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Abstract: This chapter presents a general overview and foundations of the DSmT,

i.e. the recent theory of plausible and paradoxical reasoning developed by the au-

thors, specially for the static or dynamic fusion of information arising from several

independent but potentially highly conflicting, uncertain and imprecise sources of

evidence. We introduce and justify here the basis of the DSmT framework with

respect to the Dempster-Shafer Theory (DST), a mathematical theory of evidence

developed in 1976 by Glenn Shafer. We present the DSm combination rules and

provide some simple illustrative examples and comparisons with other main rules of

combination available in the literature for the combination of information for sim-

ple fusion problems. Detailed presentations on recent advances and applications of

DSmT are presented in the next chapters of this book.

1.1 Introduction

T
he Dezert-Smarandache Theory (DSmT) of plausible and paradoxical reasoning proposed by the

authors in recent years [9, 10, 36] can be considered as an extension of the classical Dempster-Shafer

theory (DST) [33] but includes fundamental differences with the DST. DSmT allows to formally combine

any types of independent sources of information represented in term of belief functions, but is mainly

focused on the fusion of uncertain, highly conflicting and imprecise sources of evidence. DSmT is able

to solve complex static or dynamic fusion problems beyond the limits of the DST framework, specially
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4 CHAPTER 1. PRESENTATION OF DSMT

when conflicts between sources become large and when the refinement of the frame of the problem under

consideration, denoted Θ, becomes inaccessible because of the vague, relative and imprecise nature of

elements of Θ [10].

The foundation of DSmT is based on the definition of the Dedekind’s lattice DΘ also called hyper-

power set of the frame Θ in the sequel. In the DSmT framework, Θ is first considered as only a set

{θ1, . . . , θn} of n exhaustive elements (closed world assumption) without introducing other constraint

(exclusivity or non-existential constraints). This corresponds to the free DSm model on which is based

the classic DSm rule of combination. The exhaustivity (closed world) assumption is not fundamental

actually, because one can always close any open world theoretically, say ΘOpen by including into it an

extra element/hypothesis θ0 (although not precisely identified) corresponding to all missing hypotheses

of ΘOpen to work with the new closed frame Θ = {θ0} ∪ ΘOpen = {θ0, θ1, . . . , θn}. This idea has been

already proposed and defended by Yager, Dubois & Prade and Testemale in [45, 13, 30] and differs from

the Transferable Belief Model (TBM) of Smets [42]. The proper use of the free DSm model for the fusion

depends on the intrinsic nature of elements/concepts θi involved in the problem under consideration

and becomes naturally justified when dealing with vague/continuous elements which cannot be precisely

defined and separated (e.g. the relative concepts of smallness/tallness, pleasure/pain, hot/cold, colors

(because of the continuous spectrum of the light), etc) so that no refinement of Θ in a new larger set

Θref of exclusive refined hypotheses is possible. In such case, we just call Θ the frame of the problem.

When a complete refinement (or maybe sometimes an only partial refinement) of Θ is possible and

thus allows us to work on Θref , then we call Θref the frame of discernment (resp. frame of partial

discernment) of the problem because some elements of Θref are truly exclusive and thus they become

(resp. partially) discernable. The refined frame of discernment assuming exclusivity of all elements θi ∈ Θ

corresponds to the Shafer’s model on which is based the DST and can be obtained from the free DSm

model by introducing into it all exclusivity constraints. All fusion problems dealing with truly exclusive

concepts must obviously be based on such model since it describes adequately the real and intrinsic nature

of hypotheses. Actually, any constrained model (including Shafer’s model) corresponds to what we called

an hybrid DSm model. DSmT provides a generalized hybrid DSm rule of combination for working with

any kind of hybrid models including exclusivity and non-existential constraints as well and it is not only

limited to the most constrained one, i.e. Shafer’s model (see chapter 4 for a detailed presentation and

examples on the hybrid DSm rule). Before going further into this DSmT presentation it is necessary to

briefly present the foundations of the DST [33] for pointing out the important differences between these

two theories for managing the combination of evidence.
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1.2 Short introduction to the DST

In this section, we present a short introduction to the Dempster-Shafer theory. A complete presentation

of the Mathematical Theory of Evidence proposed by Glenn Shafer can be found in his milestone book

in [33]. Advances on DST can be found in [34, 48] and [49].

1.2.1 Shafer’s model and belief functions

Let Θ = {θ1, θ2, . . . , θn} be the frame of discernment of the fusion problem under consideration having n

exhaustive and exclusive elementary hypotheses θi. This corresponds to Shafer’s model of the problem.

Such a model assumes that an ultimate refinement of the problem is possible (exists and is achievable)

so that θi are well precisely defined/identified in such a way that we are sure that they are exclusive and

exhaustive (closed-world assumption).

The set of all subsets of Θ is called the power set of Θ and is denoted 2Θ. Its cardinality is 2|Θ|. Since

2Θ is closed under unions, intersections, and complements, it defines a Boolean algebra.

By example, if Θ = {θ1, θ2, θ3} then 2Θ = {∅, θ1, θ2, θ3, θ1 ∪ θ2, θ1 ∪ θ3, θ2 ∪ θ3, θ1 ∪ θ2 ∪ θ3}.

In Shafer’s model, a basic belief assignment (bba) m(.) : 2Θ → [0, 1] associated to a given body of

evidence B (also called corpus of evidence) is defined by [33]

m(∅) = 0 and
∑

A∈2Θ

m(A) = 1 (1.1)

Glenn Shafer defines the belief (credibility) and plausibility functions of A ⊆ Θ as

Bel(A) =
∑

B∈2Θ,B⊆A

m(B) (1.2)

Pl(A) =
∑

B∈2Θ,B∩A 6=∅

m(B) = 1− Bel(Ā) (1.3)

where Ā denotes the complement of the proposition A in Θ.

The belief functions m(.), Bel(.) and Pl(.) are in one-to-one correspondence [33]. The set of elements

A ∈ 2Θ having a positive basic belief assignment is called the core/kernel of the source of evidence under

consideration and is denoted K(m).

1.2.2 Dempster’s rule of combination

Let Bel1(.) and Bel2(.) be two belief functions provided by two independent (and a priori equally reliable)

sources/bodies of evidence B1 and B2 over the same frame of discernment Θ and their corresponding
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bba m1(.) and m2(.). Then the combined global belief function denoted Bel(.) = Bel1(.) ⊕ Bel2(.) is

obtained by combining the bba m1(.) and m2(.) through the following Dempster rule of combination [33]

m(.) = [m1 ⊕m2](.) where







m(∅) = 0

m(A) =

∑

X,Y ∈2Θ

X∩Y=A

m1(X)m2(Y )

1−
∑

X,Y ∈2Θ

X∩Y=∅

m1(X)m2(Y )
∀(A 6= ∅) ∈ 2Θ

(1.4)

m(.) is a proper basic belief assignment if and only if the denominator in equation (1.4) is non-zero.

The degree of conflict between the sources B1 and B2 is defined by

k12 ,
∑

X,Y ∈2Θ

X∩Y=∅

m1(X)m2(Y ) (1.5)

The effect of the normalizing factor 1 − k12 in (1.4) consists in eliminating the conflicting pieces

of information between the two sources to combine, consistently with the intersection operator. When

k12 = 1, the combined bba m(.) does not exist and the bodies of evidences B1 and B2 are said to be in

full contradiction. Such a case arises when there exists A ⊂ Θ such that Bel1(A) = 1 and Bel2(Ā) = 1.

The core of the bba m(.) equals the intersection of the cores of m1 and m2, i.e K(m) = K(m1) ∩K(m2).

Up to the normalization factor 1−k12, Dempster’s rule is formally nothing but a random set intersection

under stochastic assumption and it corresponds to the conjunctive consensus [13]. Dempster’s rule of

combination can be directly extended for the combination ofN independent and equally reliable sources of

evidence and its major interest comes essentially from its commutativity and associativity properties [33].

A recent discussion on Dempster’s and Bayesian rules of combination can be found in [5].

1.2.3 Alternatives to Dempster’s rule of combination

The DST is attractive for the Information Fusion community because it gives a nice mathematical model

for the representation of uncertainty and it includes Bayesian theory as a special case [33] (p. 4). Although

very appealing, the DST presents some weaknesses and limitations [27] already reported by Zadeh [50,

51, 52, 53] and Dubois & Prade in the eighties [12] and reinforced by Voorbraak in [43] because of the

lack of complete theoretical justification of Dempster’s rule of combination, but mainly because of our

low confidence to trust the result of Dempster’s rule of combination when the conflict becomes important

between sources (i.e. k12 ↗ 1). Indeed, there exists an infinite class of cases where Dempster’s rule of

combination can assign certainty to a minority opinion (other infinite classes of counter-examples are

discussed in chapter 5) or where the ”ignorance” interval disappears forever whenever a single piece of

evidence commits all its belief to a proposition and its negation [29]. Moreover, elements of sets with
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larger cardinality can gain a disproportionate share of belief [43]. These drawbacks have fed intensive

debates and research works for the last twenty years:

• either to interpret (and justify as best as possible) the use of Dempster’s rule by several approaches

and to circumvent numerical problems with it when conflict becomes high. These approaches are

mainly based on the extension of the domain of the probability functions from the propositional

logic domain to the modal propositional logic domain [31, 32, 28] or on the hint model [22] and

probabilistic argumentation systems [14, 15, 1, 2, 16, 17, 18, 19, 20]. Discussions on these interpre-

tations of DST can be found in [38, 40, 42], and also in chapter 12 of this book which analyzes and

compares Bayesian reasoning, Dempster-Shafer’s reasoning and DSm reasoning on a very simple

but interesting example drawn from [28].

• or to propose new alternative rules. DSmT fits in this category since it extends the foundations of

DST and also provides a new combination rules as it will be shown in next sections.

Several interesting and valuable alternative rules have thus been proposed in literature to circumvent

the limitations of Dempster’s rule of combination. The major common alternatives are listed in this

section and most of the current available combination rules have been recently unified in a nice gen-

eral framework by Lefèvre, Colot and Vanoorenberghe in [25]. Their important contribution, although

strongly criticized by Haenni in [19] but properly justified by Lefevre et al. in [26], shows clearly that

an infinite number of possible rules of combinations can be built from Shafer’s model depending on the

choice for transfer of the conflicting mass (i.e. k12). A justification of Dempster’s rule of combination

has been proposed afterwards in the nineties by the axiomatic of Philippe Smets [37, 24, 41, 42] based

on his Transferable Belief Model (TBM) related to anterior works of Cheng and Kashyap in [6], a non-

probabilistic interpretation of Dempster-Shafer theory (see [3, 4] for discussion).

Here is the list of the most common rules of combination1 for two independent sources of evidence

proposed in the literature in the DST framework as possible alternatives to Dempster’s rule of combination

to overcome its limitations. Unless explicitly specified, the sources are assumed to be equally reliable.

• The disjunctive rule of combination [11, 13, 39]: This commutative and associative rule pro-

posed by Dubois & Prade in 1986 and denoted here by the index ∪ is examined in details in chapter

9. m∪(.) is defined ∀A ∈ 2Θ by






m∪(∅) = 0

m∪(A) =
∑

X,Y ∈2Θ

X∪Y=A

m1(X)m2(Y ) ∀(A 6= ∅) ∈ 2Θ (1.6)

1The MinC rule of combination is not included here since it is covered in details in chapter 10.
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The core of the belief function given by m∪ equals the union of the cores of Bel1 and Bel2. This rule

reflects the disjunctive consensus and is usually preferred when one knows that one of the source

B1 or B2 is mistaken but without knowing which one among B1 and B2.

• Murphy’s rule of combination [27]: This commutative (but not associative) trade-off rule,

denoted here with index M , drawn from [46, 13] is a special case of convex combination of bba m1

and m2 and consists actually in a simple arithmetic average of belief functions associated with m1

and m2. BelM (.) is then given ∀A ∈ 2Θ by:

BelM (A) =
1

2
[Bel1(A) + Bel2(A)] (1.7)

• Smets’ rule of combination [41, 42]: This commutative and associative rule corresponds actually

to the non-normalized version of Dempster’s rule of combination. It allows positive mass on the

null/empty set ∅. This eliminates the division by 1− k12 involved in Dempster’s rule (1.4). Smets’

rule of combination of two independent (equally reliable) sources of evidence (denoted here by index

S) is given by:






mS(∅) ≡ k12 =
∑

X,Y ∈2Θ

X∩Y=∅

m1(X)m2(Y )

mS(A) =
∑

X,Y ∈2Θ

X∩Y=A

m1(X)m2(Y ) ∀(A 6= ∅) ∈ 2Θ

(1.8)

• Yager’s rule of combination [45, 46, 47]: Yager admits that in case of conflict the result is not

reliable, so that k12 plays the role of an absolute discounting term added to the weight of ignorance.

The commutative (but not associative) Yager rule, denoted here by index Y is given2 by:







mY (∅) = 0

mY (A) =
∑

X,Y ∈2Θ

X∩Y=A

m1(X)m2(Y ) ∀A ∈ 2Θ, A 6= ∅,A 6= Θ

mY (Θ) = m1(Θ)m2(Θ) +
∑

X,Y ∈2Θ

X∩Y=∅

m1(X)m2(Y ) when A = Θ

(1.9)

• Dubois & Prade’s rule of combination [13]: We admit that the two sources are reliable when

they are not in conflict, but one of them is right when a conflict occurs. Then if one observes a value

in set X while the other observes this value in a set Y , the truth lies in X ∩ Y as long X ∩ Y 6= ∅.
If X ∩ Y = ∅, then the truth lies in X ∪ Y [13]. According to this principle, the commutative (but

2Θ represents here the full ignorance θ1 ∪ θ2 ∪ . . . ∪ θn on the frame of discernment according the notation used in [33].
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not associative) Dubois & Prade hybrid rule of combination, denoted here by index DP , which is

a reasonable trade-off between precision and reliability, is defined3 by:







mDP (∅) = 0

mDP (A) =
∑

X,Y ∈2Θ

X∩Y=A
X∩Y 6=∅

m1(X)m2(Y ) +
∑

X,Y ∈2Θ

X∪Y=A
X∩Y=∅

m1(X)m2(Y ) ∀A ∈ 2Θ, A 6= ∅ (1.10)

1.2.3.1 The unified formulation for rules of combinations involving conjunctive consensus

We present here the unified framework recently proposed by Lefèvre, Colot and Vanoorenberghe in [25] to

embed all the existing (and potentially forthcoming) combination rules involving conjunctive consensus

in the same general mechanism of construction. Here is the principle of their general formulation based

on two steps.

• Step 1: Computation of the total conflicting mass based on the conjunctive consensus

k12 ,
∑

X,Y ∈2Θ

X∩Y=∅

m1(X)m2(Y ) (1.11)

• Step 2: This step consists in the reallocation (convex combination) of the conflicting masses on

(A 6= ∅) ⊆ Θ with some given coefficients wm(A) ∈ [0, 1] such that
∑

A⊆Θwm(A) = 1 according to







m(∅) = wm(∅)k12

m(A) = [
∑

X,Y ∈2Θ

X∩Y=A

m1(X)m2(Y )] + wm(A)k12 ∀(A 6= ∅) ∈ 2Θ (1.12)

The particular choice of the set of coefficients wm(.) provides a particular rule of combination. Actually

this nice and important general formulation shows there exists an infinite number of possible rules of

combination. Some rules are then justified or criticized with respect to the other ones mainly on their

ability to, or not to, preserve the associativity and commutativity properties of the combination. It

can be easily shown in [25] that such general procedure provides all existing rules involving conjunctive

consensus developed in the literature based on Shafer’s model. As examples:

• Dempster’s rule of combination (1.4) can be obtained from (1.12) by choosing ∀A 6= ∅

wm(∅) = 0 and wm(A) =
1

1− k12

∑

X,Y ∈2Θ

X∩Y=A

m1(X)m2(Y ) (1.13)

3taking into account the the correction of the typo error in formula (56) given in [13], page 257.
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• Yager’s rule of combination (1.9) is obtained by choosing

wm(Θ) = 1 and wm(A 6= Θ) = 0 (1.14)

• Smets’ rule of combination (1.8) is obtained by choosing

wm(∅) = 1 and wm(A 6= ∅) = 0 (1.15)

• Dubois and Prade’s rule of combination (1.10) is obtained by choosing

∀A ⊆ P , wm(A) =
1

1− k12

∑

A1,A2|A1∪A2=A

A1∩A2=∅

m? (1.16)

where m? , m1(A1)m2(A2) corresponds to the partial conflicting mass which is assigned to A1∪A2.

P is the set of all subsets of 2Θ on which the conflicting mass is distributed. P is defined by [25]

P , {A ∈ 2Θ | ∃A1 ∈ K(m1), ∃A2 ∈ K(m2), A1 ∪A2 = A and A1 ∩A2 = ∅} (1.17)

The computation of the weighting factors wm(A) of Dubois and Prade’s rule of combination does

not depend only on propositions they are associated with, but also on belief mass functions which

have cause the partial conflicts. Thus the belief mass functions leading to the conflict allow to

compute that part of conflicting mass which must be assigned to the subsets of P [25]. Yager’s rule

coincides with the Dubois and Prade’s rule of combination when P = {Θ}.

1.2.4 The discounting of sources of evidence

Most of the rules of combination proposed in the literature are based on the assumption of the same

reliability of sources of evidence. When the sources are known not being equally reliable and the reliability

of each source is perfectly known (or at least has been properly estimated when it’s possible [42, 25]),

then is it natural and reasonable to discount each unreliable source proportionally to its corresponding

reliability factor according to method proposed by Shafer in [33], chapter 11. Two methods are usually

used for discounting the sources:

• Classical discounting method [33, 13, 42, 25]:

Assume that the reliability/confidence4 factor α ∈ [0, 1] of a source is known, then the discounting

of the bba m(.) provided by the unreliable source is done to obtain a new (discounted) bba m′(.)

as follows: 





m′(A) = α ·m(A), ∀A ∈ 2Θ, A 6= Θ

m′(Θ) = (1− α) + α ·m(Θ)

(1.18)

4We prefer to use here the terminology confidence rather than reliability since the notion of reliability is closely related

to the repetition of experiments with random outputs which may not be always possible in the context of some information

fusion applications (see example 1.6 given by Shafer on the life on Sirius in [33], p.23)
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α = 1 means the total confidence in the source while α = 0 means a complete calling in question of

the reliability of the source.

• Discounting by convex combination of sources [13]: This method of discounting is based on

the convex combination of sources by their relative reliabilities, assumed to be known. Let consider

two independent unreliable sources of evidence with reliability factors α1 and α2 with α1, α2 ∈ [0, 1],

then the result of the combination of the discounted sources will be given ∀A ∈ 2Θ by

Bel(A) =
α1

α1 + α2
Bel1(A) +

α2

α1 + α2
Bel2(A) (1.19)

When the sources are highly conflicting and they have been sufficiently discounted, Shafer has

shown in [33], p. 253, that the combination of a large number n of equally reliable sources using

Dempster’s rule on equally discounted belief functions, becomes similar to the convex combination

of the n sources with equal reliability factors αi = 1/n. A detailed presentation of discounting

methods can be found in [13].

It is important to note that such discounting methods must not be chosen as an ad-hoc tool to adjust

the result of the fusion (once obtained) in case of troubles if a counter-intuitive or bad result arises, but

only beforehand when one has prior information on the quality of sources. In the sequel of the book we will

assume that sources under consideration are a priori equally reliable/trustable, unless specified explicitly.

Although being very important for practical issues, the case of the fusion of known unreliable sources of

information is not considered in this book because it depends on the own choice of the discounting method

adopted by the system designer (this is also highly related with the application under consideration and

the types of the sources to be combined). Fundamentally the problem of combination of unreliable sources

of evidence is the same as working with new sets of basic belief assignments and thus has little interest

in the framework of this book.

1.3 Foundations of the DSmT

1.3.1 Notion of free and hybrid DSm models

The development of the DSmT arises from the necessity to overcome the inherent limitations of the DST

which are closely related with the acceptance of Shafer’s model (the frame of discernment Θ defined as

a finite set of exhaustive and exclusive hypotheses θi, i = 1, . . . , n), the third middle excluded principle

(i.e. the existence of the complement for any elements/propositions belonging to the power set of Θ),

and the acceptance of Dempter’s rule of combination (involving normalization) as the framework for the

combination of independent sources of evidence. We argue that these three fundamental conditions of

the DST can be removed and another new mathematical approach for combination of evidence is possible.
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The basis of the DSmT is the refutation of the principle of the third excluded middle and Shafer’s

model, since for a wide class of fusion problems the intrinsic nature of hypotheses can be only vague and

imprecise in such a way that precise refinement is just impossible to obtain in reality so that the exclu-

sive elements θi cannot be properly identified and precisely separated. Many problems involving fuzzy

continuous and relative concepts described in natural language and having no absolute interpretation

like tallness/smallness, pleasure/pain, cold/hot, Sorites paradoxes, etc, enter in this category. DSmT

starts with the notion of free DSm model, denotedMf (Θ), and considers Θ only as a frame of exhaustive

elements θi, i = 1, . . . , n which can potentially overlap. This model is free because no other assumption is

done on the hypotheses, but the weak exhaustivity constraint which can always been satisfied according

the closure principle explained in the introduction of this chapter. No other constraint is involved in the

free DSm model. When the free DSm model holds, the classic commutative and associative DSm rule

of combination (corresponding to the conjunctive consensus defined on the free Dedekind’s lattice - see

next subsection) is performed.

Depending on the intrinsic nature of the elements of the fusion problem under consideration, it can

however happen that the free model does not fit the reality because some subsets of Θ can contain el-

ements known to be truly exclusive but also truly non existing at all at a given time (specially when

working on dynamic fusion problem where the frame Θ varies with time with the revision of the knowl-

edge available). These integrity constraints are then explicitly and formally introduced into the free DSm

model Mf(Θ) in order to adapt it properly to fit as close as possible with the reality and permit to

construct a hybrid DSm model M(Θ) on which the combination will be efficiently performed. Shafer’s

model, denotedM0(Θ), corresponds to a very specific hybrid DSm model including all possible exclusiv-

ity constraints. The DST has been developed for working only with M0(Θ) while the DSmT has been

developed for working with any kind of hybrid model (including Shafer’s model and the free DSm model),

to manage as efficiently and precisely as possible imprecise, uncertain and potentially high conflicting

sources of evidence while keeping in mind the possible dynamicity of the information fusion problem-

atic. The foundations of the DSmT are therefore totally different from those of all existing approaches

managing uncertainties, imprecisions and conflicts. DSmT provides a new interesting way to attack the

information fusion problematic with a general framework in order to cover a wide variety of problems. A

detailed presentation of hybrid DSm models and hybrid DSm rule of combination is given in chapter 4.

DSmT refutes also the idea that sources of evidence provide their beliefs with the same absolute in-

terpretation of elements of the same frame Θ and the conflict between sources arises not only because of

the possible unreliabilty of sources, but also because of possible different and relative interpretation of Θ,

e.g. what is considered as good for somebody can be considered as bad for somebody else. There is some
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unavoidable subjectivity in the belief assignments provided by the sources of evidence, otherwise it would

mean that all bodies of evidence have a same objective and universal interpretation (or measure) of the

phenomena under consideration, which unfortunately rarely occurs in reality, but when bba are based on

some objective probabilities transformations. But in this last case, probability theory can handle properly

and efficiently the information, and the DST, as well as the DSmT, becomes useless. If we now get out of

the probabilistic background argumentation for the construction of bba, we claim that in most of cases,

the sources of evidence provide their beliefs about elements of the frame of the fusion problem only based

on their own limited knowledge and experience without reference to the (inaccessible) absolute truth of

the space of possibilities.

The DSmT includes the possibility to deal with evidences arising from different sources of information

which do not have access to the absolute and same interpretation of the elements of Θ under consideration.

The DSmT, although not based on probabilistic argumentation can be interpreted as an extension of

Bayesian theory and Dempster-Shafer theory in the following sense. Let Θ = {θ1, θ2} be the simplest

frame made of only two hypotheses, then

• the probability theory deals, under the assumptions on exclusivity and exhaustivity of hypotheses,

with basic probability assignments (bpa) m(.) ∈ [0, 1] such that

m(θ1) +m(θ2) = 1

• the DST deals, under the assumptions on exclusivity and exhaustivity of hypotheses, with bba

m(.) ∈ [0, 1] such that

m(θ1) +m(θ2) +m(θ1 ∪ θ2) = 1

• the DSmT theory deals, under only assumption on exhaustivity of hypotheses (i.e. the free DSm

model), with the generalized bba m(.) ∈ [0, 1] such that

m(θ1) +m(θ2) +m(θ1 ∪ θ2) +m(θ1 ∩ θ2) = 1

1.3.2 Notion of hyper-power set DΘ

One of the cornerstones of the DSmT is the notion of hyper-power set (see chapters 2 and 3 for examples

and a detailed presentation). Let Θ = {θ1, . . . , θn} be a finite set (called frame) of n exhaustive elements5.

The Dedekind’s lattice, also called in the DSmT framework hyper-power set DΘ is defined as the set of

all composite propositions built from elements of Θ with ∪ and ∩ operators6 such that:

5We do not assume here that elements θi are necessary exclusive. There is no restriction on θi but the exhaustivity.
6Θ generates DΘ under operators ∪ and ∩
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1. ∅, θ1, . . . , θn ∈ DΘ.

2. If A,B ∈ DΘ, then A ∩B ∈ DΘ and A ∪B ∈ DΘ.

3. No other elements belong to DΘ, except those obtained by using rules 1 or 2.

The dual (obtained by switching ∪ and ∩ in expressions) of DΘ is itself. There are elements in DΘ

which are self-dual (dual to themselves), for example α8 for the case when n = 3 in the example below.

The cardinality of DΘ is majored by 22n

when the cardinality of Θ equals n, i.e. |Θ| = n. The generation

of hyper-power set DΘ is closely related with the famous Dedekind problem [8, 7] on enumerating the set

of isotone Boolean functions. The generation of the hyper-power set is presented in chapter 2. Since for

any given finite set Θ, |DΘ| ≥ |2Θ| we call DΘ the hyper-power set of Θ.

Example of the first hyper-power sets DΘ

• For the degenerate case (n = 0) where Θ = {}, one has DΘ = {α0 , ∅} and |DΘ| = 1.

• When Θ = {θ1}, one has DΘ = {α0 , ∅, α1 , θ1} and |DΘ| = 2.

• When Θ = {θ1, θ2}, one has DΘ = {α0, α1, . . . , α4} and |DΘ| = 5 with α0 , ∅, α1 , θ1 ∩ θ2,

α2 , θ1, α3 , θ2 and α4 , θ1 ∪ θ2.

• When Θ = {θ1, θ2, θ3}, one has DΘ = {α0, α1, . . . , α18} and |DΘ| = 19 with

α0 , ∅
α1 , θ1 ∩ θ2 ∩ θ3 α10 , θ2

α2 , θ1 ∩ θ2 α11 , θ3

α3 , θ1 ∩ θ3 α12 , (θ1 ∩ θ2) ∪ θ3
α4 , θ2 ∩ θ3 α13 , (θ1 ∩ θ3) ∪ θ2
α5 , (θ1 ∪ θ2) ∩ θ3 α14 , (θ2 ∩ θ3) ∪ θ1
α6 , (θ1 ∪ θ3) ∩ θ2 α15 , θ1 ∪ θ2
α7 , (θ2 ∪ θ3) ∩ θ1 α16 , θ1 ∪ θ3
α8 , (θ1 ∩ θ2) ∪ (θ1 ∩ θ3) ∪ (θ2 ∩ θ3) α17 , θ2 ∪ θ3
α9 , θ1 α18 , θ1 ∪ θ2 ∪ θ3

Note that the complement Ā of any proposition A (except for ∅ and for the total ignorance It ,

θ1 ∪ θ2 ∪ . . . ∪ θn), is not involved within DSmT because of the refutation of the third excluded middle.

In other words, ∀A ∈ DΘ with A 6= ∅ or A 6= It, Ā 6∈ DΘ. Thus (DΘ,∩,∪) does not define a Boolean al-

gebra. The cardinality of hyper-power set DΘ for n ≥ 1 follows the sequence of Dedekind’s numbers [35],

i.e. 1,2,5,19,167,7580,7828353,... (see next chapter for details).
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Elements θi, i = 1, . . . , n of Θ constitute the finite set of hypotheses/concepts characterizing the fusion

problem under consideration. DΘ constitutes what we call the free DSm model Mf (Θ) and allows to

work with fuzzy concepts which depict a continuous and relative intrinsic nature. Such kinds of concepts

cannot be precisely refined in an absolute interpretation because of the unapproachable universal truth.

However for some particular fusion problems involving discrete concepts, elements θi are truly exclu-

sive. In such case, all the exclusivity constraints on θi, i = 1, . . . , n have to be included in the previous

model to characterize properly the true nature of the fusion problem and to fit it with the reality. By

doing this, the hyper-power set DΘ reduces naturally to the classical power set 2Θ and this constitutes

the most restricted hybrid DSm model, denotedM0(Θ), coinciding with Shafer’s model. As an exemple,

let’s consider the 2D problem where Θ = {θ1, θ2} with DΘ = {∅, θ1 ∩ θ2, θ1, θ2, θ1 ∪ θ2} and assume now

that θ1 and θ2 are truly exclusive (i.e. Shafer’s model M0 holds), then because θ1 ∩ θ2 M0

= ∅, one gets

DΘ = {∅, θ1 ∩ θ2 M0

= ∅, θ1, θ2, θ1 ∪ θ2} = {∅, θ1, θ2, θ1 ∪ θ2} ≡ 2Θ.

Between the class of fusion problems corresponding to the free DSm model Mf (Θ) and the class of

fusion problems corresponding to Shafer’s modelM0(Θ), there exists another wide class of hybrid fusion

problems involving in Θ both fuzzy continuous concepts and discrete hypotheses. In such (hybrid) class,

some exclusivity constraints and possibly some non-existential constraints (especially when working on

dynamic7 fusion) have to be taken into account. Each hybrid fusion problem of this class will then be

characterized by a proper hybrid DSm model M(Θ) with M(Θ) 6= Mf(Θ) and M(Θ) 6= M0(Θ), see

examples presented in chapter 4.

1.3.3 Generalized belief functions

From a general frame Θ, we define a map m(.) : DΘ → [0, 1] associated to a given body of evidence B as

m(∅) = 0 and
∑

A∈DΘ

m(A) = 1 (1.20)

The quantity m(A) is called the generalized basic belief assignment/mass (gbba) of A.

The generalized belief and plausibility functions are defined in almost the same manner as within the

DST, i.e.

Bel(A) =
∑

B⊆A
B∈DΘ

m(B) (1.21)

Pl(A) =
∑

B∩A 6=∅
B∈DΘ

m(B) (1.22)

7i.e. when the frame Θ is changing with time.
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These definitions are compatible with the definitions of classical belief functions in the DST framework

when DΘ reduces to 2Θ for fusion problems where Shafer’s model M0(Θ) holds. We still have ∀A ∈
DΘ, Bel(A) ≤ Pl(A). Note that when working with the free DSm modelMf (Θ), one has always Pl(A) =

1 ∀A 6= ∅ ∈ DΘ which is normal.

1.3.4 The classic DSm rule of combination

When the free DSm model Mf (Θ) holds for the fusion problem under consideration, the classic DSm

rule of combination mMf (Θ) ≡ m(.) , [m1 ⊕m2](.) of two independent sources of evidences B1 and B2

over the same frame Θ with belief functions Bel1(.) and Bel2(.) associated with gbba m1(.) and m2(.)

corresponds to the conjunctive consensus of the sources. It is given by [9, 10]:

∀C ∈ DΘ, mMf (Θ)(C) ≡ m(C) =
∑

A,B∈DΘ

A∩B=C

m1(A)m2(B) (1.23)

Since DΘ is closed under ∪ and ∩ set operators, this new rule of combination guarantees that m(.) is

a proper generalized belief assignment, i.e. m(.) : DΘ → [0, 1]. This rule of combination is commutative

and associative and can always be used for the fusion of sources involving fuzzy concepts. This rule can

be directly and easily extended for the combination of k > 2 independent sources of evidence (see the

expression for S1(.) in the next section and chapter 4 for details).

This classic DSm rule of combination becomes very expensive in terms of computations and memory

size due to the huge number of elements in DΘ when the cardinality of Θ increases. This remark is

however valid only if the cores (the set of focal elements of gbba) K1(m1) and K2(m2) coincide with DΘ,

i.e. when m1(A) > 0 and m2(A) > 0 for all A 6= ∅ ∈ DΘ. Fortunately, it is important to note here that in

most of the practical applications the sizes of K1(m1) and K2(m2) are much smaller than |DΘ| because

bodies of evidence generally allocate their basic belief assignments only over a subset of the hyper-power

set. This makes things easier for the implementation of the classic DSm rule (1.23).

The DSm rule is actually very easy to implement. It suffices for each focal element of K1(m1) to

multiply it with the focal elements of K2(m2) and then to pool all combinations which are equivalent

under the algebra of sets according to figure 1.1.

The figure 1.1 represents the DSm network architecture of the DSm rule of combination. The first

layer of the network consists in all gbba of focal elements Ai, i = 1, . . . , n of m1(.). The second layer

of the network consists in all gbba of focal elements Bj , j = 1, . . . , k of m2(.). Each node of layer 2 is

connected with each node of layer 1. The output layer (on the right) consists in the combined basic

belief assignments of all possible intersections Ai ∩ Bj , i = 1, . . . , n and j = 1, . . . , k. The last step
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of the classic DSm rule (not included on the figure) consists in the compression of the output layer by

regrouping (summing up) all the combined belief assignments corresponding to the same focal elements

(by example if X = A2 ∩ B3 = A4 ∩ B5, then m(X) = m(A2 ∩ B3) + m(A4 ∩ B5)). If a third body of

evidence provides a new gbba m3(.), the one combines it by connecting the output layer with the layer

associated to m3(.), and so on. Because of commutativity and associativity properties of the classic DSm

rule, the DSm network can be designed with any order of the layers.
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Figure 1.1: Representation of the classic DSm rule on Mf (Θ)

1.3.5 The hybrid DSm rule of combination

When the free DSm model Mf (Θ) does not hold due to the true nature of the fusion problem under

consideration which requires to take into account some known integrity constraints, one has to work with

a proper hybrid DSm model M(Θ) 6=Mf (Θ). In such case, the hybrid DSm rule of combination based

on the chosen hybrid DSm model M(Θ) for k ≥ 2 independent sources of information is defined for all

A ∈ DΘ as (see chapter 4 for details):

mM(Θ)(A) , φ(A)
[

S1(A) + S2(A) + S3(A)
]

(1.24)

where φ(A) is the characteristic non-emptiness function of a set A, i.e. φ(A) = 1 if A /∈ ∅ and φ(A) = 0

otherwise, where ∅ , {∅M, ∅}. ∅M is the set of all elements of DΘ which have been forced to be empty

through the constraints of the modelM and ∅ is the classical/universal empty set. S1(A) ≡ mMf (θ)(A),

S2(A), S3(A) are defined by

S1(A) ,
∑

X1,X2,...,Xk∈D
Θ

(X1∩X2∩...∩Xk)=A

k∏

i=1

mi(Xi) (1.25)
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S2(A) ,
∑

X1,X2,...,Xk∈∅

[U=A]∨[(U∈∅)∧(A=It)]

k∏

i=1

mi(Xi) (1.26)

S3(A) ,
∑

X1,X2,...,Xk∈D
Θ

(X1∪X2∪...∪Xk)=A
(X1∩X2∩...∩Xk)∈∅

k∏

i=1

mi(Xi) (1.27)

with U , u(X1) ∪ u(X2) ∪ . . . ∪ u(Xk) where u(X) is the union of all singletons θi that compose X and

It , θ1∪θ2∪ . . .∪θn is the total ignorance. S1(A) corresponds to the classic DSm rule of combination for

k independent sources based on the free DSm model Mf(Θ); S2(A) represents the mass of all relatively

and absolutely empty sets which is transferred to the total or relative ignorances; S3(A) transfers the

sum of relatively empty sets to the non-empty sets.

The hybrid DSm rule of combination generalizes the classic DSm rule of combination and is not

equivalent to Dempter’s rule. It works for any models (the free DSm model, Shafer’s model or any other

hybrid models) when manipulating precise generalized (or eventually classical) basic belief functions. An

extension of this rule for the combination of imprecise generalized (or eventually classical) basic belief

functions is presented in chapter 6 and is not reported in this presentation of DSmT.

1.3.6 On the refinement of the frames

Let’s bring here a clarification on the notion of refinement and its consequences with respect to DSmT

and DST. The refinement of a set of overlapping hypotheses Θ = {θi, i = 1, . . . , n} consists in getting a

new finer set of hypotheses θ′i, i = 1, . . . , n′, n′ > n} such that we are sure that θ′i are truly exclusive and

∪ni=1θi ≡ ∪n
′

i=1θ
′
i, i.e. Θ = {θ′i, i = 1, . . . , n′ > n}. The DST starts with the notion of frame of discern-

ment (finite set of exhaustive and exclusive hypotheses). The DST assumes therefore that a refinement

exists to describe the fusion problem and is achievable while DSmT does not make such assumption at its

starting. The assumption of existence of a refinement process appears to us as a very strong assumption

which reduces drastically the domain of applicability of the DST because the frames for most of prob-

lems described in terms of natural language manipulating vague/continuous/relative concepts cannot be

formally refined at all. Such an assumption is not fundamental and is relaxed in DSmT.

As a very simple but illustrative example, let’s consider Θ defined as Θ = {θ1 = Small, θ2 = Tall}.
The notions of smallness (θ1) and tallness (θ2) cannot be interpreted in an absolute manner actually

since these notions are only defined with respect to some reference points chosen arbitrarily. Two inde-

pendent sources of evidence (human ”experts” here) can provide a different interpretation of θ1 and θ2

just because they usually do not share the same reference point. θ1 and θ2 represent actually fuzzy con-
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cepts carrying only a relative meaning. Moreover, these concepts are linked together by a continuous path.

Let’s examine now a numerical example. Consider again the frame Θ = {θ1 , Small, θ2 , Tall} on

the size of person with two independent witnesses providing belief masses

m1(θ1) = 0.4 m1(θ2) = 0.5 m1(θ1 ∪ θ2) = 0.1

m2(θ1) = 0.6 m2(θ2) = 0.2 m2(θ1 ∪ θ2) = 0.2

If we admit that θ1 and θ2 cannot be precisely refined according to the previous justification, then the

result of the classic DSm rule (denoted by index DSmc here) of combination yields:

mDSmc(∅) = 0 mDSmc(θ1) = 0.38 mDSmc(θ2) = 0.22 mDSmc(θ1∪θ2) = 0.02 mDSmc(θ1∩θ2) = 0.38

Starting now with the same information, i.e. m1(.) and m2(.), we volontary assume that a refinement

is possible (even if it does not make sense actually here) in order to compare the previous result with

the result one would obtain with Dempster’s rule of combination. So, let’s assume the existence of an

hypothetical refined frame of discernment Θref , {θ′1 = Small’, θ′2 , Medium, θ′3 = Tall’} where θ′1, θ′2

and θ′3 correspond to some virtual exclusive hypotheses such that θ1 = θ′1∪θ′2, θ2 = θ′2∪θ′3 and θ1∩θ2 = θ′2

and where Small’ and Tall’ correspond respectively to a finer notion of smallness and tallness than in

original frame Θ. Because, we don’t change the information we have available (that’s all we have), the

initial bba m1(.) and m2(.) expressed now on the virtual refined power set 2Θref are given by

m′
1(θ′1 ∪ θ′2) = 0.4 m′

1(θ′2 ∪ θ′3) = 0.5 m′
1(θ′1 ∪ θ′2 ∪ θ′3) = 0.1

m′
2(θ′1 ∪ θ′2) = 0.6 m′

2(θ′2 ∪ θ′3) = 0.2 m′
2(θ′1 ∪ θ′2 ∪ θ′3) = 0.2

Because Θref is a refined frame, DST works and Dempster’s rule applies. Because there is no positive

masses for conflicting terms θ′1∩θ′2, θ′1∩θ′3, θ′2∩θ′3 or θ′1∩θ′2∩θ′3, the degree of conflict reduces to k12 = 0

and the normalization factor involved in Dempster’s rule is 1 in this refined example. One gets formally,

where index DS denotes here Dempster’s rule, the following result:

mDS(∅) = 0

mDS(θ′2) = m′
1(θ′1 ∪ θ′2)m′

2(θ′2 ∪ θ′3) +m′
2(θ′1 ∪ θ′2)m′

1(θ′2 ∪ θ′3) = 0.2 · 0.4 + 0.5 · 0.6 = 0.38

mDS(θ′1 ∪ θ′2) = m′
1(θ′1 ∪ θ′2)m′

2(θ′1 ∪ θ′2) +m′
1(θ′1 ∪ θ′2 ∪ θ′3)m′

2(θ′1 ∪ θ′2) +m′
2(θ′1 ∪ θ′2 ∪ θ′3)m′

1(θ′1 ∪ θ′2)

= 0.4 · 0.6 + 0.1 · 0.6 + 0.2 · 0.4 = 0.38

mDS(θ′2 ∪ θ′3) = m′
1(θ′2 ∪ θ′3)m′

2(θ′2 ∪ θ′3) +m′
1(θ′1 ∪ θ′2 ∪ θ′3)m′

2(θ′2 ∪ θ′3) +m′
2(θ′1 ∪ θ′2 ∪ θ′3)m′

1(θ′2 ∪ θ′3)

= 0.2 · 0.5 + 0.1 · 0.2 + 0.2 · 0.5 = 0.22

mDS(θ′1 ∪ θ′2 ∪ θ′3) = m′
1(θ′1 ∪ θ′2 ∪ θ′3)m′

2(θ′1 ∪ θ′2 ∪ θ′3) = 0.1 · 0.2 = 0.02
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But since θ′2 = θ1 ∩ θ2, θ′1 ∪ θ′2 = θ1, θ′2 ∪ θ′3 = θ2 and θ′1 ∪ θ′2 ∪ θ′3 = θ1 ∪ θ2, one sees that Dempster’s

rule reduces to the classic DSm rule of combination, which means that the refinement of the frame Θ

does not help to get a more specific (better) result from the DST when the inputs of the problem remain

the same. Actually, working on Θref with DST does not bring a difference with DSmT, but just brings

an useless complexity in derivations. Note that the hybrid DSm rule of combination can also be applied

on Shafer’s model associated with Θref , but it naturally provides the same result as with the classic DSm

rule in this case.

If the inputs of the problem are now changed by re-asking (assuming that such process is possible)

the sources to provide their revised belief assignents directly on Θref , with m′
i(θ

′
1) > 0, m′

i(θ
′
2) > 0 and

m′
i(θ

′
3) > 0 (i = 1, 2) rather than on Θ, then the hybrid DSm rule of combination will be applied instead

of Dempster’s rule when adopting the DSmT. The fusion results will then differ, which is normal since

the hybrid DSm rule is not equivalent to Dempster’s rule, except when the conflict is zero.

1.3.7 On the combination of sources over different frames

In some fusion problems, it can happen that sources provide their basic belief assignment over distinct

frames (which can moreover sometimes partially overlap). As simple example, let’s consider two equally

reliable sources of evidence B1 and B2 providing their belief assignments repectively on distinct frames

Θ1 and Θ2 defined as follows

Θ1 = {P , Plane, H , Helicopter,M , Missile}

Θ2 = {S , Slow motion, F , Fast motion}

In other words, m1(.) associated with B1 is defined either on DΘ
1 or 2Θ

1 (if Shafer’s model is assumed

to hold) while m2(.) associated with B2 is defined either on DΘ
2 or 2Θ

2 . The problem relates here to the

combination of m1(.) with m2(.).

The basic solution of this problem consists in working on the global frame8 Θ = {Θ1,Θ2} and in

following the deconditionning method proposed by Smets in [39] based on the principle on the minimum

of specificity to revise the basic belief assignments m1(.) and m2(.) on Θ. When additional information

on compatibility links between elements of Θ1 and Θ2 is known, then the refined method proposed by

Janez in [21] is preferred. Once the proper modelM(Θ) for Θ has been chosen to fit with the true nature

of hypotheses and the revised bba mrev
1 (.) and mrev

2 (.) defined on DΘ are obtained, the fusion of belief

assignments is performed with the hybrid DSm rule of combination.

8with suppression of possible redundant elements when Θ1 and Θ2 overlap partially.
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1.4 Comparison of different rules of combinations

1.4.1 First example

In this section, we compare the results provided by the most common rules of combinations on the

following very simple numerical example where only 2 independent sources (a priori assumed equally

reliable) are involved and providing their belief initially on the 3D frame Θ = {θ1, θ2, θ3}. It is assumed

in this example that Shafer’s model holds and thus the belief assignments m1(.) and m2(.) do not commit

belief to internal conflicting information. m1(.) and m2(.) are chosen as follows:

m1(θ1) = 0.1 m1(θ2) = 0.4 m1(θ3) = 0.2 m1(θ1 ∪ θ2) = 0.1

m2(θ1) = 0.5 m2(θ2) = 0.1 m2(θ3) = 0.3 m2(θ1 ∪ θ2) = 0.1

These belief masses are usually represented in the form of a belief mass matrix M given by

M =




0.1 0.4 0.2 0.3

0.5 0.1 0.3 0.1



 (1.28)

where index i for the rows corresponds to the index of the source no. i and the indexes j for columns

of M correspond to a given choice for enumerating the focal elements of all sources. In this particular

example, index j = 1 corresponds to θ1, j = 2 corresponds to θ2, j = 3 corresponds to θ3 and j = 4

corresponds to θ1 ∪ θ2.

Now let’s imagine that one finds out that θ3 is actually truly empty because some extra and certain

knowledge on θ3 is received by the fusion center. As example, θ1, θ2 and θ3 may correspond to three

suspects (potential murders) in a police investigation, m1(.) and m2(.) corresponds to two reports of

independent witnesses, but it turns out that finally θ3 has provided a strong alibi to the criminal police

investigator once arrested by the policemen. This situation corresponds to set up a hybrid modelM with

the constraint θ3
M
= ∅ (see chapter 4 for a detailed presentation on hybrid models).

Let’s examine the result of the fusion in such situation obtained by the Smets’, Yager’s, Dubois &

Prade’s and hybrid DSm rules of combinations. First note that, based on the free DSm model, one would

get by applying the classic DSm rule (denoted here by index DSmc) the following fusion result

mDSmc(θ1) = 0.21 mDSmc(θ2) = 0.11 mDSmc(θ3) = 0.06 mDSmc(θ1 ∪ θ2) = 0.03

mDSmc(θ1 ∩ θ2) = 0.21 mDSmc(θ1 ∩ θ3) = 0.13 mDSmc(θ2 ∩ θ3) = 0.14

mDSmc(θ3 ∩ (θ1 ∪ θ2)) = 0.11
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But because of the exclusivity constraints (imposed here by the use of Shafer’s model and by the

non-existential constraint θ3
M
= ∅), the total conflicting mass is actually given by

k12 = 0.06 + 0.21 + 0.13 + 0.14 + 0.11 = 0.65 (conflicting mass)

• If one applies the Disjunctive rule (1.6), one gets:

m∪(∅) = 0

m∪(θ1) = m1(θ1)m2(θ1) = 0.1 · 0.5 = 0.05

m∪(θ2) = m1(θ2)m2(θ2) = 0.4 · 0.1 = 0.04

m∪(θ3) = m1(θ3)m2(θ3) = 0.2 · 0.3 = 0.06

m∪(θ1 ∪ θ2) = [m1(θ1 ∪ θ2)m2(θ1 ∪ θ2)] + [m1(θ1)m2(θ2) +m2(θ1)m1(θ2)]

+ [m1(θ1)m2(θ1 ∪ θ2) +m2(θ1)m1(θ1 ∪ θ2)]

+ [m1(θ2)m2(θ1 ∪ θ2) +m2(θ2)m1(θ1 ∪ θ2)]

= [0.3 · 0.1] + [0.01 + 0.20] + [0.01 + 015] + [0.04 + 0.03]

= 0.03 + 0.21 + 0.16 + 0.007 = 0.47

m∪(θ1 ∪ θ3) = m1(θ1)m2(θ3) +m2(θ1)m1(θ3) = 0.03 + 0.10 = 0.13

m∪(θ2 ∪ θ3) = m1(θ2)m2(θ3) +m2(θ2)m1(θ3) = 0.12 + 0.02 = 0.14

m∪(θ1 ∪ θ2 ∪ θ2) = m1(θ3)m2(θ1 ∪ θ2) = 0.02 + 0.09 = 0.11

• If one applies the hybrid DSm rule (1.24) (denoted here by index DSmh) for 2 sources (k = 2),

one gets:

mDSmh(∅) = 0

mDSmh(θ1) = 0.21 + 0.13 = 0.34

mDSmh(θ2) = 0.11 + 0.14 = 0.25

mDSmh(θ1 ∪ θ2) = 0.03 + [0.2 · 0.1 + 0.3 · 0.3] + [0.1 · 0.1 + 0.5 · 0.4] + [0.2 · 0.3] = 0.41

• If one applies Smets’ rule (1.8), one gets:

mS(∅) = m(∅) = 0.65 (conflicting mass)

mS(θ1) = 0.21

mS(θ2) = 0.11

mS(θ1 ∪ θ2) = 0.03
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• If one applies Yager’s rule (1.9), one gets:

mY (∅) = 0

mY (θ1) = 0.21

mY (θ2) = 0.11

mY (θ1 ∪ θ2) = 0.03 + k12 = 0.03 + 0.65 = 0.68

• If one applies Dempster’s rule (1.4) (denoted here by index DS), one gets:

mDS(∅) = 0

mDS(θ1) = 0.21/[1− k12] = 0.21/[1− 0.65] = 0.21/0.35 = 0.600000

mDS(θ2) = 0.11/[1− k12] = 0.11/[1− 0.65] = 0.11/0.35 = 0.314286

mDS(θ1 ∪ θ2) = 0.03/[1− k12] = 0.03/[1− 0.65] = 0.03/0.35 = 0.085714

• If one applies Murphy’s rule (1.7), i.e average of masses, one gets:

mM (∅) = (0 + 0)/2 = 0

mM (θ1) = (0.1 + 0.5)/2 = 0.30

mM (θ2) = (0.4 + 0.1)/2 = 0.25

mM (θ3) = (0.2 + 0.3)/2 = 0.25

mM (θ1 ∪ θ2) = (0.3 + 0.1)/2 = 0.20

But if one finds out with certainty that θ3 = ∅, where does mM (θ3) = 0.25 go to? Either one

accepts here that mM (θ3) goes to mM (θ1 ∪ θ2) as in Yager’s rule, or mM (θ3) goes to mM (∅) as in

Smets’ rule. Catherine Murphy does not provide a solution for such a case in her paper [27].

• If one applies Dubois & Prade’s rule (1.10), one gets because θ3
M
= ∅ :

mDP (∅) = 0 (by definition of Dubois & Prade’s rule)

mDP (θ1) = [m1(θ1)m2(θ1) +m1(θ1)m2(θ1 ∪ θ2) +m2(θ1)m1(θ1 ∪ θ2)]

+ [m1(θ1)m2(θ3) +m2(θ1)m1(θ3)]

= [0.1 · 0.5 + 0.1 · 0.1 + 0.5 · 0.3] + [0.1 · 0.3 + 0.5 · 0.2] = 0.21 + 0.13 = 0.34

mDP (θ2) = [0.4 · 0.1 + 0.4 · 0.1 + 0.1 · 0.3] + [0.4 · 0.3 + 0.1 · 0.2] = 0.11 + 0.14 = 0.25

mDP (θ1 ∪ θ2) = [m1(θ1 ∪ θ2)m2(θ1 ∪ θ2)] + [m1(θ1 ∪ θ2)m2(θ3) +m2(θ1 ∪ θ2)m1(θ3)]

+ [m1(θ1)m2(θ2) +m2(θ1)m1(θ2)]

= [0.30.1] + [0.3 · 0.3 + 0.1 · 0.2] + [0.1 · 0.1 + 0.5 · 0.4] = [0.03] + [0.09 + 0.02] + [0.01 + 0.20]

= 0.03 + 0.11 + 0.21 = 0.35
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Now if one adds up the masses, one gets 0+0.34+0.25+0.35 = 0.94 which is less than 1. Therefore

Dubois & Prade’s rule of combination does not work when a singleton, or an union of singletons,

becomes empty (in a dynamic fusion problem). The products of such empty-element columns of the

mass matrix M are lost; this problem is fixed in DSmT by the sum S2(.) in (1.24) which transfers

these products to the total or partial ignorances.

In this particular example, using the hybrid DSm rule, one transfers the product of the empty-element

θ3 column, m1(θ3)m2(θ3) = 0.2·0.3 = 0.06, to mDSmh(θ1∪θ2), which becomes equal to 0.35+0.06 = 0.41.

In conclusion, DSmT is a natural extension of DST and Yager’s, Smets’ and Dubois & Prade’s ap-

proaches. When there is no singleton nor union of singletons empty, DSmT is consistent with Dubois &

Prade’s approach, getting the same results (because the sum S2(.) is not used in this case in the hybrid

DSm rule of combination). Otherwise, Dubois & Prade’s rule of combination does not work (giving a

sum of fusionned masses less than 1) for dynamic fusion problems involving non existential constraints.

Murphy’s rule does not work either in this case because the masses of empty sets are not transferred.

If the conflict is k12 is total (i;e. k12 = 1, DST does not work at all (one gets 0/0 in Dempster’s rule

of combination), while Smets’ rule gives mS(∅) = 1 which is upon to us for the reasons explained in

this introduction and in chapter 5 not necessary justified. When the conflict is total, the DSm rule is

consistent with Yager’s and Dubois & Prade’s rules.

The general hybrid DSm rule of combination works on any models for solving static and dynmaic

fusion problems and is designed for all kinds of conflict: 0 ≤ m(conflict) ≤ 1. When the conflict is

converging towards zero, all rules (Dempster’s, Yager’s, Smets’, Murphy’s, Dubois & Prade’s, DSmT)

are converging towards the same result. This fact is important because it shows the connection among

all of them. But if the conflict is converging towards 1, the results among these rules diverge more and

more, getting the point when some rules do not work at all (Dempster’s rule). Murphy’s rule is the

only one which is idempotent (being the average of masses). Dubois & Prade’s rule does not work in

the Smets’ case (when m(∅) > 0). For models with all intersections empty (Shafer’s model) and conflict

1, Dempster’s rule is not defined. See below example on Θ = {θ1, θ2, θ3, θ4} with all θi, i = 1, 2, 3, 4

exclusive:

m1(θ1) = 0.1 m1(θ2) = 0 m1(θ3) = 0.7 m1(θ4) = 0

m2(θ1) = 0 m2(θ2) = 0.6 m2(θ3) = 0 m2(θ4) = 0.4

Using Dempster’s rule, one gets 0/0, undefined. Conflicting mass is 1.
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Yager’s rule provides in this case mY (θ1 ∪ θ2 ∪ θ3 ∪ θ4) = 1 which does not bring specific informa-

tion, while Smets’ rule gives m(∅) = 1 which is also not very useful. Murphy’s rule gives mM (θ1) = 0.15,

mM (θ2) = 0.30, mM (θ3) = 0.35 and mM (θ4) = 0.20 which is very specific while the hybrid DSm rule pro-

vides mDSmh(θ1∪θ2) = 0.18, mDSmh(θ1∪θ4) = 0.12, mDSmh(θ2∪θ3) = 0.42 and mDSmh(θ3∪θ4) = 0.28

which is less specific than Murphy’s result but characterizes adequately the internal conflict between

sources after the combination and partial ignorances.

The disjunctive rule gives in this last example m∪(θ1 ∪ θ2) = m1(θ1)m2(θ2) + m2(θ1)m1(θ2) = 0.18.

Similarly, one gets m∪(θ1 ∪ θ4) = 0.12, m∪(θ2 ∪ θ3) = 0.42 and m∪(θ3 ∪ θ4) = 0.28. This coincides with

the hybrid DSm rule when all intersections are empty.

1.4.2 Second example

This example is an extension of Zadeh’s example discussed in chapter 5. Let’s consider two independent

sources of evidences over the frame Θ = {θ1, θ2, θ3, θ4} and assume that Shafer’s model holds. The basic

belief assignments are chosen as follows:

m1(θ1) = 0.998 m1(θ2) = 0 m1(θ3) = 0.001 m1(θ4) = 0.001

m2(θ1) = 0 m2(θ2) = 0.998 m2(θ3) = 0 m2(θ4) = 0.02

In this simple numerical example, Dempster’s rule of combination gives the counter-intuitive result

mDS(θ4) =
0.001 · 0.002

0.998 · 0.998 + 0.998 · 0.002 + 0.998 · 0.001 + 0.998 · 0.001 + 0.001 · 0.002
=

0.000002

0.000002
= 1

Yager’s rule gives mY (θ4) = 0.000002 and mY (θ1 ∪ θ2 ∪ θ3 ∪ θ4) = 0.999998.

Smets’ rule gives mS(θ4) = 0.000002 and mS(∅) = 0.999998.

Murphy’s rule gives mM (θ1) = 0.499, mM (θ2) = 0.499, mM (θ3) = 0.0005 and mM (θ4) = 0.0015.

Dubois & Prade’s rule gives mDP (θ4) = 0.000002, mDP (θ1 ∪ θ2) = 0.996004, mDP (θ1 ∪ θ4) = 0.001996,

mDP (θ2 ∪ θ3) = 0.000998, mDP (θ2 ∪ θ4) = 0.000998 and mDP (θ3 ∪ θ4) = 0.000002. Dubois & Prade’s

rule works only in Shafer’s modelM0(Θ), i.e. when all intersections are empty. For other hybrid models,

Dubois & Prade’s rule of combination fails to provide a reliable and reasonable solution to the combination

of sources (see next example).

The classic DSm rule of combination provides mDSmc(θ4) = 0.000002, mDSmc(θ1 ∩ θ2) = 0.996004,

mDSmc(θ1∩θ4) = 0.001996,mDSmc(θ2∩θ3) = 0.000998,mDSmc(θ2∩θ4) = 0.000998 andmDSmc(θ3∩θ4) =
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0.000002. If one now applies the hybrid DSm rule since one assumes here that Shafer’s model holds, one

gets the same result as Dubois & Prade’s. The disjunctive rule coincides with Dubois & Prade’s rule and

the hybrid DSm rule when all intersections are empty.

1.4.3 Third example

Here is an exemple for the Smets’ case (i.e. TBM) when m(∅) > 0 where Dubois & Prade’s rule of

combination does not work. Let’s consider the following extended9 belief assignments

m1(∅) = 0.2 m1(θ1) = 0.4 m1(θ2) = 0.4

m2(∅) = 0.3 m2(θ1) = 0.6 m2(θ2) = 0.1

In this specific case, the Dubois & Prade’s rule of combination gives (assuming all intersections empty)

mDP (∅) = 0 (by definition)

mDP (θ1) = m1(θ1)m2(θ1) + [m1(∅)m2(θ1) +m2(∅)m1(θ1)] = 0.24 + [0.12 + 0.12] = 0.48

mDP (θ2) = m1(θ2)m2(θ2) + [m1(∅)m2(θ2) +m2(∅)m1(θ2)] = 0.04 + [0.02 + 0.12] = 0.18

mDP (θ1 ∪ θ2) = m1(θ1)m2(θ2) +m2(θ1)m1(θ2) = 0.04 + 0.24 = 0.28

The sum of masses is 0.48 + 0.18 + 0.28 = 0.94 < 1. Where goes the mass m1(∅)m2(∅) = 0.2 ·0.3 = 0.06 ?

When using the hybrid DSm rule of combination, one getsmDSmh(∅) = 0, mDSmh(θ1) = 0.48,mDSmh(θ2) =

0.18 and

mDSmh(θ1 ∪ θ2) = [m1(θ1)m2(θ2) +m2(θ1)m1(θ2)] + [m1(∅)m2(∅)] = [0.28] + [0.2 · 0.3] = 0.34

and the masses add up to 1.

The disjunctive rule gives in this example

m∪(θ1) = m1(θ1)m2(θ1) + [m1(∅)m2(θ1) +m2(∅)m1(θ1)] = 0.24 + [0.12 + 0.12] = 0.48

m∪(θ2) = m1(θ2)m2(θ2) + [m1(∅)m2(θ2) +m2(∅)m1(θ2)] = 0.04 + [0.02 + 0.12] = 0.18

m∪(θ1 ∪ θ2) = m1(θ1)m2(θ2) +m2(θ1)m1(θ2) = 0.04 + 0.24 = 0.28

m∪(∅) = m1(∅)m2(∅) = 0.06 > 0

One gets the same results for m∪(θ1), m∪(θ2) as with Dubois & Prade’s rule and as with the hybrid DSm

rule. The distinction is in the reallocation of the empty mass m1(∅)m2(∅) = 0.06 to θ1 ∪ θ2 in the hybrid

DSm rule, while in Dubois & Prade’s and disjunctive rules it is not.

9We mean here non-normalized masses allowing weight of evidence on the empty set as in the TBM of Smets.
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A major difference among the hybrid DSm rule and all other combination rules is that DSmT uses

from the beginning a hyper-power set, which includes intersections, while other combination rules need

to do a refinement in order to get intersections.

1.4.4 Fourth example

Here is another example where Dempster’s rule does not work properly (this is different from Zadeh’s

example). Let’s consider Θ = {θ1, θ2, θ3, θ4} and assume that Shafer’s model holds. The basic belief

assignments are now chosen as follows:

m1(θ1) = 0.99 m1(θ2) = 0 m1(θ3 ∪ θ4) = 0.01

m2(θ1) = 0 m2(θ2) = 0.98 m2(θ3 ∪ θ4) = 0.02

Applying Dempster’s rule, one gets mDS(θ1) = mDS(θ2) = 0 and

mDS(θ3 ∪ θ4) =
0.01 · 0.02

1− [0.99 · 0.98 + 0.99 · 0.02 + 0.98 · 0.01]
=

0.0002

1− 0.9998
=

0.0002

0.0002
= 1

which is abnormal.

The hybrid DSm rule gives mDSmh(θ1 ∪ θ2) = 0.99 · 0.98 = 0.9702, mDSmh(θ1 ∪ θ3 ∪ θ4) = 0.0198,

mDSmh(θ2 ∪ θ3 ∪ θ4) = 0.0098 and mDSmh(θ3 ∪ θ4) = 0.0002. In this case, Dubois & Prade’s rule gives

the same results as the hybrid DSm rule. The disjunctive rule provides a combined belief assignment

m∪(.) which is same as mDSmh(.) and mDP (.).

Yager’s rule gives mY (θ3 ∪ θ4) = 0.0002, mY (θ1 ∪ θ2 ∪ θ3 ∪ θ4) = 0.9998 and Smets’ rule gives

mS(θ3 ∪ θ4) = 0.0002, mS(∅) = 0.9998. Both Yager’s and Smets’ results are less specific than the result

obtained with the hybrid DSm rule. There is a loss of information somehow when using Yager’s or Smets’

rules.

1.4.5 Fifth example

Suppose one extends Dubois & Prade’s rule from the power set 2Θ to the hyper-power set DΘ. It can be

shown that Dubois & Prade’s rule does not work when (because S2(.) term is missing):

a) at least one singleton is empty and the element of its column are all non zero

b) at least an union of singletons is empty and elements of its column are all non zero

c) or at least an intersection is empty and the elements of its column are non zero
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Here is an example with intersection (Dubois & Prade’s rule extended to the hyper-power set). Let’s

consider two independent sources on Θ = {θ1, θ2} with

m1(θ1) = 0.5 m1(θ2) = 0.1 m1(θ1 ∩ θ2) = 0.4

m2(θ1) = 0.1 m2(θ2) = 0.6 m2(θ1 ∩ θ2) = 0.3

Then the extended Dubois & Prade rule on the hyper-power set gives mDP (∅) = 0, mDP (θ1) = 0.05,

mDP (θ2) = 0.06, mDP (θ1 ∩ θ2) = 0.04 · 0.3 + 0.5 · 0.6 + 0.5 · 0.3 + 0.1 · 0.4 + 0.1 · 0.3 + 0.6 · 0.4 = 0.89.

Now suppose one finds out that θ1 ∩ θ2 = ∅, then the revised masses become

m′
DP (∅) = 0 (by definition)

m′
DP (θ1) = 0.05 + [m1(θ1)m2(θ1 ∩ θ2) +m2(θ1)m1(θ1 ∩ θ2)] = 0.05 + [0.5 · 0.3 + 0.1 · 0.4] = 0.24

m′
DP (θ2) = 0.06 + [m1(θ2)m2(θ1 ∩ θ2) +m2(θ2)m1(θ1 ∩ θ2)] = 0.06 + [0.1 · 0.3 + 0.6 · 0.4] = 0.33

m′
DP (θ1 ∪ θ2) = m1(θ2)m2(θ2) +m2(θ1)m1(θ2) = 0.5 · 0.6 + 0.1 · 0.1 = 0.31

The sum of the masses is 0.24 + 0.33 + 0.31 = 0.88 < 1. The mass product m1(θ1 ∩ θ2)m2(θ1 ∩ θ2) =

0.4 · 0.3 = 0.12 has been lost.

When applying the classic DSm rule in this case, one gets exactly the same results as Dubois & Prade,

i.e. mDSmc(∅) = 0, mDSmc(θ1) = 0.05, mDSmc(θ2) = 0.06, mDSmc(θ1 ∩ θ2) = 0.89. Now if one takes into

account the integrity constraint θ1 ∩ θ2 = ∅ and using the hybrid DSm rule of combination, one gets

mDSmh(∅) = 0 (by definition)

mDSmh(θ1) = 0.05 + [m1(θ1)m2(θ1 ∩ θ2) +m2(θ1)m1(θ1 ∩ θ2)] = 0.05 + [0.5 · 0.3 + 0.1 · 0.4] = 0.24

mDSmh(θ2) = 0.06 + [m1(θ2)m2(θ1 ∩ θ2) +m2(θ2)m1(θ1 ∩ θ2)] = 0.06 + [0.1 · 0.3 + 0.6 · 0.4] = 0.33

mDSmh(θ1 ∪ θ2) = [m1(θ2)m2(θ2) +m2(θ1)m1(θ2)] + [m1(θ1 ∩ θ2)m2(θ1 ∩ θ2)
︸ ︷︷ ︸

S2 in hybrid DSm rule eq.

] = [0.31] + [0.12] = 0.43

Thus the sum of the masses obtained by the hybrid DSm rule of combination is 0.24 + 0.33 + 0.43 = 1.

The disjunctive rule extended on the hyper-power set gives for this example

m∪(∅) = 0

m∪(θ1) = [m1(θ1)m2(θ1)] + [m1(θ1)m2(θ1 ∩ θ2) +m2(θ1)m1(θ1 ∩ θ2)] = 0.05 + [0.15 + 0.04] = 0.24

m∪(θ2) = [m1(θ2)m2(θ2)] + [m1(θ2)m2(θ1 ∩ θ2) +m2(θ2)m1(θ1 ∩ θ2)] = 0.06 + [0.15 + 0.04] = 0.33

m∪(θ1 ∪ θ2) = [m1(θ2)m2(θ2) +m2(θ1)m1(θ2)] = 0.31

m∪(θ1 ∩ θ2) = m1(θ1 ∩ θ2)m2(θ1 ∩ θ2) = 0.4 · 0.3 = 0.12
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If now one finds out that θ1∩θ2 = ∅, then the revised masses m′
∪(.) become m′

∪(θ1) = m∪(θ1), m′
∪(θ2) =

m∪(θ2), m′
∪(θ1 ∪ θ2) = m∪(θ1 ∪ θ2) but m′

∪(∅) ≡ m∪(θ1 ∩ θ2) = 0.12 > 0.

1.5 Summary

DSmT has to be viewed as a general flexible Bottom-Up approach for managing uncertainty and conflicts

for a wide class of static or dynamic fusion problems where the information to combine is modelled as

a finite set of belief functions provided by different independent sources of evidence. The development

of DSmT emerged from the fact that the conflict between the sources of evidence arises not only from

the unreliability of sources themselves (which can be handled by classical discounting methods), but also

from a different interpretation of the frame itself by the sources of evidence due to their limited knowlege

and own (local) experience; not to mention the fact that elements of the frame cannot be truly refined at

all in many problems involving only fuzzy and continuous concepts. Based on this matter of fact, DSmT

proposes, according to the general block-scheme in Figure 1.2, a new appealing mathematical framework.

Here are the major steps for managing uncertain and conflicting information arising from independent

sources of evidence in the DSmT framework, once expressed in terms of basic belief functions:

1. Bottom Level: The ground level of DSmT is to start from the free DSm model Mf (Θ) associ-

ated with the frame Θ and the notion of hyper-power set (free Dedekind’s lattice) DΘ. At this

level, DSmT provides a general commutative and associative rule of combination of evidences (the

conjunctive consensus) to work on Mf (Θ).

2. Higher Level (only used when necessary): Depending on the absolute true intrinsic nature (as-

sumed to be known by the fusion center) of the elements of the frame Θ of the fusion problem

under consideration (which defines a set of integrity constraints on Mf (Θ) leading to a particular

hybrid DSm model M(Θ)), DSmT automatically adapts the combination process to work on any

hybrid DSm model with the general hybrid DSm rule of combination explaine in details in chapter

4. The taking into account of an integrity constraint consists just in forcing some elements of the

Dedekind’s lattice DΘ to be empty, when they truly are, given the problem under consideration.

3. Decision-Making: Once the combination is obtained after step 1 (or step 2 when necessary),

the Decision-making step follows. Although no real general consensus has emerged in literature

over last 30 years to give a well-accepted solution for the decision-making problem in the DST

framework, we follow here Smets’ idea and his justifications to work at the pignistic level [42] rather

than at the credal level when a final decision has to be taken from any combined belief mass m(.).

A generalized pignistic transformation is then proposed in chapter 7 based on DSmT.



30 CHAPTER 1. PRESENTATION OF DSMT

Source s1

m1(.) : DΘ → [0, 1]

6

mk(.) : DΘ → [0, 1]

Source sk

66

∀A ∈ DΘ, mMf (Θ)(A) =
∑

X1,...,Xk∈DΘ

(X1∩...∩Xk)=A

∏k
i=1mi(Xi)

Classic DSm rule based on free model Mf (Θ)

6

Introduction of integrity constraints into DΘ

Hybrid model M(Θ)

6

Hybrid DSm rule for hybrid model M(Θ)

∀A ∈ DΘ, mM(Θ)(A) = φ(A)
[

mMf (Θ)(A) + S2(A) + S3(A)
]

6

Decision-making

Figure 1.2: Block Scheme of the principle for the DSm fusion

The introduction of a specific integrity constraint in step 2 is like pushing an elevator button for going

a bit up in the complexity of the processing for managing uncertainty and conflict through the hybrid

DSm rule of combination. If one needs to go to a higher level, then one can take into account several

integrity constraints as well in the framework of DSmT. If we finally want to take into account all possible

exclusivity constraints only (when we really know that all elements of the frame of the given problem are

truly exclusive), then we go directly to the Top Level (i.e. Shafer’s model which serves as foundation for

Shafer’s mathematical theory of evidence), but we still apply the hybrid DSm rule instead of Dempster’s

rule of combination. The DSmT approach for modelling the frame and combining information is more

general than previous approaches which have been mainly10 based on the Shafer model (which is a very

specific and constrained DSm hybrid model) and works for static fusion problems.

The DSmT framework can easily handle not only exclusivity constraints, but also non existential

constraints or mixed constraints as well which is very useful in some dynamic fusion problems as it is

shown in chapter 4. Depending on the nature of the problem, we claim that it is unnecessary to try

working at the Top Level (as DST does), when working directly at a lower level is sufficient to manage

properly the information to combine using the hybrid DSm rule of combination.

10except the Transferable Belief Model of Smets [41] and the trade-off/averaging combination rules.
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It is also important to reemphasize here that the general hybrid DSm rule of combination is definitely

not equivalent to Dempster’s rule of combination (and to all its alternatives involving conjunctive consen-

sus based on the Top level and especially when working with dynamic problems) because DSmT allows to

work at any level of modelling for managing uncertainty and conflicts, depending on the intrinsic nature

of the problem. The hybrid DSm rule and Dempster’s rule do not provide the same results even when

working on Shafer’s model as it has been shown in examples of the previous section and explained in

details in forthcoming chapters 4 and 5.

DSmT differs from DST because it is based on the free Dedekind lattice. It works for any model (free

DSm model and hybrid models - including Shafer’s model as a special case) which fits adequately with

the true nature of the fusion problem under consideration. This ability of DSmT allows to deal formally

with any fusion problems expressed in terms of belief functions which can mix discrete concepts with

vague/continuous/relative concepts. The DSmT deals with static and dynamic fusion problematics in the

same theoretical way taking into account the integrity constraints into the model which are considered

either as static or eventually changing with time when necessary. The general hybrid DSm rule of

combination of independent sources of evidence works for all possible static or dynamic models and

does not require a normalization step. It differs from Dempster’s rule of combination and from all its

concurrent alternatives. The hybrid DSm rule of combination has been moreover extended to work for

the combination of imprecise admissible belief assignments as well. The approach proposed by the DSmT

to attack the fusion problematic throughout this book is therefore totally new both by its foundations,

its applicability and the solution provided.
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