda x^{2}} \dot{x}^{2}+\frac{\omega^{2} x}{1+\lambda x^{2}}=0$
In this context the nonlocal transformation (2) becomes

$$
\begin{equation*}
y(\tau)=x(t), d \tau=\frac{d t}{\sqrt{1+\lambda x^{2}}} \tag{7}
\end{equation*}
$$

and, if the solution to linear harmonic oscillator equation according to (3) reads

$$
\begin{equation*}
y(\tau)=A_{0} \sin \left(\omega \tau+\theta_{0}\right) \tag{8}
\end{equation*}
$$

where A_{0} and θ_{0} are arbitrary constants, then the desired exact analytical periodic solution with sinusoidal form to equation (6) of a particle moving on a rotating parabola takes the form

$$
\begin{equation*}
x(t)=A_{0} \sin \left(\omega \phi(t)+\theta_{0}\right) \tag{9}
\end{equation*}
$$

where the function $\tau=\phi(t)$, satisfies
$\frac{d \tau}{d t}=\frac{1}{\sqrt{1+\lambda A_{0}^{2} \sin ^{2}\left(\omega \tau+\theta_{0}\right)}}$
3. Let $\varphi(x)=x$. Then, equation (4) reduces to the Morse-type position-dependent mass oscillator equation

$$
\begin{equation*}
\ddot{x}-\dot{x}^{2}+\omega^{2} x \exp (2 \gamma x)=0 \tag{11}
\end{equation*}
$$

that admits the exact analytical periodic solutions of trigonometric form

$$
\begin{equation*}
x(t)=A_{0} \sin \left(\omega \psi(t)+\theta_{0}\right) \tag{12}
\end{equation*}
$$

where the function $\tau=\psi(t)$, obeys

$$
\begin{equation*}
\frac{d \tau}{d t}=\exp \left[\gamma A_{0} \sin \left(\omega \tau+\theta_{0}\right)\right] \tag{13}
\end{equation*}
$$

That being so, exact analytical periodic solutions for many other quadratic Liénard-type oscillator equations may be expressed as a sinusoidal function of time, as previously shown for the Mathews-Lakshmanan oscillator equations by applying the theory of positiondependent mass oscillator via a nonlocal transformation [1].

References

[1] M. D. Monsia, J. Akande, D. K. K. Adjaï, L. H. Koudahoun, Y. J. F. Kpomahou, A class of positiondependent mass Liénard differential equations via a general nonlocal transformation, viXra:1608.0226v1.(2016).
[2] M. D. Monsia, J. Akande, D. K. K. Adjaï, L. H. Koudahoun, Y. J. F. Kpomahou, Additions to '’ A Class of Position-Dependent Mass Liénard Differential Equations via a General Nonlocal Transformation', viXra :1608.0266v1.(2016).

[^0]: ${ }^{1}$ Corresponding author.
 E-mail address: monsiadelphin@yahoo.fr

