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Abstract

In present paper we evaluate the fine structure constant variation
which should take place as the Universe is expanded and its curvature
is changed adiabatically. This changing of the fine structure constant
is attributed to the energy lost by physical system (consist of baryonic
component and electromagnetic field) due to expansion of our Universe.

Obtained ratio
·

α/α = 1 ·10−18 (per second) is only five times smaller than
actually reported experimental limit on this value. For this reason this
variation can probably be measured within a couple of years. To argue
the correctness of our approach we calculate the Planck constant as adia-
batic invariant of electromagnetic field, from geometry of our Universe in
the framework of the pseudo- Riemannian geometry. Finally we discuss
the double clock experiment based on Al+ and Hg+ clocks carried out
by T. Rosenband et al. (Science 2008). We show that in this particular

case there is an error in method and this way the value
·

α/α can not be
measured if the fine structure constant is changed adiabatically.
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1 Introduction

The question regarding the changes of the fundamental constants attracted wide
attention of the scientific community over the last decades. Every year a lot of
papers on this subject are published: both in theory and measurement methods
(see [1,2] and references therein).Such interest is due to the huge importance of
the problem of variation of fundamental constants for understanding fundaments
of physics. Particular attention is paid for the variation of the fine structure
constant, because it is a basic parameter for QED. It is known, the search for
such variations are conducted in laboratories [3-7] and with the cosmological
data - from observed spectra of distant quasars [1,2,8,9,10].Until now, such
variations have not been detected yet, but it is important to note that in the
last decade, the accuracy of laboratory measurements approached closely to the
limit of variation of fundamental constants that must take place through the
adiabatic change in the geometry of our universe. For this reason, clearly there
is a need to carry out such calculations.

In this paper we fill this gap and suggest the calculation of the fine structure
constant variation over time, which must take place due to the adiabatic changes
of scalar curvature determined by expansion of our universe. Besides this we also
evaluate the adiabatic invariant for free electromagnetic field (propagating on
the manifold characterized by adiabatically changed curvature) which actually is
the Planck constant. All calculations are carried out in the framework of pseudo
- Riemannian geometry and for this reason obtained values are slightly differ (by
factor 3/2) of their real values. Finally we explain why this variations are not
detected in the experiments based on comparison of two different frequencies
like those discussed in recent papers [6,7].
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2 Changing of the fine structure constant due

to expansion of the Universe

Let us consider a system consists of a classical field on Riemannian manifold
characterized by the adiabatically changed curvature. In this case as it was
shown in 2014 [11] (see also the next part of this paper) such a system is charac-
terized by an adiabatic invariant, which for the electromagnetic field is actually
the Planck constant. Moreover, this adiabatic invariant depends on the scalar
curvature of the Universe in the point of observation and for this reason is varied
over time [11]. The fine structure constant in turn depends on h (α = e2/hc)
and for this reason its value also must change over time. It should be stressed
here, this consideration is applied not only to the classical fields (particularly to
the electromagnetic field), but also to any adiabatically isolated system consist-
ing of fields and baryonic matter interacting with these fields. In this case, the
system is depending adiabatically on the geometry of manifold by means of the
fields involved in the system. So as the Universe expands, any physical system
which contains fields (for example an atom) will lose its energy adiabatically.

How large is this variation in energy? To begin with let us make very prelim-
inary estimation of the effect we are interested in. Consider a system consist of
the classical field and characterized by energy E distributed over volume V (we
can put V = 1cm3). In this case the changing of the energy due to expansion
of the Universe is

δE

E
= −δV

V
= −3

δl

l
(1)

But in consistence with Hubble relation

δl = Hlδt (2)

So, we can evaluate

δE

E
≈

δα

α
≈ −3Hδt = −7 · 10−18δt (3)

This very simple estimation gives us an idea about the value of variation we
should expect in general case.

Now let M be an 3-dimensional C∞ manifold characterized by scalar cur-
vature R =2/R2, where R is the curvature radius, x be a local coordinate on
an open subset U ⊂ M . Tp(M) and T ∗

p (M) are respectively tangent and cotan-
gent bundles on M, where Pα ∈ Tp(M) and Pα ∈ T ∗

p (M) are covariant and
contravariant components of corresponding 4-momentum.

We are interested in variation of the 4-momentum components P as functions
of the Universe radius R and, consequently, time t. By taking into account
relation x = Rϕ, we can write projection of x on tangent and cotangent bundles
on M as

Pα = ξR sinϕ (4)
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Pα = ξR tanϕ (5)

Where coefficients ξ = 2c
κ (here κ = 8πG/c2 is the coupling constant for the

Einstein field equations) are written to comply R = κ
c2T in classical limit, and

factor 2 appears from relation R =2/R2. In this case the momentum can be
written as

P =
√

PαPα =
2c

κ
R

sinϕ
√
cosϕ

(6)

where R is for the local (effective) radius of curvature of the universe in the
point in which our system is localized.

By taking into account that ϕ ≪ 1 for any reasonable laboratory system,
we can restrict our consideration by first and second terms of the expansion of
sinϕ and

√
cosϕ, then we get

P = ξR

(

ϕ+
ϕ3

12

)

(7)

As our manifold M expands, the value of P is changing and taking into
account that x = Rϕ, we immediately obtain

δP = − c3

24πGR3
δR (8)

It should be stressed here - we write this expression for propagating elec-
tromagnetic field localized within a unit volume. Actually it is the momentum
loses by system due to adiabatic changing of the manifold’s curvature.

To evaluate this expression, we need reduce R to a measurable parameter.
Actually we have such a parameter, named as Hubble constant H . But H give
us relation for passing trajectory l: δl = Hlδt.

To establish relation between R and l let us imagine a fly walking over globe

with velocity c, whereas we inflate the globe such that
·

R = c too. It is easy to
show that in this simple case the integrated length l is l = 2R. Actually this
is the length which pass a photon when it is propagating on manifold while its
curvature is changing due to expansion.

So in this case our expression can be rewritten as:

δP = − cH3

6πG
δt (9)

To evaluate variation of the fine structure constant α, let’s remember that
historically it was introduced by Sommerfeld as α = v/c, where v is the electron
velocity at the first Bohr orbit for the hydrogen atom. By taking into account
that a loss of momentum by electron on the first Bohr orbit is equal to the loss of
momentum by the bounded electromagnetic field due to adiabatically changing
curvature governed by expansion of our universe (see also [12]) we can write
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P =
mαc√
1− α2

(10)

and varying it obtain

δP =
mc

(1− α2)3/2
δα (11)

Substituting this expression into (9), we find

δα = −
(

1− α2
)3/2

H3

6πGm
δt (12)

This is variation of the fine structure constant on the time due to adiabati-
cally changed curvature of the Riemannian manifold.

It should be stressed here, this expression for δα coincide well with that
obtained in [11], within Einstein-Cartan geometry framework, if we write it for
the Riemannian manifold (when Λ = 0).

Namely we have in [11] (Λ = 0):

α =
c2

32π2Gm
R (13)

By varying this expression we immediately obtain

δα = −
H3

2π2Gm
δt (14)

that perfectly agree with above obtained expression (12).
Direct calculation for H = 73 kms−1Mpc−1 = 2.4 · 10−18s−1 give us value

·

α/α = −1.7 · 10−18 (for 1 second).
This value is about 5 times smaller if compared with reported sensitivity

·

α/α < 5 · 10−18 [3], but the difference is not so large and we hope the required
sensitivity will be achieved within a couple of years.

3 Planck constant from the first principles

Einstein [13] and later Debye [14] at the beginning of XX century show from
thermodynamics that electromagnetic field is quantized and this fact do not
depends of the oscillators properties (properties of baryonic matter). Unfor-
tunately this result was not paid duly attention and historically it is baryonic
matter that was quantized first whereas the electromagnetic field was quantized
much later in 1950 by Gupta [15] and Bleuler [16].

In this part of paper we show how the electromagnetic field is quantized on
the pseudo - Riemannian manifold with adiabatically changed scalar curvature.
Namely we obtain from the geometry of our Universe the adiabatic invariant
for Electromagnetic field (which is well known as Planck constant).
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As we have seen from the first part of this paper, the momentum P and
energy of electromagnetic field on the manifold with adiabatically changed cur-
vature are changed on the time. This variation proceeds adiabatically and can
be considered as lineal function i.e.

δE

E
= −δt

t
(15)

From this expression we can immediately write the adiabatic invariant we
are interested in

Et = −δE

δt
t2 (16)

But for free electromagnetic field we have

δE = cδP (17)

By substituting δP obtained before into this expression we can write finally
for energy in 1 cm.−3

Et =
c2H3

6πG
t2 = 9.93 · 10−27 (ergs · s.) (18)

for one second. It is a very good coincidence with real value h = 6.6·10−27 (ergs · s.)
for such a simple model we have considered here within the framework of the
Riemannian geometry which is differ of the Riemann-Cartan geometry by the
presence of the cosmological constant. It should be stressed, we do not in-
clude the cosmological constant Λ into consideration because on the one hand
it naturally appears only in the Riemann-Cartan (and more complete Finsler)
geometry. On the other hand this paper is dedicated mainly to the problem
of the fine structure constant variation, and it is difficult discus here all de-
tails of real geometry of our Universe and nature of cosmological constant. We
just note here that if Λ = 1.7 · 10−56 taken into account, the obtained by us
value of the Planck constant will decrease slightly and reach actually measured
h = 6 · 10−27 (ergs · s.). We will show this calculation in our next paper, but
also reader can see these details in our previous paper [11].

To conclude this part we stress again we prove geometrically the fact that
the electromagnetic field is quantized alone. To do this we need not oscillators
and baryonic matter. The only we need for free electromagnetic field to be
quantized is adiabatically changed curvature of manifold.

4 The Hg+ and Al+ optical clocks experiment

In first part of the paper we have shown that the fine – structure constant

variation due to adiabatically changed curvature of manifold is
·

α/α = 1.7 ·
10−18

(

s−1
)

. As it was mentioned above, at present time the experimental

constrain on the
·

α/α is very close to calculated value and consist
·

α/α < 5 ·
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10−18
(

s−1
)

[3], so, probably within a couple of years experimental facilities
will be able to measure the variation of fine structure constant discussed above,
caused by expansion of the universe .

However there is another type of experiments based on comparison of fre-
quencies variation of two optical clocks. Most precise measurements of this
kind were reported by Rosenband et al in 2008 [6] (see also paper [7] for the
same problem) Al+ and Hg+ single-ion optical clocks. In this paper the pre-
liminary constraint on the temporal variation of the fine-structure constant
·

α/α < 5 · 10−17
(

yr−1
)

were suggested, that actually corresponds to variation
·

α/α < 3 · 10−25
(

s−1
)

. In this case a reasonable question arises: why this vari-

ation
·

α/α = 10−18
(

s−1
)

was not measured, whereas (as we have seen before)
it inescapably should appears due to expansion of the Universe? The answer
on this question is simple: because the changing proceeds adiabatically. Let us
consider this issue in details by taking as an example the paper [6] (the same way
one can explain the result reported in [7]). The authors of paper [6] reported
that they were measuring variation of ratio of frequencies, i.e. δ

(

νAl+/νHg+

)

.
To make our expressions more clear, let us write 1 for Al+ and 2 for Hg+

In this case the measured variation can be written as:

δ

(

ν1
ν2

)

=
E1

E2

(

δE1

E1

− δE2

E2

)

(19)

where E1 and E2 are the energies of transitions i → f for Al+ and Hg+

respectively.

(

δE1

E1

− δE2

E2

)

=
δ (E1i − E1f )

E1i − E1f
− δ (E2i − E2f )

E2i − E2f
= (20)

= −δE1i

E1i

E1i

E1f

1

1− E1i

E1f

+
δE1f

E1f

1

1− E1i

E1f

+
δE2i

E2i

E2i

E2f

1

1− E2i

E2f

− δE2f

E2f

1

1− E2i

E2f

but for adiabatic changing we have δE1i

E1i
=

δE1f

E1f
= δE2i

E2i
=

δE2f

E2f
, thus

δE1i

E1i
− δE1i

E1i
= 0 (21)

therefore

δ

(

νAl+

νHg+

)

= 0 (22)

So one can conclude that adiabatic changes cannot be observed in such
experiments, when the frequencies of two single-ion optical clocks are compared.
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5 Conclusions

We calculate variation of the fine structure constant which must take place due
to expansion of our Universe. For the pseudo – Riemannian manifold it consist
·

α/α = 1.7 · 10−18
(

s−1
)

that only 5 time smaller than currently established

constrains on this value
·

α/α < 5 · 10−18
(

s−1
)

[3].
We also show that even on the pseudo – Riemannian manifold there ex-

ist adiabatic invariant for electromagnetic field which depend on the curvature
and has a value very close (it differ by factor 3/2) to the laboratory measured
Planck constant. Exact value for the Planck constant, as function of curvature
and cosmological constant, can be calculated only within the framework of the
complete Finslerian geometry and can be found in [11].

It is shown that double clock experiment is not appropriate for measurement
of adiabatically changed values (particularly for the measurements of the fine
structure constant variation).
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