Analytical and Classical Mechanics of Integrable Mixed and Quadratic Liénard Type Oscillator Equations

J. Akande ${ }^{*}$, D. K. K. Adjaï* , L. H. Koudahoun ${ }^{*}$, Y. J. F. Kpomahou**, M. D. Monsia* ${ }^{1}$
* Department of Physics, University of Abomey-Calavi, Abomey-Calavi, 01.B.P. 526, Cotonou, BENIN.
** Department of Industrial and Technical Sciences, ENSET-Lokossa, University of Lokossa, Lokossa, BENIN.

Abstract

The Lagrangian description of a dynamical system from the equation of motion consists of an inverse problem in mechanics. This problem is solved for a class of exactly integrable mixed and quadratic Liénard type oscillator equations from a given first integral of motion. The dynamics of this class of equations, which contains the generalized modified Emden equation, also known as the second-order Riccati equation, and the inverted versions of the Mathews-Lakshmanan equations, is then investigated from Hamiltonian and Lagrangian points of view.

1. Consider the general class of integrable mixed Liénard-type oscillator equation

$$
\begin{equation*}
\ddot{x}+\frac{g^{\prime}(x)}{g(x)} \dot{x}^{2}+\frac{f^{\prime}(x)}{g(x)} x \dot{x}+a \frac{f(x)}{(g(x))^{2}}-\frac{(f(x))^{2}}{(g(x))^{2}} x=0 \tag{1}
\end{equation*}
$$

generated from the first integral of motion

$$
\begin{equation*}
a(x, \dot{x})=\dot{x} g(x)+x f(x) \tag{2}
\end{equation*}
$$

where dot denotes differentiation with respect to time and prime means differentiation with respect to $x, g(x) \neq 0$ and $f(x)$ are arbitrary functions of x. In this context, the Lagrangian for the equation (1) may then be computed as [1]

$$
\begin{equation*}
L(t, x, \dot{x})=\dot{x} g(x) \ln (\dot{x})-x f(x)+K \dot{x} \tag{3}
\end{equation*}
$$

where \ln holds for the natural logarithm, and K is an arbitrary constant. That being so, it is required to check the equivalence between the equation (1) and the Euler-Lagrange equation from (3). In this perspective the Euler-Lagrange equation

$$
\begin{equation*}
\frac{d}{d t}\left(\frac{\partial L}{\partial \dot{x}}\right)-\frac{\partial L}{\partial x}=0 \tag{4}
\end{equation*}
$$

gives, knowing

$$
\begin{equation*}
\frac{\partial L}{\partial \dot{x}}=g(x)[1+\ln (\dot{x})]+K \tag{5}
\end{equation*}
$$

and

[^0]$\frac{\partial L}{\partial x}=\dot{x} g^{\prime}(x) \ln (\dot{x})-f(x)-x f^{\prime}(x)$
after a few mathematical treatment, the expected equation (1). The preceding equation (5) gives the conjugate momentum p as
$p=g(x) \ln (\dot{x})+g(x)+K$
such that the Hamiltonian
$H(p, x)=p \dot{x}-L(x, \dot{x})$
becomes
$H(p, x)=\dot{x} g(x)+x f(x)$
which is, as expected, equal to (2). Eliminating \dot{x} from (9) by using (7), then the Hamiltonian (9) takes the form
\[

$$
\begin{equation*}
H(p, x)=\frac{g(x)}{e} e^{\left(\frac{p-K}{g(x)}\right)}+x f(x) \tag{10}
\end{equation*}
$$

\]

In this perspective the Hamiltonian equations

$$
\left\{\begin{array}{l}
\dot{x}=\frac{\partial H}{\partial p} \tag{11}\\
\dot{p}=-\frac{\partial H}{\partial x}
\end{array}\right.
$$

read

$$
\left\{\begin{array}{l}
\dot{x}=\frac{1}{e} e^{\left(\frac{p-K}{g(x)}\right)} \tag{12}\\
\dot{p}=\frac{g^{\prime}(x)}{e} e^{\left(\frac{p-K}{g(x)}\right)}\left[\frac{p-K}{g(x)}-1\right]-\left[f(x)+x f^{\prime}(x)\right]
\end{array}\right.
$$

So with that, some examples may be given to illustrate the application of the current theory.
2. Application
2.1 Let $g(x)=a_{1} x^{m}$, and $f(x)=a_{1}^{2} x^{2 m+1}$, where the exponent m is a real number. So, the equation (1) reduces to
$\ddot{x}+m \frac{\dot{x}^{2}}{x}+(2 m+1) a_{1} x^{m+1} \dot{x}+a x-a_{1}^{2} x^{2 m+3}=0$

The equation (13) consists of a generalized mixed Liénard-type equation. Now, substitution of $m=0$, into the equation (13), leads immediately to the generalized modified Emden type equation with a linear forcing term, also known as a second-order Riccati equation, that is.

$$
\begin{equation*}
\ddot{x}+a_{1} x \dot{x}+a x-a_{1}^{2} x^{3}=0 \tag{14}
\end{equation*}
$$

Also, $m=-\frac{1}{2}$, gives, taking into account the equation (13)

$$
\begin{equation*}
\ddot{x}-\frac{1}{2} \frac{\dot{x}^{2}}{x}+a x-a_{1}^{2} x^{2}=0 \tag{15}
\end{equation*}
$$

This equation (15) is known as a quadratic Liénard-type differential equation. The analytical description of these equations is secured by the equations (3), (10) and (12).

2.2 Case 1: $f(x)=1$

The equation (1)becomes in this case the exactly integrable quadratic Liénard-type nonlinear dissipative oscillator equation

$$
\begin{equation*}
\ddot{x}+\frac{g^{\prime}(x)}{g(x)} \dot{x}^{2}+\frac{(a-x)}{(g(x))^{2}}=0 \tag{16}
\end{equation*}
$$

By choosing $g(x)=\sqrt{1 \pm \mu x^{2}}$, where μ is an arbitrary parameter, a physically important quadratic Liénard-type differential equation may be obtained as

$$
\begin{equation*}
\ddot{x} \pm \frac{\mu x}{1 \pm \mu x^{2}} \dot{x}^{2}+\frac{(a-x)}{1 \pm \mu x^{2}}=0 \tag{17}
\end{equation*}
$$

since for $a=0$, one may obtain the inverted versions of the Mathews-Lakshmanan oscillator equations.

The Hamiltonian and Lagrangian description of (17) is then assured by the general relationships (3), (10) and (12).

2.2 Case 2: $g(x)=1$

The equation (1) gives the general class of exactly solvable Liénard nonlinear dissipative oscillator equations

$$
\begin{equation*}
\ddot{x}+x \dot{x} f^{\prime}(x)+a f(x)-x(f(x))^{2}=0 \tag{18}
\end{equation*}
$$

Substitution of $f(x)=x^{l}$, gives the generalized modified Emden-type equation with nonlinear forcing function, also called generalized second-order Riccati equation, viz
$\ddot{x}+l x^{l} \dot{x}-x^{2 l+1}+a x^{l}=0$
where l is an arbitrary parameter. It is worth to note that a generalization of (1) and (3) may be written in the form

$$
\begin{equation*}
\ddot{x}+\frac{g^{\prime}(x)}{g(x)} \dot{x}^{2}+x^{l} \frac{f^{\prime}(x)}{g(x)} \dot{x}+a l x^{l-1} \frac{f(x)}{(g(x))^{2}}-l x^{2 l-1} \frac{(f(x))^{2}}{(g(x))^{2}}=0 \tag{20}
\end{equation*}
$$

and

$$
\begin{equation*}
L(x, \dot{x})=\dot{x} g(x) \ln (\dot{x})-x^{l} f(x)+K \dot{x} \tag{21}
\end{equation*}
$$

respectively, where l and K are arbitrary parameters, from the first integral

$$
\begin{equation*}
a(x, \dot{x})=\dot{x} g(x)+x^{l} f(x) \tag{22}
\end{equation*}
$$

Finally, a more generalization may be computed from the first integral of motion

$$
\begin{equation*}
a_{1}(x, \dot{x})=\dot{x} g(x)+a x^{l} \int f(x) d x \tag{23}
\end{equation*}
$$

References

[1] J. Akande, D. K. K. Adjaï, L. H. Koudahoun, Y. J. F. Kpomahou, M. D. Monsia, Lagrangian Analysis of a Class of Quadratic Liénard-Type Oscillator Equations with Exponential-Type Restoring Force function, viXra:1609.0055v1.(2016).
[2] J. Akande, D. K. K. Adjaï, L. H. Koudahoun, Y. J. F. Kpomahou, M. D. Monsia, A general class of exactly solvable inverted quadratic Liénard-type equations, viXra: 1608.0124v1.(2016).

[^0]: ${ }^{1}$ Corresponding author.
 E-mail address: monsiadelphin@yahoo.fr

