A class of position-dependent mass Liénard differential equations via a general nonlocal transformation

M. D. Monsia¹, J. Akande¹, D. K. K. Adjaï¹, L. H. Koudahoun¹, Y. J. F. Kpomahou²,

1. Department of Physics, University of Abomey-Calavi, Abomey-Calavi, 01.B.P. 526, Cotonou, BENIN.

2. Department of Industrial and Technical Sciences, ENSET-Lokossa, University of Lokossa, Lokossa, BENIN.

Abstract

The objective, in this paper, consists of mapping the damped linear harmonic oscillator equation onto a class of Liénard nonlinear differential equations that incorporates the well known position dependent mass Mathews-Lakshmanan oscillator equations as specific examples through a general nonlocal transformation.

1. General theory

Suppose, to formulate the general class of exactly solvable quadratically dissipative Liénard type differential equations, that the damped linear harmonic oscillator equation is of the form

$$y'' + \mu y' + \omega^2 y = 0$$
(1)

where prime means differentiation with respect to τ_{μ} and ω are arbitrary parameters. Consider, now, the general nonlocal transformation

$$y = \int g(x)^{l} dx, \ d\tau = \exp(\gamma \varphi(x)) dt$$
⁽²⁾

where the exponent l and γ are arbitrary parameters, $g(x) \neq 0$, and $\varphi(x)$ are arbitrary functions of x. So, the damped linear harmonic oscillator equation, by application of the general nonlocal transformation (2), may be mapped onto the generalized mixed Liénard-type nonlinear oscillator equation

$$\ddot{x} + (l\frac{g'(x)}{g(x)} - \gamma \varphi'(x))\dot{x}^2 + \mu \dot{x} \exp(\gamma \varphi(x)) + \frac{\omega^2 \exp(2\gamma \varphi(x)) \int g(x)^l dx}{g(x)^l} = 0$$
(3)

which represents the desired general class of exactly integrable mixed Liénard type differential nonlinear equations. To obtain the expected general class of position-dependent mass Liénard type equations, let $\varphi(x) = \ln(f(x))$, where ln designates the natural logarithm. Then the equation (3) reduces to

$$\ddot{x} + (l\frac{g'(x)}{g(x)} - \gamma \frac{f'(x)}{f(x)})\dot{x}^2 + \mu \dot{x}f(x)^{\gamma} + \frac{\omega^2 f(x)^{2\gamma} \int g(x)^l dx}{g(x)^l} = 0$$
(4)

The parametric choice $l = \frac{1}{2}$, $\gamma = 1$, and $\mu = 0$, transforms the equation (4) to the generalized quadratic Liénard type differential equation

¹ Corresponding author.

E-mail address: monsiadelphin@yahoo.fr

$$\ddot{x} + \frac{1}{2} \left(\frac{g'(x)}{g(x)} - 2 \frac{f'(x)}{f(x)} \right) \dot{x}^2 + \frac{\omega^2 f(x)^2 g(x)^{1/2} \int g(x)^{1/2} dx}{g(x)} = 0$$
(5)

which represents the desired general class of position-dependent mass Liénard type differential equations.

2. Application

The equation (5) is consistent with the equation derived in [2] from a generalized position dependent mass nonlocal point transformation. It suffices, as proof, to substitute [2]

$$f(x) = \frac{1}{1 \pm \lambda x^2}$$
, and $g(x) = f(x)^3 = \frac{1}{(1 \pm \lambda x^2)^3}$, into the equation (5) to get the famous position-

dependent mass Mathews-Lakshmanan nonlinear oscillator equations [1, 2]

$$\ddot{x} \mp \frac{\lambda x}{1 \pm \lambda x^2} \dot{x}^2 + \frac{\omega^2 x}{1 \pm \lambda x^2} = 0$$
(6)

which, first, were derived from a non-standard Lagrangian using the Euler-Lagrange equation [1]. It is worth to note that the equation (4) may give the damped Mathews-Lakshmanan oscillator equations with the above functions and parametric choice for $\mu \neq 0$.

References

[1] P.M. Mathews and M. Lakshmanan, On a unique nonlinear oscillator, Quartely of Applied Mathematics, 32 (2) (1974), 215-218.

[2] O. Mustafa, Position-dependent mass Lagrangians: nonlocal transformations, Euler-Lagrange invariance and exact solvability, arXiv:1411.4405v3.(2015).