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Abstract 

The dynamics of quadratic Liénard type equations is usually investigated in the only context of periodic 

solutions. The problem of interest in this work is then to demonstrate the existence of a simple variable 

transformation generating a class of exactly integrable quadratic Liénard type equations that preserves the three 

distinct damped dynamical operating regimes of nonlinear oscillators. Specific examples of equation belonging 

to this class and their exact solutions in terms of the periodic solution to linear harmonic oscillator are provided 

for illustrating the developed theory. 
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1. Introduction 

Many dynamical systems in fields of physics, engineering and quantitative biology applications are represented 

in terms of nonlinear differential equations [1- 6]. Recently, it is shown in [3-9] that the mixed and quadratic 

Liénard type equations [10-12] may be used to mathematically represent the deformation under relaxation 

process and oscillations in a variety of viscoelastic nonlinear dynamical systems. The quadratic Liénard type 

differential equation constitutes an attractive theoretical subject since it may model periodic motion of nonlinear 

oscillators in the context of dissipative nonlinearity properties. The quadratically dissipative Liénard type 

equation is usually constructed from an analytical approach consisting of transforming the linear harmonic 

oscillator through a nonlocal transformation. In doing so, its dynamics is often restricted to investigating the 

periodic solutions. In other words, this class of differential equations includes in general the only term of natural 

frequency of the associated linear harmonic oscillator. So, many of these nonlinear dissipative differential 

equations could not be used following an exact analytical approach to investigate adequately all the three 

damped parametric operating regimes, to say, the well known overdamped, critically damped and underdamped 

oscillations for dynamical systems. It is then justified, in this context, for overcoming such a situation, to design 

a general class of exactly integrable quadratically dissipative Liénard type equations related to damped linear 

harmonic oscillator equation. The fundamental question to be solved is then how to choose appropriately the 

variable transformation mapping the damped linear harmonic oscillator equation into the desired class of exactly 

integrable quadratic Liénard type equations. In this work such a transformation is proposed and used to map the 

damped linear harmonic oscillator equation into a general class of mixed Liénard type equations, which is 

reduced to the proposed class of exactly integrable quadratic Liénard type equations under some restriction 

(section 2). An application of the developed theory is performed (section 3) and the results are discussed (section 

4) and finally some conclusions of the work are given in the last section. 

2. Nonlinear general theory 

This section is devoted to formulate the mathematical problem and to develop the solving process. 

2. 1 Statement of theoretical problem 
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This part consists of setting the mathematical problem under solving process. To do so, suppose that the damped 

linear harmonic oscillator equation is of the form  

02  yyy o                                                                                                                              1                                                                                                                                                                                                                             

where overdot denotes a differentiation with respect to time t , o designates the natural frequency and    the 

viscous damping factor. The problem consists here of finding, given the equation  1 , the general class of mixed 

Liénard type equations, that can be reduced to the general class of exactly integrable quadratic Liénard type 

equations having the ability to exhibit the three distinct damped dynamical operating regimes.  

2. 2 Theory of mixed Liénard type equations 

To generate the general class of mixed Liénard type equations, consider the following transformation 

bexa
y

y xf  )(


                                                                                                                                      2                                                                                                                                                              

where
 
 xf  is an arbitrary function of x , a  and b  are constants. 

Using the identity  2 , equation  1
 
turns after some mathematical manipulations, into the general class of 

nonlinear damped oscillator 
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 where prime denotes differentiation with respect to variable   tx . Equation  3 is known as a mixed Liénard 

type equation since it contains together the standard linear viscous damping term and a quadratic damping term. 

It may be observed that the used change of variable modifies the linear viscous damping term, , to ,2b

in the mixed Liénard type equation. This fact will be used for determining the desired class of quadratic Liénard 

type equations that may exhibit all the three damped parametric regimes (subsection 2.3). 

2.3 Theory of quadratic Liénard type equations  

This subsection aims to carry out the general class of exactly integrable quadratic Liénard type equations that 

preserves the information about of all the three damped dynamical operating regimes and to perform an analysis 

of the obtained results. For this, the restriction  02  b , gives the following general class of exactly 

integrable quadratic Liénard type equations under question 
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 It may be clearly seen that the general solution of equation  4
 
will depend once the sign of parameter a is 

fixed, on the sign of term 
224  o , as exactly known for the damped linear harmonic oscillator equation. In 

other words, this equation provides the ability to investigate analytically the effects of viscous damping factor   

on the dynamics of nonlinear oscillators belonging to this general class of quadratic Liénard type equations. An 

interesting subclass is obtained by restricting ))(ln()( xhxf  , in equation  4 , that is 
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where )(xh  is  an arbitrary function of x . Equation  5  is of the general form 
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0)(
)()(

)(' 2 

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 xhcx

xh

a

xh

xh
x                                                                                                   6                                            

where c  is an arbitrary constant. Equation  6
 
belongs to the more general class of quadratic Liénard type 

equations which has been studied by Sabatini [13]. In [13] the period function is analyzed and first integral and 

hamiltonian are provided for this class of quadratic Liénard type equations from a relevant approach of 

dynamical systems theory. The isochronicity property of equation  6
 
requires 1c . That being so, the 

transformation 

)(xh

x
a

u

u 
                                                                                                                                            )7(                                                                                   

where 0)( xh , deduced from equation  2 , can map the equation  6 , into  the second order linear 

harmonic oscillator equation 

0 uacu                                                                                                                                          )8(                                                                  

where   ,,sin)( actAtu    with 0>ca , the constants 𝐴 and 𝜑 are determined using the 

initial conditions, so that the general exact analytical solution to equation  6
 
as a function of the harmonic 

solution to equation )8(
 
can be deduced following the first order differential equation                                                                                                                           

 0)cot()(  


txh
a

x                                                                                                               )9(                                                

The quantity 0>
4

4 22
2 




 oca , in the case of equation  5 , defines  the underdamped parametric 

operating regime. Equation )8(
 
may also provide non-oscillatory solutions to equation  6  restricting 0<ca , 

to say 0<
4

4 22  o  , for equation  5 , which defines the overdamped oscillations regime. The case 

0ca , that is to say, 0
4

4 22


 o  , for equation  5 , which corresponds to the critically damped 

oscillations regime, leads to a free particle dynamics. It is worth to note, on the other hand, that the linearizing 

transformation  7
 
can map the mixed Liénard type equation 

0)(
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x                                                                                       )10(                             

into 

0 uacudu                                                                                                                                 )11(                                               

which may be used to deduce the general exact explicit solution to equation )10( . The coefficient d  is an 

arbitrary constant. In this perspective, it is convenient to show the ability of the proposed theory to be used for 

generating and solving some interesting specific generalized quadratic Liénard type equations in the case 

0>
4

4 22  o

 

(section 3). 

3. Application of theory 

3.1 Generalized quadratic Morse type equation 
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The perturbed Morse type equation has gained in the field of nonlinear dynamics a particular interest due to its 

applications in quantum mechanics [11]. It is intended in this part to perform a generalization of this type of 

nonlinear oscillator applying the current theory. So, the restriction 



 xe
xh




1
)(  

in equation )5(  leads to the generalized quadratic Morse type equation 
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Restricting 0>
4

4 22  o , and using equation )9( , the general exact analytical solution for equation )12(   

as a function of the periodic solution to equation )8( may be written as 
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where 
4

4 22 



 o , and K  is an arbitrary constant of integration. 

Imposing 1a , and 0 , equation )12(
 
reduces to the perturbed Morse type equation analyzed in [11], and 

equation )13(
 
for 



1
K , provides the same solution as in [11]. On the other hand, it is worth mentioning 

that equation )12( may exhibit a rich diversity of bifurcations and chaos behaviors under forcing function. It is 

also possible to appropriately choose other expressions for the function )(xh  for generating other interesting 

generalized quadratic Liénard type equations (subsection 3.2). 

3.2 Other generalized quadratic Liénard type equations 

Case 1:  
lxxh )(   

The corresponding equation, after the relation )5( , is of the form 

0
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The general exact explicit solution to equation )14( may be written as 
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Equation )14( for  1 , and  0 , reduces to 
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which is studied in [14], where a first integral approach was proposed for solving. The dynamics of equation 

)16(  for   1l  is investigated in [4, 6].  

Case 2:  xxxh ll  1)(
           

   

The application of equation )5(  gives, as quadratic Liénard type differential equation 
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with the general exact explicit solution given by 
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An interesting case of  17  is obtained by restricting 2l , and  al  , that is 
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since equation  19  is a generalized form of an equation which has been studied by Sabatini [13]. The equation 

which is mentioned by Sabatini [13] corresponds to 1a , and 1
4

4 22
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choosing 
3)( xxaxh  . 

On the other hand, the parametric choice ,1,1 
a

l
l

  and ,1
K


 for equation  18 , gives also an 

interesting result 
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since the solution  21  may exhibit frequency independent amplitude of oscillations, that is to say, isochronicity 

property as in the case of the harmonic oscillator.  
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Case 3: xxxh ll  1)(     

Applying equation  5 , one can get the quadratic Liénard type equation 

0)(
4

4

)(

)1( 1
22

2 






 













  xx

a
x

xx

axl
x llo

ll

ll









                                                         
 22

             
 

The corresponding general exact solution becomes 
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Case 4:    22  xxh       

The corresponding quadratic Liénard type equation, after equation  5 , can be expressed in the form 
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The general exact explicit solution takes the form 
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An interesting case is obtained for 0 . The choice 0 , and 1a , leads to the harmonic solution, but 

with a frequency of oscillations which is equal to .
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4 22  o

       

 

Case 5:    22  xxxh         

The quadratic Liénard type equation may be written, taking into account equation  5  as 
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The general exact analytical solution may be formulated in the form 
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Case 6:     
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The general exact explicit solution may be expressed as 
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 Case 7:      xx eexh          

The corresponding quadratic Liénard type equation, by application of equation (5), may be written as 

   0)(
4

4)(
22

2 












 

















 




xxo

xx

xx

ee
a

x
ee

aee
x 



 
            (30) 

which admits as general exact analytical solution  

























a

a

t
K

A

t
K

A

tx








 2

2

))sin((1

))sin((1

ln
1

)(              (31)  

where 1)(

2


a

K

A


.                                                                                                      

So with that, it is now possible to discuss some implications of the proposed theory (section 4). 

4. Discussion 

The mathematical problem of interest in this contribution was to find a general class of exactly integrable 

quadratically dissipative Liénard type equations that may not be only solved in terms of the periodic solution of 

linear harmonic oscillator by quadratures, but also has the ability to reproduce all the three distinct damped 

parametric regimes known for oscillator dynamics. The formulation of an appropriate transformation that 

connects the damped linear harmonic oscillator to the desired class of nonlinear dissipative differential equations 

has then become a primordial question. In this work a simple variable transformation has been used to solve the 

stated problem. So, using the defined variable change, the desired class of quadratic Liénard type equations has 

been constructed. It is clearly observed that the proposed variable change suffices to express the general exact 

analytical solution to the quadratic Liénard type equation under question, as a function of the periodic solution to 

the associated linear harmonic oscillator, in the underdamped parametric operating regime, which is defined by 

the quantity 0>
4

4 22

a

o  
. Thus, it is worth to note that the period of the exact analytical periodic solution to 

the considered quadratic Liénard type equations will depend on the viscous damping factor    of the related 

damped linear harmonic oscillator. More precisely as shown by the illustrative application, the general exact 

periodic solution of the considered quadratic Liénard type equation, is expressed as a function of the periodic 

term   ,)sin()(   tAtu
 
where the period 

224

42












o

T  , depends strongly on the viscous 



8 
 

damping factor . So, it can be clearly seen that, as   approaches o2 , the period T . As  a result, 

the studied nonlinear dynamical system will behave without oscillations. By contrast, for 0 , the period 

o

T


2
 , as in the case of the linear harmonic oscillator, so that oscillatory behavior should be expected for the 

nonlinear oscillator under question. Consequently, the viscous damping factor can satisfactorily be used for 

damping the nonlinear oscillations of the dynamical system represented by the quadratic Liénard type equation 

under study. It is also worth noting that the current theory has shown the ability to perform the generalization of 

many quadratic Liénard equations which are known to be interesting for physical and engineering applications. It 

should be mentioned that a more general variable transformation may be formulated in the current  perspective, 

that is 

    
dxxnqdxxhml exfxbexgxa

y

y )()(

)()(





                                                                           

 32

                                

 

An interesting specific example of this general variable transformation 

)()( xfbxgxa
y

y
 



                                                                                                                        

 33

                                                                           

 

leads to the general class of Liénard equations 

   
0

)()(

)(

)(

)(

)(

)('
)(2

)(

)()(' 222
2

2

















 


xgaxg

xf

a

b

xg

xf

a

b
x

xg

xf

a

b
xbfx

xg

xgaxg
x o

    34  

which reduces  for    
xa

xg
1

 ,  with  0xa , to the equation 

    0)()()(')(2 22  xxfxbxfbxxfxbxfbx o                                               35                                                                                                                                                                                                  

which finally gives for the choice   xxf  , the equation 

0)3( 2232  xxbxbxxbx o                                                                                             36                                 

known as a generalized modified Emden type equation, and for the choice    2xxf  , the famous equation 

0)4( 23522  xxbxbxxbx o                                                                                           37                                  

known under the name of a generalized Duffing-van der Pol type equation. In [15-16] an equation of this type 

has been analytically investigated. An interesting case would be also to choose  
kxa

xg



1

 where k  is an 

arbitrary constant, to introduce a quadratic nonlinearity of the form  
2xk  in the preceding equation. On the other 

hand, it should be noted that a theory of three distinct damped dynamical operating regimes of exactly integrable 

quadratic Liénard type equations could also be carried out using the following identity 

be
x

a

y

y xf  )(





                                                                                                                                   

 38

                                                         

 

5. Conclusions 

The quadratically dissipative Liénard type equation is often analytically investigated in the context of periodic 

oscillations since the equation is derived in many cases by transforming the linear harmonic oscillator equation. 
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In this work the possibility to analyze the quadratic Liénard type equation in the situation of overdamped, 

critically damped, underdamped and periodic oscillations is explored. So, using a simple appropriate variable 

change, a general class of exactly integrable quadratically dissipative Liénard type equations has been 

constructed by transforming the damped linear harmonic oscillator equation. In doing so, it has been possible to 

consider all the three damped parametric operating regimes and to solve the quadratic Liénard type differential 

equation under question in terms of general exact analytical solution. In the case of the underdamped operating 

regime, it has been found that the general exact solution may be expressed as a function of the periodic solution 

of the linear harmonic oscillator equation for which the fixed frequency of oscillations depends on the linear 

viscous damping factor. It has been also observed that the current theory has the ability for generalizing some 

well known quadratic Liénard type equations arising in the fields of physics and engineering applications. As a 

noteworthy result, exact analytical periodic solutions for equations belonging to the proposed class of integrable 

quadratic Liénard type equations in the underdamped parametric regime can be computed with the period of 

related linear harmonic oscillator. 

References 

 

[1] S. Gupta, D. Kumar, J. Singh, Application of He’s homotopy perturbation method for solving nonlinear wave 

like equations with variable coefficients, Int. J. Adv. Appl. Math. and Mech. 1 (2013) 65-79. 

[2] B. P. Shah, Bound state eigenfunctions of an anharmonic oscillator in one dimension: A numerov method 

approach, Int. J. Adv. Appl. Math. and Mech. 2 (2014) 102-109. 

[3] M.D. Monsia, A Mathematical Model for Predicting the Relaxation of Creep Strains in Materials, Physical 

Review & Research International, 2(3) (2012) 107-124. 

[4] M. D. Monsia, Y. J. F. Kpomahou, Simulating Nonlinear Oscillations of Viscoelastically Damped 

Mechanical Systems, Engineering, Technology & Applied Science Research, vol. 4, N° 6, (2014) 714-723. 

[5]  Y. J. F. Kpomahou, M. D. Monsia, Asymptotic perturbation analysis for nonlinear oscillations in viscoelastic 

systems with hardening exponent, Int. J. Adv. Appl. Math. and Mech. 3(1) (2015) 49-56. 

[6] Y. J. F. Kpomahou, M. D. Monsia, Hardening nonlinearity effects on forced vibration of viscoelastic 

dynamical systems to external step perturbation field, Int. J. Adv. Appl. Math. and Mech. 3(2) (2015) 16-32.  

[7] M. D. Monsia, Lambert and hyperlogistic equation models for viscoelastic materials: Time dependent 

analysis, International Journal of Mechanical Engineering, vol. 4, Issue1, (2011) 5-10. 

[8] M. D. Monsia, Modeling the nonlinear rheological behavior of materials with a hyper-exponential type 

function, Mechanical Engineering Research, vol. 1, N° 1, (2011) 103-109. 

[9] M. D. Monsia, A nonlinear mechanical model for predicting the dynamics response of materials under a 

constant loading, Journal of Materials Science Research, vol. 1, N° 1, (2012) 90-100. 

[10]  R. Gladwin Pradeep, V.K. Chandrasekar, M. Senthilvelan and M. Lakshmanan, Nonstandard conserved 

Hamiltonian structures in dissipative/damped harmonic oscillator, Journal of Mathematical Physics 50  (2009), 

052901-1- 052901-15. 

[11] M. Lakshmanan, V.K. Chandrasekar, Generating Finite Dimensional Integrable Nonlinear Dynamical 

Systems, arXiv: 1307.0273 v1 (2013) 1-25.  

[12]  V.K. Chandrasekar, Jane H. Sheeba, R. Gladwin Pradeep,  R. S. Divyasree and  M. Lakshmanan, A class of 

solvable coupled nonlinear oscillators with amplitude independent frequencies, arXiv:1204.6166 v1 (2012) 1-18. 



10 
 

[13] M. Sabatini, On the period function of 0)(')('' 2  xgxxfx , J. Differential Equations 196, (2004) 

151-168. 

[14] J. D. Keckic, Additions to Kamke’s treatise, VII: Variation of parameters for nonlinear second order 

differential equations, Univ. Beograd. Publ. Elektrotehn. Fak., Ser. Mat. Fiz. N°544- N°576, (1946) 31-36. 

[15] D. L. Gonzalez and O. Piro, Chaos in a nonlinear driven oscillator with exact solution, Phys. Rev. Lett.50, 

870, vol. 52, N° 20, (1983). 

[16] V.K. Chandrasekar, S. N. Pandey, M. Senthilvelan and M. Lakshmanan, A simple and unified approach to 

identify integrable nonlinear oscillators and systems, Journal of Mathematical Physics 47, 023508,  (2006) 1-16.  

 

 

 


