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NOTES
Some of the following typographical errors (or confusions) may (do)
appear in this edition.

[1] There may be a very few times when it is not apparent as to the
necessary structure for the results stated. Of course, one can always
stay with the EGS. I may have written M when I meant M1 or
conversely.

[2] The actual reason for the inverse order discussed on page 5 is that
it is usefull when considering adjective reasoning discussed later in
this edition.

[3] I give two different superstructure constructions and certain pro-
cesses used to obtain nonstandard models. It would have been better
to concentrated on the second construction which is the one actually
used.

[4] Relative to the alphabet A. It is trivially obvious that one can
include within this alphabet the written symbols used by an intelligent
life form that uses a written language and deductive rules similar to
those used by humankind. If one goes to the extreme and requires
infinitely many such intelligent life forms, then generalized languages
as discussed on page 87 can be utilized.

[5] Beginning in Chapter IV, due to the complexity of the first-order
statements, I adopt the process of replacing set-theoretically defined
predicates (abbreviations) such as x ∈ y, x = y, 1 ≤ x < z etc. by
(x ∈ y), (x = y), (1 ≤ x < z). Of course, the = is interpreted as
set-theoretic equality.

[7] This book is written as a 6 X 9 formate book.



Chapter 1

INTUITIVE CONCEPTS

1.1 The Alphabet, Words, and Choice Sets.

There exists at the instant of time you read this sentence a finite
set of all the symbols you have previously used throughout your life
for your various forms of communication and human deduction. You
may also include frames from sound motion picture film, TV tape, and
the like, if you wish, in the event you require visual or audio stimuli
for your deductive processes. Let Ah be the set of such symbols for a
given human being at this instant of time and Ht the set of all human
beings who exist at this instant of time. Now let A =

⋃

{Ah

∣

∣ h ∈ Ht}
cal A symbol be the alphabet alphabet for humanity at this instant of
time. The set A may be enlarged to include all of the symbols which
humanity has ever used, if we wished. However, for our purposes the
set A will suffice. Observe that the set A is finite and among the
numerous references relative to alphabets, I direct your attention to
[3] [7] [12] [13] [21].

Assume that there is included in the set A a distinct symbol which
represents a blank symbol, say something like |||. Now following the
above references, any finite string (with repetition) of elements from
A which is nonempty is called a word. word Let W be the set of
all words. In certain applications of these mathematical methods, a
word is also called an intuitive or naive readable sentence. Only a
fragment of the set W is used in this investigation and, in most cases,
this fragment will be the set of meaningful sentences or a portion of a
formal language. The metalanguage may be assume to be written in
a different color than is W. Also, the concept of the empty word will
NOT be employed.

Next, apply the concept that Markov calls the abstraction of ab-
straction of identity identity [12] to two words W1 and W2. The two
words are equal definition of equal words if they are composed of the
same symbols in the same order written left to right or right to left
etc. The finitary character of each word allows for such an identifi-
cation. Another intuitive string concept required for this discussion
is the notion of the juxtaposition operation juxtaposition operation or
join join of two strings such as W1, W2 and this is denoted by W1W2

or W2W1. Apparently, since about 1914 [22], these two intuitive string
concepts relative to word theory have been accepted as a reasonable
consequence of the finitary character of such forms.

Following Robinson’s procedure in [15] applied to W rather than
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to a formal language, assume that there exists an injection i from
W onto IN, symbol of natural numbers the set of natural numbers.
Intuitively, such an injection exists since W is countably infinite. Now
the term “intuitive” definition of intuitive for this research is utilized
to denote the words, various grammatical rules, the informal logical
procedures, and the like used in ordinary communication. This is to
differentiate our common modes of descriptive communication from
the formal theory into which these intuitive objects are mapped. Se-
lect a fixed injection for this and all other investigations. Notice that
Robinson used any set U of cardinality greater than or equal to that
of his set of well-formed formulas. The procedure of intuitively map-
ping objects such as the set W onto concrete mathematical objects
is well established and has been a major procedure in geometry since
Descartes. The Cantor Axiom used by Hilbert and Birkhoff [2] for
modern geometry assumes that such as map exists from the set of
points in a straight line onto the real numbers. Evidently, this in-
jection i:W → IN falls into a category of similar content as these
well-known geometric assumptions. Indeed, i can be an into Gödel
coding.

Prior to continuing this introductory section a brief discussion
of the Set Theory being used and related matters appears useful.
The general set theory being used is ZFC = ZF + AC. The ZF

(i.e. Zermelo-Fraenkel axioms) and the Axiom of Choice AC may be
found listed on pages 2 —19 of [5] among hundreds of other references.
Within this general set theory we are working within a model for
the axiom system ZFH = ZFA + AC + A is countably infinite.
The axiom system ZFA is the Zermelo-Franenkel axiom system with
atoms (i.e. urelements or individuals). The set of atoms is the A in the
above formulation. All of the axioms are expressible in a first-order
language with the predicates ∈ and =, where ∅ and A are constants.
The almost completely written axioms or modifications to ZF + AC

axioms that yield ZFA + AC may be found on pages 122 of [5], page
44 of [6] and, due to the use of individuals, the actual system studied
throughout [20]. I point out that the language used is a first-order
language with the logical axioms for equality.

Assuming the consistency of ZF, Gödel showed that there is a
model in which the ZFC axioms hold. Thus the consistency of ZF

implies the consistency of ZFC. Using ZFC our model construction
for ZFH is a slight modification of that which appears in problem 1 on
page 51 of [6]. In the modification, let C be a countably infinite set of
infinite subsets of the ω in the ZFC model. Moreover, we bijectively
map the order relation for ω onto C − {a0}. Thus, for a bijection
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f : (C − {a0}) → ω define the well-ordering < on C − {a0} as follows:
For each x, y ∈ (C−{a0}), x < y iff f(x) ∈ f(y). By the construction
of the model, this well-ordering is also a member of this model. We
also have need of an interpretation of = for the set (C −{a0}). This is
to be the logical equality and as such is interpreted to be the identity
relation on (C − {a0}) which also exists within this model. The set
(C − {a0}) with its order and equality relation is to be considered
the set of natural numbers IN within this model. On the other hand,
we also have within this model its ω that will be used when certain
constructions are considered. The interpretation of = for objects not
in (C − {a0}) is set-theoretic equality and the ∈ in this model is the
same as the ∈ in our model for ZFC. All of this yields a model for the
ZFH axioms that are, hence, consistent relative to ZF. Set W will
be intuitively considered an object in this model. It does not contain
the empty set since the empty word is not used. The injection i is to
be considered as a intuitive map from W onto IN within this model
for ZFH. [See page 16 for detailed refinements.]

All of the new results are obtained by using informal mathe-
matical reasoning relative to ZFH, proving results by means of the
“observer language” and using acceptable mathematical procedures.
We subscribe to the remarks quoted in chapter III of the work by
Rosiowa and Sikorski [14] as well as the observations made by Stoll
[18, p. 228] relative to Rosser’s philosophy of mathematics. That is
that the procedures used, even though informal in nature, are capable
of formalization, and such things as the “formal” proofs of the formal
consistency of ZFH relative to ZF by means of model theory methods
imply that the same informal but acceptable procedures which we use,
when convincingly presented, will not produce any contradictions.

Now, intuitively, consider that there is a fixed dictionary D that
uses a subset of an individual’s personal Y ⊂ A. Let WY be the set
of all words generated by Y. Then descriptions of natural processes,
of their behaviors and developments, as well as psychological de-
scriptions for human behavior, philosophical descriptions for belief-
systems, life styles and any other descriptions that are of interest are
elements of the set P(WY ), Symbol for power set the power set of
WY . Such sets are also informally called describing sets. The mean-
ings of such sets are understandable by the individual and have great
content. Now there exists a set BY ⊂ P(WY ) composed of all and
only these describing sets. Evidently, the set BY is finite. Consider
the set P(BY ). In some applications of the forthcoming mathematical
results, the set P(BY ) is called a free (will) choice set. For the uni-
versal free (will) choice set, simply consider the set of all P(BY ) as Y
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varies over all humanity which exists at a given instant of time. This
is still a finite set. Notice that all that has been done to obtain these
free choice sets can easily be formulated with respect to the set IN.
Simply consider i[WY ], and then the formal describing sets are the cor-
responding elements of P(i[WY ]) under the injection i. The intuitive
describing sets can be recaptured by considering the inverse image of
i on these elements of P(i[WY ]). The (general) Axiom of Choice is
not necessary in order to obtain these free choice sets. However, in
the sequel, The Axiom of Choice is used in the construction of the
NSP-structure. Consequently, The Axiom of Choice is utilized when
we interpret, in some applications, the free choice sets as elements of
the NSP-structure.

1.2 Readable Sentences.

For the purposes of this research, not only is the finitary con-
cepts of the abstraction of identity and join accepted but evidently a
third fundamental procedure needs to be introduced and investigated.
Consider the symbol string ‘mathematics’. Now this can be obtained
or “read” by numerous applications of the join operation with sym-
bol strings of lesser length. For example, let W1 = math; W2 = e;
W3 = mat; W4 = ics. Then mathematics = W1W2W3W4. Observe
that W1, W2, W3, W4 are the syllables for this word. Clearly, for
writing purposes, we could consider mathematics = W1W2 . . .W11,
where Wj , j = 1, . . . , 11, are the single letters in the word. The ne-
cessity to consider intuitively a symbol string as composed of words
of various length joined together from left to right leads, when i[W]
is considered, to the concept of the set of (special) partial sequences.

Let nonempty H ⊂ i[W] and n ∈ IN, where 0 ∈ IN. For simplicity,
let symbol H(exponent)n Hn = H [0,n] be the set of all maps from the
segment [0, n] into H. An element of Hn is called a partial sequence
even though this definition is a slight restriction of the one that usually
appears in the literature. Now let PH =

⋃

{Hn
∣

∣ n ∈ IN}. Symbol
P subscript H In general, if H = i[W], then the H notation will be
deleted from such symbols as PH . Deletion of the H symbols from
subscripts The set PH is a set of partial sequences and is a subset of
Pi[W ] = P. The single symbol P

Let P1, P2 denote the set-theoretic first and second coordinate
projection maps. Then the following first-order sentences, where the
usual assortment of set-theoretic abbreviations for subset, functions,
domains, ranges, etc. are used, hold and represent two basic properties
for the object PH .

∀x((x ∈ PH) → ∃y((y ∈ IN) ∧ (P1[x] = [0, y]) ∧ (P2[x] ⊂ H)));
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∀x((x ⊂ IN× H) ∧ ∃y((y ∈ IN) ∧ (P1[x] = [0, y]∧

∀w∀z∀z1(((w ∈ IN) ∧ (z ∈ H) ∧ (z1 ∈ H) ∧ ((w, z) ∈ x)∧ (1.2.1)
((w, z1) ∈ x)) → z = z1) → x ∈ PH).

I point out that ever since Gödel used a natural number coding
for certain metamathematical concepts, interpreting naive or intu-
itive processes involving symbol strings as concepts relative to IN has
prevailed and become accepted by mathematicians. As —Kleene—
writes: “Metamathematics has become a branch of number the-

ory.’’ [7, p. 205] Consequently, it is clearly justified to use partial
sequences to discuss the “ordering” of symbol strings. This ordering
will be associated with the finitary ordering obtained by joining words
by juxtapositioning them in a specific intuitive order.

Consider f ∈ Hn, n ∈ IN. Then f(0), f(1), . . . , f(n) ∈ H. The
order induced by f is defined to be the simple inverse order gener-
ated by f applied to the simple order of [0, n]. Formally, for each
f(j), f(k) ∈ f [[0, n]], define the order induced by f to be f(k) ≤f f(j)
iff j ≤ k, Symbol for f(k) less or equal to subscript f f(j) where as usual
the order ≤ is the simple order on [0, n] induced by the simple order
on IN. In general, the notation ≤f will NOT be specifically used to
denote this f induced order but, rather, the order will be indicated
by writing the symbols f(n), . . . , f(0) from left to right in an ordered
fashion. This corresponds to what the intuitive ordering would be
under the inverse of i, i−1, when it is used to recapture the origi-
nal symbol string. Remember, that everything done with the join
operation, partial sequences and the induced order is finitary in char-
acter. Apparently, care is required in the selection of the H if all
the ways a given word may be partitioned for readability are to be
investigated. It is required that i−1[H] contain enough symbols for
this purpose. However, an approach is now developed that eliminates
this apparent difficulty.

Relate the induced ordering for some f ∈ P to the join in the
following manner. The word W0 to which f ∈ (i[W])n, n ∈ IN,
corresponds is

W0 = (i−1((f(n)))(i−1((f(n − 1))) · · · (i−1((f(0))). (1.2.2)

Using the abstraction of identity and this ordered join concept, a basic
equivalence relation is obvious. For f, g ∈ P f ∈ Hn, g ∈ Hm, let

f ∼ g iff

(i−1((f(n))) · · · (i−1((f(0))) = (i−1((g(m))) · · · (i−1(((0))). (1.2.3)
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Observe that this process is still finitary in nature and con-
sequently effectively recognizable. Clearly, “∼” is an equivalence
relation on P since the identity = is such a relation on W. For
each f ∈ P let [f ] denote the corresponding basic equivalence
class. Now if the cardinality of an intuitive word |W0| = m +
1 = the total number of symbols in W0 including repetitions and
W0 = (i−1((f(m))) · · · (i−1((f(0))), then each equivalence class is a
nonempty finite set and theoretically each element in each equiva-
lence class can be effectively recognized.

Recall that many of the intuitive concepts associated with word
theory and algorithms [7] [12] [13] [22] have much less rigorously de-
fined concepts than this equivalence relation even though such word
theory concepts have been extensively employed. Before proceeding,
however, here are some of the simple facts about these equivalence
classes. Consider [f ] and let the corresponding word for f be W0,
where |W0| = m + 1. Then there exists two unique maps fm, f0 ∈ P
such that fm ∼ f0, fm ∈ (i[W])m, f0 ∈ (i[W])0 and

(1.2.4) W0 = (i−1((fm(m))) · · · (i−1((fm(0))) = (i−1(f0(0))).

Furthermore, for each k ∈ IN such that 0 ≤ k ≤ m, there exists g ∈ [f ]
such that g ∈ (i[W])k. And, for each k ∈ IN such that k > m there
does not exist any g ∈ (i[W])k such that g ∈ [f ]. properties of the
cardinality of [f ] Finally, how is a particular class [f ] to be intuitively
interpreted? interpretation for a class [f ] In order to interpret a class
[f ] in W, simply select any element in [f ], say fn, and effectively
construct the word (i−1((fn(n))) · · · (i−1((fn(0))) = W0. The word
W0 is called the intuitive or naive interpretation for the class [f ].

Let E be set of all equivalence classes generated by ∼ on P. The
set E is called the set of (formal) readable sentences. The term “read-
able sentence” is used in two contexts, the intuitive readable sentence
that is a member of W and the corresponding formal readable sen-
tence in E. The terms “intuitive” or “formal” will not be used where
no confusing would occur.

1.3 Human Deduction.

As has become the custom, the concepts of human deduction (i.e.
reasoning ) will first be discussed intuitively with respect to the set W.
Certain metatheorems relative to such processes will be established
prior to associating these processes with the more formal set E. Re-
call Tarski’s [21] basic axioms for the undefined (finite) consequence
operators C on a set of meaningful sentences A. As usual, let |A| =
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the cardinality of A, the symbol P(A) denote the powerset of A, F (A)
denote the set of all finite subsets of A and C :P(A) → P(A). Tarski
first bounds the cardinality of A

(1) 0 < |A| ≤ ℵ0

Now the map C is a (finite) consequence operator if A 6= ∅ and

(2) for each B ⊂ A, then B ⊂ C(B) ⊂ A,

(3) for each B ⊂ A, then C(C(B)) = C(B),

(4) for each B ⊂ A, then C(B) =
⋃

{C(F )
∣

∣ F ∈ F (B)}

Axioms (2), (3), (4) appear to be considerably more significant
than does axiom (1) in these applications and the cardinality of the
set of sentences considered is not, usually, so bounded. Actually the
consequence operator is generated by a slightly more general concept
which is called the deductive process. Let A be a nonempty set.
Then any nonempty k ⊂ F (A) × A is a deductive process. The term
deductive operator is also used. A deductive process k ⊂ F (A) ×A is
total if for each nonempty B ⊂ A there exists some F ∈ F (B) and
some a ∈ A such that (F, a) ∈ k. For a total k ⊂ F (A) × A, let

(i) Ck = {(x, y)
∣

∣ x ∈ P(A) ∧ y ∈ P(A) ∧ y 6= ∅∧

∀w(w ∈ A ∧ w ∈ y ↔ ∃z(z ∈ F (x) ∧ (z, w) ∈ k))} (1.3.1)

And, (B, ∅) ∈ Ck ↔ B = ∅ ↔ ∅ /∈ P1[k].

Notice that the definition of Ck implies that Ck:P(A) → P(A).

Assume that A is a nonempty arbitrary set that corresponds to
Tarski’s set of meaningful sentences with the exception that axiom
(1) need not hold for A.

Theorem 1.3.1. Let total k ⊂ F (A) × A. Then Ck satisfies
Tarski’s axiom (4).

Proof. Obviously, if B ⊂ A, then Ck(B) ⊂ A. Let Ck(B) = ∅.
Then B = ∅ implies that Ck(B) =

⋃

{∅} =
⋃

{Ck(F ) | F ∈ F (∅)} =
⋃

{Ck(∅)}. Consequently, assume that Ck(B) 6= ∅ and x ∈ Ck(B).
Then there exists some F0 ∈ F (B) such that F0 ⊂ B ⊂ A and
(F0, x) ∈ k. From the definition of Ck, this implies that x ∈ Ck(F0).
Thus Ck(B) ⊂

⋃

{Ck(F )
∣

∣ F ∈ F (B)}. On the other hand, assume

that x ∈
⋃

{Ck(F )
∣

∣ F ∈ F (B)}. Then there exists some F1 ∈ F (B)
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such that x ∈ Ck(F1). Hence there exists some F2 ∈ F (F1) ⊂ F (B)
and (F2, x) ∈ k. Consequently, x ∈ Ck(B) and this completes the
proof.

Many of the usual deduction processes, such as propositional
deduction, satisfy the following additional properties. Let k ⊂
F (A) ×A be ordinary whenever

(i) if (A0, b) ∈ k and A0 ⊂ D ∈ F (A), then (D, b) ∈ k and

(ii) if {(A0, b1), . . . , (A0, bn)} ∈ k and ({b1, · · · , bn}, c) ∈ k, then
(A0, c) ∈ k.

Theorem 1.3.2. Let total and ordinary k ⊂ F (A) × A. If Ck

satisfies axiom (2) of Tarski, then Ck is a consequence operator.

Proof. Since axiom (4) holds for Ck, now proceed to establish
axiom (3). Tarski [21] has shown that axiom (4) implies that if B ⊂
D ⊂ A, then Ck(A) ⊂ Ck(D). Thus assume B ⊂ A. Then B ⊂ Ck(B)
implies that Ck(B) ⊂ Ck(Ck(B)). Now if Ck(Ck(B)) = ∅, then this
implies that Ck(B) = ∅ and Ck(Ck(B)) = Ck(B). Let x ∈ Ck(Ck(B)).
Then there exists some finite F0 ⊂ Ck(B) such that (F0, x) ∈ k. If
F0 = ∅, then ∅ ⊂ B implies x ∈ Ck(F0) ⊂ Ck(B). Assume that F0 6= ∅,
say F0 = {a1, . . . , an}. Then there exists finitely many Fi ⊂ B, i =
1, . . . , n such that (Fi, ai) ∈ k. Let F ′ = F1∪· · ·∪Fn ∈ F (B) ⊂ F (A).
Then ordinary (i) implies that (F ′, ai) ∈ k, i = 1, . . . , n. But (F0, x) ∈
k and ordinary part (ii) implies that (F ′, x) ∈ k. Consequently, x ∈
Ck(B) and this completes the proof.

In passing note that if axiom (2) holds for Ck and (i) of ordinary
holds for k, then for each x ∈ A, ({x}, x) ∈ k. Obviously, if for each
x ∈ A, ({x}, x) ∈ k, then axiom (2) holds for Ck. In this case, we say
that the deduction process is singular. Combining the above results,
we have the next theorem.

Theorem 1.3.3. If for nonempty A the deductive process k ⊂
F (A) × A is a total, ordinary and singular, then Ck is a consequence
operator for A.

Is there an obvious deduction process generated by a given con-
sequence operator? Let C be a consequence operator on P(A). Define
kc ⊂ F (A) × A as follows:

(1.3.2) (F, a) ∈ kc iff F ∈ F (A) and a ∈ C(F ).

By axiom (2), it follows that kc is total.

Theorem 1.3.4. If C is a consequence operator on A, then
Ckc

= C.
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Proof. First assume that C(B) = ∅. Then axiom (2) implies
that B = ∅. Hence ∅ /∈ P1(kc). From this it follows that Ckc

(∅) =
∅ = C(B). Now let B ⊂ A and suppose that x ∈ C(B). Then there
exists some F ∈ F (B) such that x ∈ C(F ). Since F ∈ F (A), then
(F, x) ∈ kc. From the definition of Ckc

, it follows that x ∈ Ckc
(B);

which yields that C(B) ⊂ Ckc
. Now if Ckc

(B) = ∅, then Ckc
(B) ⊂

C(B). Hence suppose that y ∈ Ckc
(B). Then there exists F ∈ F (B)

such that (F, y) ∈ kc. Since F ∈ F (A), then y ∈ C(F ) implies that
Ckc

(B) ⊂ C(B). Therefore, for each B ∈ P(A), Ckc
(B) = C(B)

implies that Ckc
= C and the proof is complete.

From the above results, a consequence operator can be thought of
as being determined by a deductive process and, in certain cases, con-
versely. When deductive processes are described in a metalanguage,
then such properties as total, ordinary or singular can often be easily
established. Sometimes we say that a deductive process k ⊂ F (A)×A
satisfies the Tarski axioms (2), (3), or (4) if Ck satisfies (2), (3), or
(4), respectively.

Our next task is to find an appropriate correspondence between
any k ⊂ F (W)×W and some K ⊂ F (E) ×E such that the axioms of
Tarski and set-theoretic properties are preserved. It is clear that this
relation should be defined relative to the quotient map determined
by ∼ . Thus for each w ∈ W, let fw ∈ P be such that fw ∈ (i[W])0

and fw(0) = i(w). Consider the intuitive bijection Θ:W → E a ba-
sic bijection, defined by Θ(w) = [fw ] for each w ∈ W. In the usual
manner, extend Θ to its corresponding set functions and the like.
Since it is not assumed that all readers of this book are aware of these
definitions, we present them in the context of consequence operator
theory. However, for the next few results, the map will not be re-
stricted to the specially defined map Θ but rather we establish them
for any arbitrary injection β:A → X. Recall that

(i) if B ⊂ A, then β[B] = {β(x) | x ∈ B},

(ii) for B ⊂ P(A), β[B] = {β[x] | x ∈ B},

(iii) for k ⊂ F (A) × A, let βk = {(β[x], β(y)) | (x, y) ∈ k} =
{(z, w) | z ∈ F (x)∧w ∈ X ∧∃x∃y(x ∈ F (A)∧ y ∈ A∧ z = β[x]∧w =
β(y) ∧ (x, y) ∈ k)},

(iv) for C :P(A) → P(A), let βC = {(β[x], β[y]) | (x, y) ∈ C}.

By considering the inverse, β−1, it is evident that if k is total on A,
then βk is total on β[A]; if k is ordinary on A, then βk is ordinary on
β[A]; and if k is singular on A, then βk is singular on β[A].
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Numerous propositions are immediate consequences of the set-
theoretic definitions associated with the injection β. However, even
though the following propositions hold true from elementary algebraic
results, we prove them explicitly for they refer to intuitive structures
and metatheoretric results. Furthermore, they are of considerable
importance to the foundations of this subject.

As before, let β be an injection on A into X, let k ⊂ F (A) × A
and C :P(A) → P(A).

Theorem 1.3.5. Let B ⊂ β[A]. Then

β−1[(βC)(B)] = C(β−1[B]), and

(1.3.3) (βC)(β[β−1[B]]) = (βC)(B) = β[C(β−1[B])].

Proof. Let B ⊂ β[A]. Then β−1[β[B]] ∈ P(A). Hence,
(β−1[B], C(β−1[B])) ∈ C. Consequently,

(1.3.4) (β[β−1[B]], β[C(β−1[B])]) ∈ βC

implies since βC is a map that

(1.3.5) β[C(β−1[B])] = (βC)(β[β−1[B]]) = (βC)(B).

Thus

(1.3.6) β−1[β[C(β−1[B])]] = β−1[(βC)(B)] = C(β−1[B])

and this completes the proof.

The next two results are important consequences of Theorem
1.3.5.

Theorem 1.3.6. If C is a consequence operator on P(A), (i.e.
it satisfies axioms (2), (3), (4) of Tarski), then βC is a consequence
operator on P(β[A]).

Proof. Observe that β[P(A)] = P(β[A]) and that βC :P(β[A]) →
P(β[A]).

(i) Let B ⊂ β[A]. Then β−1[B] ⊂ A implies that β−1[B] ⊂
C(β−1[B]) ⊂ A. Hence B ⊂ β[C(β−1[B])] = (βC)(B) ⊂ β[A].

(ii) Let B ⊂ β[A]. Then β−1[B] ⊂ A and C(C(β−1[B])) =
C(β−1[B]). Consequently

β[C(C(β−1[B]))] = (βC)(β[C(β−1[B])]) =

(1.3.7) (βC)(βC)(β[β−1[B]]) = (βC)(βC)(B) =
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β[C(β−1[B])] = (βC)(β[β−1[B]]) = (βC)(B).

(iii) First, we show that β[F (β−1[B])] = f [B]. Let F ∈
F (β−1[B]). Then β[F ] ⊂ B and β[F ] ∈ F (B). Therefore,
β[F (β−1[B])] ⊂ F (B). Conversely, let F ∈ f(B). Then β−1[F ] ∈
F (β−1[B]), since |F | = |β−1[F ]|. Thus β[F (β−1[B])] = F (B).

For each B ⊂ β[A], C(β−1[B]) =
⋃

{C(F ) | F ∈ F (β−1[B])}.
This implies that

β[C(β−1[B])] =
⋃

{β[C(F )] | F ∈ F (β−1[B])} =

(1.3.8)
⋃

{(βC)(β[F ]) | F ∈ F (β−1[B])} =
⋃

{(βC)(F ) | F ∈ F (B)} = (βC)(B).

Results (i), (ii), (iii) imply that (βC) is a consequence operator and
the proof is complete.

Theorem 1.3.7. If k ⊂ F (A) × A is total, then β(Ck) = Cβk.

Proof. Let (x, y) ∈ β(Ck). Then (β−1[x], β−1[y]) ∈ Ck. Notice
that β−1[y] = ∅ iff y = ∅. Assume that z ∈ β−1[y]. Then there exists
some wz ∈ F (β−1[x]) such that (wz, z) ∈ k. Hence, it follows that for
each β(z) ∈ y there exists some β[wz] ∈ F (x) such that (β[wz], β(z)) ∈
βk. This leads to (x, y) ∈ Cβk. Now if y = ∅, then β−1[y] = ∅ implies
that β−1[x] = ∅ and x = ∅. Hence, (∅, ∅) ∈ β(Ck) implies that (∅, ∅) ∈
Ck. The definition gives ∅ /∈ P1(k) and β[∅] = ∅ /∈ P1(βk). Thus
(∅, ∅) ∈ Cβk.

On the other hand, for each z ∈ y 6= ∅ there exists some F ∈ F (x)
such that (F, z) ∈ βk. Hence (β−1[F ], β−1(z)) ∈ k and again z ∈ y iff
β−1(z) ∈ β−1[y]; β−1[F ] ∈ F (β−1[x]) imply that (β−1[x], β−1[y]) ∈
Ck. Also, if y = ∅, then x = ∅ (i.e. (∅, ∅) ∈ Cβk) and ∅ /∈ P1(βk).
Hence ∅ /∈ P1(k) and (∅, ∅) ∈ β(Ck) and the proof is complete.

I will not continue with this piecemeal approach but rather use a
more general result established within the next chapter, where E will
be defined on a set A1 (i.e. i[W] = A1) that is isomorphic to IN and
A1 ∩ IN = ∅.
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Chapter 2

THE G-STRUCTURE

2.1 A Basic Construction.

A primary construction will be a superstructure. For X, a super-
structure is constructed as follows: Let ground set X = X0. Then by
induction, let Xn+1 = Xn ∪ P(Xn). Now let X =

⋃

{Xn | n ∈ ω}.
The set X is a superstructure over X0. Within our model for ZFA a
set B is X0-transitive if for each x ∈ B either x ∈ X0 or x ⊂ B.

Theorem 2.1.1 For each n ∈ ω, the set Xn is X0-transitive.

Proof. The proof is by induction. Let n = 0. The X0 is X0-
transitive immediately from the definition. Assume that for n, the set
Xn is X0-transitive. Consider Xn+1 in the above construction. We
need only check any x ∈ Xn+1 − X0 = (Xn ∪ P(Xn)) − X0. Hence,
either x ∈ Xn−X0 or x ∈ P(Xn)−X0. In the first case, x ⊂ Xn by the
induction hypothesis. In the second case, x ⊂ Xn by the definition of
the power set operator. Since Xn ⊂ Xn+1, it follows that x ⊂ Xn+1.
Thus by induction the proof is complete.

Theorem 2.1.2 For each n ∈ ω, if y ∈ x ∈ Xn+1 − X0, then
y ∈ Xn.

Proof. For n = 0, y ∈ x ⊂ X0 ⇒ y ∈ X0. Assume that it holds
for n−1, n ≥ 1. Let y ∈ x ∈ Xn+1−X0. Then x ∈ (Xn∪P(Xn))−X0.
If x ∈ Xn − X0, then by the induction hypothesis y ∈ Xn−1. But
Xn−1 ⊂ Xn implies that y ∈ Xn. If x ∈ P(Xn), then x ⊂ Xn implies
that y ∈ Xn. By induction the proof is complete.

Obviously, since we have only used facts about ZF to establish
Theorems 2.1.1, 2.1.2, these theorems hold for superstructures within
ZF. Recall that if A is a set of atoms, then this means that if x ∈ A,
then x 6= ∅ and y ∈ x is not defined. A nonempty ground set X0

is n-atomic if x ∈ X0 implies that x 6= ∅ and if y ∈ x ∈ X0, then
y /∈ Xn. Two important observations relative to n-atomic. If X0

is a set of atoms, then X0 is n-atomic for each n ∈ ω. If X0 is n-
atomic, then X0 is k-atomic for each k such that 0 ≤ k ≤ n. For each
Xn, n ≥ 0, let MXn

= {(x, y) | (x ∈ Xn) ∧ (y ∈ Xn) ∧ (x ∈ y)}
and EXn

= {(x, y) | (x ∈ Xn) ∧ (y ∈ Xn) ∧ (x = y)}, where the =
is set-theoretic equality on sets and the identity on atoms. In like
manner, for ground set Z, defined MZn

and EZn
for the respective

Zn. For n ≥ 1, an isomorphism βn from 〈Xn,MXn
, EXn

, IN, ∅〉 onto
〈Zn,MZn

, EZn
, IN, ∅〉 is special if βn(Xk) = Zk, 0 ≤ k ≤ n − 1, where

IN is a set of atoms. Observe that since Xk ∈ Xk+1 ⊂ Xn, it follows
that Xk ∈ Xn.
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Theorem 2.1.3 Let A be a set of atoms. Suppose that for
nonempty sets X, Z, X ∩ A = Z ∩ A and there exists a bijection
β:X → Z = β[X], where β is a set-theoretic bijection on sets and the
identity on any atoms in X ∩A. Consider the sets X0 = X ∪A, Z0 =
Z ∪ A, and A and ∅ as the constants that denote a set of atoms and
the empty set in our ZFA model.

(i) If X0, Z0 are 0-atomic, then the structures 〈X0,MX0
, EX0

〉
and 〈Z0,MZ0

, EZ0
〉 are isomorphic.

(ii) For each n ≥ 1, if X0, Z0 are n-atomic, then the struc-
tures 〈Xn,MXn

, EXn
, A, ∅〉 and 〈Zn,MZn

, EZn
, A, ∅〉 are isomorphic

and the isomorphism is special.

Proof. By ∈-recursion, define the map γ on X as follows:
For x ∈ X, γ(x) = β(x);

For x ∈ X0 − X, γ(x) = x;

For x ∈ X − X0, γ(x) = γ[x].

Let βn = γ|Xn, where n ∈ ω. We need only show that for each n ∈ ω,
if X0 and Z0 are n-atomic, then

(A) βn is an isomorphism from 〈Xn,MXn
, EXn

〉

onto 〈Zn,MZn
, EZn

〉;

(B) if n ≥ 1, then βn(A) = A, βn(∅) = ∅,

and βn(Xk) = βn(Zk)(0 ≤ k < n).

Clearly β0 is a bijection from X0 onto Z0. Since X0 and Z0 are
0-atomic, MX0

= MZ0
= ∅. Therefore (A) and, obviously, (B) hold

for n = 0.

Assume that (A) and (B) hold for n, where X0 and Z0 are n-
atomic. We show that (A) and (B) hold for n +1, where now X0 and
Z0 are (n + 1)-atomic.

Notice that

[†] for any set x, x ∈ X0 implies x 6⊂ Xn,

for if x ∈ X0, then x 6= ∅ and x ∩ Xn = ∅ by the n-atomicity of X0.
Hence, it cannot be that x ⊂ X0. Similarly,

[††] for any set z, z ∈ Z0 implies z 6⊂ Zn.

Clearly, βn+1 is a map from Xn+1 into Zn+1. Suppose that x, y ∈
Xn+1 and γ(x) = γ(y). Then γ(x) = γ(y) /∈ Z0 or γ(x) = γ(y) ∈ Z0.
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For the first case, x, y /∈ X0. Hence, by Theorem 2.1.2, x, y ⊂ Xn

and γ[x] = γ(x) = γ(y) = γ[y]. Since βn is an injection, it follows
that x = y. In the second case, it follows from [††] that γ(x) 6⊂ Zn.
But as was shown in the course of the first case, x /∈ X0 implies that
γ(x) = γ[x] ⊂ Zn. Hence x ∈ X0. The same argument shows that
y ∈ X0. Again the injectivity of βn implies that x = y. Consequently,
βn+1 is an injection from Xn+1 into Zn+1.

To show that βn+1 is a surjection, let z ∈ Zn+1. If z ∈ Zn, then
the surjectivity of βn yields an x ∈ Xn ⊂ Xn+1 such that z = γ(x) ∈
Zn+1. If z /∈ Zn, then z ⊂ Zn. Hence again by the surjectivity of βn,
we have that z = γ[x], where x = β−1

n [z] ⊂ Xn. By [†], x /∈ X0. Hence
z = γ[x] = γ(x) ∈ Zn+1.

If x, y ∈ Xn+1, and x ∈ y, then y /∈ X0 by the (n + 1)-
atomicity of X0. Hence, γ(x) ∈ γ[y] = γ(y). Conversely, since
γ|Xn+1 = βn+1 is a bijection onto Zn+1, it suffices to assume that
x, y ∈ Xn+1; γ(x), γ(y) ∈ Zn+1 and γ(x) ∈ γ(y). Then from the
(n + 1)-atomicity of Z0, γ(y) /∈ Z0 implies that y /∈ X0. Hence,
γ(x) ∈ γ[y], and, thus, γ(x) = γ(x′) for some x′ ∈ y. By Theo-
rem 2.1.2, x′ ∈ Xn. Since βn+1 is an injection, x = x′. Thus x ∈ y. It
follows immediately from the definition of γ that βn+1(x) = βn+1(y)
if and only if x = y. Consequently, (A) is established for n + 1.

In general, since A ⊂ X0 ⊂ Xn, we have that A /∈ X0 by [†].
Therefore, βn+1(A) = γ[A] = A. The remainder of (B) is easily veri-
fied for n + 1 and by induction the proof is complete.

A criterion as to when a set X0 is n-atomic for all n ∈ ω is very
useful. Obviously, if X0 is a set of atoms, then X0 is n-atomic for all
n ∈ ω. For the definition of TC, see page 56.

Theorem 2.1.4 Suppose that ∅ /∈ TC(X0). If there exists n ∈ ω
such that X0 is not n-atomic, then there exists some y ∈ X0 such that
TC(y) ∩ X0 6= ∅.

Proof. Observe that a straightforward inductive argument shows
that for each n ∈ ω, if x ∈ Xn and ∅ /∈ TC({x}), then TC({x}) ∩
X0 6= ∅. Assume the hypotheses of the theorem. Since X0 is not
n-atomic, there exists x, y such that x ∈ y ∈ X0 and x ∈ Xn.
Since TC({x}) ⊂ TC(X0) and ∅ /∈ TC(X0), we have ∅ /∈ TC({x}).
Hence TC({x}) ∩ X0 6= ∅. Since TC({x}) ⊂ TC(y), it follows that
TC(y) ∩ X0 6= ∅.

Application of Theorems 2.1.3 and 2.1.4 can eliminate a great
deal of tedious work. Intuitively, words in a language behave, in
many respects, as it they are themselves atoms. We discuss sets of
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them, subsets of sets of them, etc. Since the symbol strings carry
a positioning, unless we extend the intuitive set-theoretic structure
to a much more complex one, it would be difficult to discuss the in-
ternal construction of a word in the most simplistic of set-theoretic
languages. After all, as a set of elements {BOOTS} = {BOTS} have
considerably different meanings. This is why the actual intuitive or-
dering is indicated by the partial sequences. On the other hand, if
words seem to behave like atoms within our basic logic, then certain
statements about the number of steps in a formal deduction or the
“number” of words used for some purpose needs to be represented by
relations with respect to the natural numbers.

Let IN be a set of individuals in our model for ZFH that is iso-
morphic to ω. The set W is assumed to have symbols that represent
aspects of the theory of natural numbers (or rational, real, etc.) In the
usual manner, these are assumed to be different than those symbols
from IN (or other formal sets) used to analyze the set W. Since the
specific type of entity being employed is always obvious, a symbolic
distinction will not, generally, be made. Relative to the symbols in
countably infinite W, W ∩ IN = ∅, W is a set of atoms and IN is a
disjoint countably infinite set of atoms. The set IN is the natural num-
bers within the “intuitive” and the “formal” portion of this model.
[See note [1] at end of this section.] Let X0 = W ∪ IN. It is a sim-
ply matter to show that separating the original set of atoms in this
fashion is consistent relative to ZF. Since W ∪ IN are atoms, X0 is
n-atomic for all n ∈ ω.

We now show that the set E ∪ IN = Z0 satisfies the hypotheses of
the contrapositive of Theorem 2.1.4. First consider E. Note that each
member of E is a nonempty set and is a finite set of partial functions.
That is a finite set of nonempty sets of ordered pairs. Consider any
y ∈ E. Let x0 ∈ y. Then x0 is a nonempty finite set of ordered pairs.
Let x1 ∈ x0. Then x1 is a nonempty finite set containing one singleton
and one doubleton set. Then if x2 ∈ x1, then x2 is a nonempty finite
set of atoms. Hence, if x3 ∈ x2, then x3 ∈ i[W]. Now none of these
sets is the empty set and for each y ∈ E, TC(y) ∩ E = ∅. For each
y ∈ IN, TC(y) = ∅. Since IN are atoms, then Z0 is n-atomic for each
n ∈ ω. Thus, for our superstructure construction, Theorem 2.1.3 now
applies for each n ∈ ω.

The above finite argument is considered an effective procedure
as are inductive definitions. What can be claimed to be the effec-
tive procedure? Even though some might accept the effective pro-
cedure as the inductive definition of members in E, in reality, it is
the concept of finite recognizability and the fact that members of E
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can be constructed from a concrete physical symbol model. Finite
recognizability is the same concept that allows for the acceptance
that Gödel numbering generates an effective injection into IN. If we
assign g(“(”) = 3, g(“,”) = 5, and g(“)”) = 7, then unless it is ac-
cepted (i.e. recognized) that the string “(,)” is different from the
string “(),” the relation determined by assigning to the strings 235577

and 233755 would not be a map. Using a concrete symbol model,
then from the construction of E, no object that is either an atom, a
nonempty set composed of one or two atoms, an ordered pair com-
posed from these previous sets, or a nonempty set of such ordered
pairs, is equal to any nonempty finite set of sets of such ordered pairs.
Thus, Z0 = E ∪ IN is n-atomic for every n ∈ ω. Due to (1.2.4), there
is a bijection θ: i[W] → E that associates each member of i[W] with
a unique member of E. This composition yields that bijection needed
for Theorem 2.1.3. Consequently, by Theorem 2.1.3, for each n ∈ ω
the structures 〈Xn,∈,=, IN, ∅〉 and 〈Zn,∈,=, IN, ∅〉 are isomorphic.

For each n ∈ ω, let (E ∪IN)n be the n’th level in a superstructure
based upon ground set E ∪ IN. Note that relative to a superstructure
based upon W ∪ IN and (E ∪ IN) = Xn, for each n ∈ ω, there is a
m ∈ ω such that (E ∪ IN)n ⊂ Xm ⊂ Xm+1. Thus, we also have that
(E ∪ IN)n ∈ Xm+1.

The intuitive properties for the deductive processes with which
we are concerned can be described within a first-order language and all
hold within some particular (W∪IN)n. Hence, the same properties hold
in the corresponding (E ∪IN)n through application of the isomorphism
which exists between these two structures. It is, in reality, by means
of i and θ, that the basic logical properties within our intuitive the-
ory become properties within the formal mathematical theory based
upon IN. (The term “informal” means a restriction to superstructure
entities determined by W. The term “formal” means the entire super-
structure.) Assuming finite recognizability, the injection i is created
and used to pass informal information into formal information about
members of [fiw

] since everything is finitary in character. The set
[fiw

] is finite, each g ∈ [fiw
] is finite. Each x ∈ g is finite, etc. This

intuitive finitary process that is employed when formal statements are
made within the formal portion of our ZFH about the structure of
the ordering of the words.

In all that follows, rather than continually mentioning the exis-
tence of isomorphisms and applying them to obtain a corresponding
property in some (E ∪ IN)n a special approach is followed. When
viewed as a models, every object in the superstructure based upon
X0 has a constant name. These objects are uniquely determined by
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their set-theoretic construction. Among these constants are the con-
stants IN and ∅ that are used to represent the natural numbers and
the empty set in this section. Since on any specific Xn we have an
isomorphism βn from 〈Xn,∈,=, IN, ∅〉 onto 〈Zn ∈,=, IN, ∅〉, if x ∈ Xn,
then βn(x) is the corresponding element in Zn characterized by the
same set-theoretic property. In the same way, every member of Zn

has a constant name within our language.

The following convention is used. The injection i:W → IN is
extended, in the usual manner, to subsets of W. Certain constant
symbols used to name objects with specific properties in the intu-
itive part of the superstructure, except for IN, its elements and ∅ are
mapped by extended i into a formal superstructure such as X , where
the ground set is X0 = W∪IN. The map θ is also extended in the same
manner as i. Where applicable, the composition of i followed by θ is
denoted by bold type face. Also, except for members of such sets as
IN and variables, most of the informal notation for functions and the
like are also represented in the standard model by bold font. For this
example, let L = W and the consequence operator C:P(L) → P(L).
Then C:P(L) → P(L) is also a consequence operator. This nota-
tional convention is followed throughout the remainder of this book.

From these results, if A ⊂ i[W], then any intuitive deductive
process ⊂F (A) × A or any consequence operator C :P()A → P()A
becomes under the isomorphism a deductive process k ⊂ F (A)×A or
a consequence operator C:P(A) → P(A). Notice that we do not need
to consider the isomorphism on the operators F or P since B ∈ F (A)
if and only if a sentence, with appropriate constants, of the following
type holds. B = ∅ ∨ ∀x(x ∈ B ↔ (x = a1 ∧ a1 ∈ A) ∨ (x = a2 ∧ a2 ∈
A) ∨ · · · ∨ (x = an ∧ an ∈ A)). Hence B ∈ F(A) if and only if B =
∅ ∨ ∀x(x ∈ B ↔ (x = a1 ∧ a1 ∈ A) ∨ (x = a2 ∧ a2 ∈ A) ∨ · · · ∨ (x =
an ∧ an ∈ A)), where the isomorphism does map ∅ onto ∅ at level
n = 1. In like manner, the power set operator. (In most cases since
it reveals an order, only E is employed.) Let A ⊂ W and let KA

denote the set of all deductive processes defined for A. Now let CA

denote the set of all consequence operators defined on P(A). The set
RA = KA∪CA is a set of all intuitive human reasoning processes while
RA = KA ∪ CA is a set of formal human reasoning processes.

2.2 A Remark About 2.1

The basic intuitive procedure in establishing a formal model is
not relative to structures with a universe (E ∪IN). What most be done
is to express in a structure such as 〈(W ∪ IN)n,∈,=, IN, ∅〉 informal
statements about our language W, where W is termed as an informal



19

ground set of atoms disjoint from IN. For named objects within such
a superstructure, the same bold face convention is used for the cor-
responding objects within any particular (E ∪ IN)n that involves only
the members of E.

One additional remark is in order. In 1978 when the follow-
ing concepts within the discipline termed nonstandard analysis were
developed, they were in the mainstream of complexity. Today, many
who work in this area would consider them to be very simplistic in
nature. To the neophyte, however, they may seem to be somewhat
difficult.

2.3 The Nonstandard Structure

Now that the general and basic concepts for the deductive pro-
cesses and consequence operators have been developed, its necessary
to consider W ∪ IN as embedded into an additional structure. The
same concept that every member of the following type of superstruc-
ture corresponds to a constant within our language is to be used.
With respect to the previous convention, many of these constants will
be denoted in bold.

Recall for a moment how IN is obtained. Let set A be our count-
ably infinite set of atoms, disjoint from W, and f :A → ω the bijection
which exists from A onto the set ω of natural numbers in our model
for ZFA. Consider f−1:ω → A and use f−1 to pass the order relation
(and other necessary operations) on ω from ω to A. For example, this
yields for each x, y ∈ A, x ≤ y iff f(x) ⊂ f(y) and A inherits all
the order properties for ω. Notice that since f is a bijection that f
preserves equality. Denote this set A by IN.

We obtain a nonstandard model for a slightly different super-
structure with ground set W ∪ IN than considered in section 2.1.
This is one of the two basic constructions that appear in the liter-
ature. The superstructure levels are slightly different [10. p. 40],
[17, p. 110], [19, p. 23]. Let X0 = W ∪ IN and by induction, let
Xn+1 = P(

⋃

{Xk | k = 0, . . . , n}). Finally, let N =
⋃

{Xn | n ∈ ω}.
Consider a κ-adequate ultrafilter U , where κ > |N |. By Theorem 7.5.2
in [19] or Theorem 1.5.1 in [9] such an ultrafilter exists in our ZFH

and is determined by the indexing set J = F (P(κ)).

Consider the structure M = 〈N ,∈,=〉. [Note: Since every mem-
ber of N is named by a constant, including the customary ones for
specific objects, these constants are suppressed in the notation.] By
Theorem 7.5.3 in [19] or Theorem 1.5.2 in [19] the ultrapower construc-
tion yields by definition 3.8.1 in [9] a structure M1 = 〈N J ,∈U ,=U 〉



20 The Theory of Ultralogics

which is a nonstandard model for all sentences, K0, in a first-order
language L with equality and predicates for ∈ and = which hold
in 〈N ,∈,=〉. Assume that the cardinality of the set of constants of
L ≥ |N |. Moreover, by means of sequences from J onto N , the struc-
ture 〈N ,∈,=〉 may be considered as ismorophically embedded into
M1 so that M1 is also an elementary extension of the embedded
〈N ,∈,=〉. The structure M1 is also an enlargement of 〈N ,∈,=〉. A
proof of The Fundamental Result may be found on page 39 of [19]
(Theorem 3.8.3) among other places. Now in [10], Theorem 3.8 estab-
lishes this for BOUNDED sentences which hold in 〈N ,∈,=〉. Notice
that the interpretation map from the language onto 〈N ,∈,=〉 has
been suppressed and each member of N is simply to be considered as
named by the constants in L.

The next step is to realize either by analysis of the ultrapower
construction directly or by interpreting the appropriate sentences [17,
p. 119], that =U is an equivalence relation with the substitution
property for ∈U . Thus passing to the equivalence class [x] for each
x ∈ N J , define [x] ∈′ [y] iff x ∈U y for each x, y ∈ N J . w.

Now let (Xn)′ be the objects in {[x] | x ∈ N J} that correspond to
Xn in N under the interpretation map I followed by the quotient map
for the equivalence relation as determined by =U (i.e. the “prime”
mapping.) It follows that (X0)

′ behaves like atoms (urelements) and
each (Xn)′, n > 0 is well-founded with respect to ∈′ . This comes from
interpreting the appropriate bounded sentences such as the results of
Lemma 2.1 (iv) [10, p. 40] where R = X0 or property (iii) on page 23
of [19] in order to obtain the ∈′ well-founded for each (Xn)′, n ≥ 1.
For example, for each n ≥ 1, the following sentence

(2.3.1) ∀x((x ∈ IN) → ¬∃y((y ∈ Xn) ∧ (y ∈ x)))

holds in the structure 〈N ,∈,=〉. Lastly, each (Xn)′, n ≥ 1, is well-
founded with respect to ∈′ since “If x ∈ y ∈ Xn, then x ∈ X0∪Xn−1”
(n ≥ 1) holds in 〈N ,∈,=〉. Consequently, the Mostowski Collapsing
Lemma [1, p. 247] or [17, p. 120] can be inductively applied to each
(Xn)′ and obtain a corresponding set ∗Xn. Specify the set ∗X0 to
correspond to (X0)

′ and we have a unique collapse. As a result of
this, the structure 〈

⋃

{ ∗Xn | n ∈ ω},∈,=〉 = ∗M = 〈 ∗N ,∈,=〉 is a
set-theoretic model for all bounded sentences that hold in 〈N ,∈,=〉.
Recall that a bounded sentence in a first-order language L is one for
which each quantified variable is restricted to an element of N . The
composition of the interpretation map IU , the quotient map ′ and the
collapse yield the * map from the structure 〈N ,∈,=〉 into ∗M and
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maps any element a ∈ N to the element ∗a preserving all of the usual
properties for a normal, enlarging and comprehensive monomorphism.
For each B ∈ N , let σB = { ∗x | x ∈ B}. (This definition does not
correspond to that used by some other authors.) The * notation is also
not placed on elements of X0 when they are considered as mapped
into ∗X0 by the * map. Observe that for each B ∈ N , σB ⊂ ∗B.
Technically, where used, B ⊂ ∗B also means σB ⊂ ∗B.

Now to complete the construction, begin with the set Y0 = ∗X0

and construct a superstructure with Y0 as the ground set as defined

in this first example. Let Yn+1 = P(
⋃

{Yn | n ∈ ω}); and let Y =
⋃

{Yn | n ∈ ω}.

For the above, some general principles such as the Mostowski
Collapsing Lemma have been used in order to obtain ∗M; however, an
explicit construction appears on pages 44 and 45 of [19]. In actuality
for the next constructed superstructure, the one used in this book, we
intend to use only a small portion of ∗M. Indeed, we apparently need
to use a small hierarchy of the ∗Xn objects. You could, if you wished,
restrict the G-structure to say only the n < 100 levels. However, this
will not be done for fear of not selecting a correct upper bound for n.

For the results in this book, I advocate for our superstructure a
construction as defined in section 2.1, where X0 = A1 ∪ IN, and the
nonstandard model as constructed on pages 83 - 88 and Theorem 6.3
in Hurd, A. E. and P. A. Loeb, (1985), “An Introduction to Non-
standard Real Analysis,” Academic Press, Orlando. [Note: This con-
struction also appears on pages 42-49 in Loeb and Wolff, (eds) (2000),
“Nonstandard Analysis for the Working Mathematician,” Kluwer
Academic Publishers, London. Also Xn(2.1) = X0∪Xn(2.3), n ≥ 1.‡]
This construction simply needs to be restricted to our language with
∈ and =, where = is interpreted as set-theoetic equality on sets and
the identity on atoms. For the first superstructure, constructed using
the procedure in section 2.1, let N = X . The second superstruc-
ture constructed using this procedure has as its ground set Y0 = ∗X0

and, as before, Y =
⋃

{Yn | n ∈ ω}. This leads to the G-structure
Y = 〈Y,∈,=〉 where since I apply this to logical operations this struc-
ture is call the Grundlegend Structure. (Note: To find the embedded
isomorphic copy of the standard superstructure for the Hurd & Loeb
construction, simply restrict the Mostowski collapsing function to the
constant sequence U-equivalence classes.)

Now to summarize. The consistency of ZF implies the consis-
tency of ZFH and one can apparently use a model of ZFH to obtain
the nonstandard structure ∗M = 〈 ∗N ,∈,=〉. The set ∗N is dependent
upon the of atoms IN, the atoms of ZFH with the order induced by
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ω. Any sentence in a appropriate first-order language in which each
quantified variable is restricted to an element of N (i.e. bounded vari-
able) will, when each constant is replaced by the * of the constant,
give a true statement about the structure ∗M. Moreover, ∗M, at the
least, has bounds for all standardly definable concurrent relations.
For notation, we denote for each n ∈ X0,

∗n = n. In addition, all
properties of the * map as listed in [10], [17], [19], among other places,
hold true. Next some unusual names for G-structure objects will be
adopted in order to reflect our application to languages and logics.

Recall some of the basic terminology associated with Y. For each
A ∈ N , A is called a standard entity. The set ∗A is often called an
(internal) standard entity or better still an extended standard entity
in Y. If b ∈ ∗A, A ∈ N , then b is called an internal entity. Indeed,
b ∈ Y is internal iff there is some Xn such that b ∈ ∗Xn. Any entity of
Y which is not internal is called external. These terms are generally
used throughout nonstandard analysis, but for our present purposes
they are modified as follows: Any entity of Y is a subtle object, some
appropriate members of N are human objects and any entity in Y
which is not an isomorphically embedded member of N or the * of
a member of N is a purely subtle object. Please refer to the basic
references [11], [16], [19] for other terminology and the properties of *.
So as to avoid symbolic confusion, from this moment on, the entire or
major part of any symbol used to represent objects within a language
and within our intuitive model will be denoted by Roman type.

2.4 General Interpretations

Throughout this work on ultralogics, L0 will denote the usual
set of propositional formulas (wff) constructed from the connectives
¬, ∨, ∧, →, ↔, say as done by Kleene [7, p. 108] and L1 is a set of
predicate formulas with equality considered as an extension of L0 as
say constructed on page 143 of [7]. We also use the usual assortment
of set-theoretic abbreviations when we consider the special predicates
∈ and = . Of course, L1 is called a first-order language. Assume
that L1 ⊂ W and that the set of all predicate symbols is a subset of
{Pi | i ∈ IN}. It is important to realize that any intuitive set-theoretic
deduction process, and the like, that is discussed relative to W is to
be embedded by the map θ to a corresponding process relative to E.
This also applies to a member of W and the i injection. The results
of any *-transfer of statements which hold relative to E or i[W] are
modeled in ∗M. Also, any results relative to E or i[W] (i.e. with
respect to standard objects) can be referred back to corresponding
intuitive objects relative to W by means of either the maps i−1 or
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θ−1 . Moreover, in order to simplify notation somewhat any formal
first-order statement that explicitly involves i(w) individuals will be
written with the i deleted from the notation if no confusing results
from such an omission.

For example, the sentence

∀x(x ∈ IN ∧ x ≥ 1 → ∃y(y ∈ P ∧ ∀w(w ∈ IN∧

0 < w ≤ x → y(w) = very,||| ∧ y(0) = just))) (2.4.1)

is a slight simplification of the following sentence

∀x(x ∈ IN ∧ x ≥ 1 → ∃y(y ∈ P ∧ ∀w(w ∈ IN∧

0 < w ≤ x → y(w) = i(very,|||) ∧ y(0) = i(just)))) (2.4.2)

Most of the following investigation is concerned with specific el-
ements of P and specific human reasoning processes with respect to
E. Using the previous example, the *-transfer yields

∀x(x ∈ ∗IN ∧ x ≥ 1 → ∃y(y ∈ ∗P ∧ ∀w(w ∈ ∗IN∧

0 < w ≤ x → y(w) = ∗i(very,|||) ∧ y(0) = ∗i(just)))) (2.4.3)

and which holds in ∗M. Notice that we do not place * on the order
relation < since we assume that it is but an extension of the simple
order < on IN satisfying all of the same first-order properties. Also
∗ i(very,|||) = i(very,|||), etc. Let ν ∈ ∗IN− IN = IN∞ (i.e. the infinite
numbers). Then there exists in ∗P a *-partial sequence, say f, such
that for each w ∈ ∗IN, 0 < w ≤ ν, f(w) = very, and f(0) = just.
Hence even though members of [f ] are not readable sentence in our
sense, we can read the elements in the range of f as well as reading
the intuitive ordering when f is restricted to [0, n], n ∈ IN. This gives
an intuitive interpretation for such an f when it is so restricted to
such standard segments as well as knowledge of the properties of the
ordering when not so restricted. Observe also, that if f ∈ ∗P −P, then
there exists some ν ∈ ∗IN such that f : [0, ν] → ∗i[W] = ∗(i[W]), where
[0, ν] = {x | (x ∈ ∗IN)∧(0 ≤ x ≤ ν)}. Often, in our formal statements,
parentheses are suppressed and the strength of connectives notion is
used.

2.5 Sets of Behavior Patterns

In certain applications of subtle consequence operators the fol-
lowing construction is useful. This is all relative to what is called
adjective reasoning and any equivalent form. Let B′ denote a list of
names or simple phrases that are used to identify specific behavior
patterns. These terms are taken from a specific discipline language
and are, as usual, to be considered as elements of W. For example, the
set B′ could be taken from the discipline called psychology and each
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term could identify a specific human behavior pattern, as general as
such concepts as “kind” or “generous.” You can also include any syn-
onyms that might be equivalent to the members of B′. Now consider B
constructed as follows: an element b ∈ B if and only if b is a qualifiable
form of a member of B′. That is each b ∈ B is a b′ ∈ B′ where b′ is writ-
ten in a form so that it can be modified by the word very. (Or, such
words as “great,” “greater.”) Let B = C0, C1 = {very,|||c | c ∈ C0}.
By induction let Cn+1 = {very,|||c | c ∈ Cn}. Then an intuitive set
of modified behavior patterns is the set BP =

⋃

{Cn | n ∈ IN}. The
formal modified behavior patterns is the set BP =

⋃

{Cn | n ∈ IN}.
Notice that each Cm is a finite set.

In certain cases, the intuitive set BP is associated with a set of
formal propositional statements in W. Let L0 be our propositional
language constructed from a denumerable set of atoms {Pi | i ∈ IN}.
Since B is finite, then there exists an injection j: B → {Pi | i ∈ IN}
and {Pi | i ∈ IN} − j[B] is denumerable. Let V ∈ {Pi | i ∈ IN} − j[B].
Let the symbol string “very,|||” correspond to the partial formula “V
∧”. Then proceed to construct BP0 as follows: E0 = j[B], En+1 =
{(V ∧ x) | x ∈ En}. Then, finally, BP0 =

⋃

{En | n ∈ IN}.

In what follows, the modeling of human reasoning processes is
often approached from two different points of view. First, from the
viewpoint of such sets is BP, as well as many others, we have the
constructed set of meaningful sentences in the sense of Tarski. Thus,
such strings or symbols become our formal language and a simple
observer language (i.e. metalanguage) is used to investigate deductive
processes on BP. These are mapped to the formal deductive processes
on BP. However, many of these deductive processes on a given BP can
be associated with other formal processes in L0, especially with respect
to BP0. Hence, whenever possible it is acknowledged that there are
at least two “models” for various BP type statements, among others,
that are being in investigated. The basic model (and probably the
simplest) is that based on BP. Then a somewhat more complex model
is based on L0. The purest is probably more comfortable with the
formal languages L0 and L1. I feel, however, that BP is as meaningful
a set of sentences formed by constructive methods as is the set L0 and
the various forms in BP are easily recognized.

‡This is an important fact. Let Xn+1(X) = Xn(X) ∪
P(Xn(X)), n ≥ 0, X0(X) = X (Def. 2.1) and Xn+1 =
P(X0 ∪ · · ·Xn), n ≥ 0, X0 = X (Def. 2.3), where X is the set
of individuals. For Def. 2.3, we also have that Xp ⊂ Xn, 1 ≤ p ≤ n
and Xn+1 = P(X ∪ Xn), n ≥ 0. We show by induction that Xn(X) =
X∪Xn, n ≥ 0. First, let n = 0 on the right. Then X0(X) = X, X0 =
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X ⇒ X0(X) = X∪X0. Now for the specific inductive form, let n = 0.
Then X1(X) = X ∪P(X0(X)) = X ∪P(X) = X ∪P(X0) = X ∪X1.
Assume result holds for n. Then Xn+1(X) = Xn(X) ∪ P(Xn(X)) =
X ∪ Xn ∪ P(X ∪ Xn) = X ∪ Xn ∪ Xn+1 = X ∪ Xn+1 and the result
follows by induction.

[1] (14 DEC 2012). The set W (and later W ′) was added to
the ground set on this date. This has been done to provide an ad-
ditional formal structure to enhance analysis. Using the members of
a language itself as constituents of a ground set for a model is well
established [13, p. 70]. However, it is the set E that is generally
more significant for our purposes than members of the language it-
self since they represent the significant aspects of the formation of
“words” whether they be formed by symbols, diagrams, images or
coded sensory information. Hence, in this theory, members of E and
∗E still remain the basic form for a “word” or “hyper-word.”

After developing the basic aspects of this approach, it was dis-
covered that Robinson [15, section 3] also developed a nonstandard
approach to sets of symbols. I have noted this in more recent versions.
(Also see Geiser, J. T. (1968). ”Nonstandard logic,” J. Symbolic Logic
33(2):236-250.) The idea of incorporating E as a way to include how
languages are constructed is not part of the Robinson foundations.

The set W can contain the language for various mathematics
theories such as an appropriate portion T (ω) of the theory of nat-
ural numbers. Each member of T (ω) corresponds to objects in N .
As mentioned, one can consider members of W as written in a dif-
ferent color than any other symbols used for any other purposes. In
some cases, the “prime” notion for the symbols expressing statements
about members of N other than members of W is employed. For
example, the expressions 2′ <′ 3′ and T ′(ω′) are in extended W ′. Ex-
ternal to M, one can state that the expression 2′ <′ 3′ is a member
of T ′(ω′). Or we state that 2′ <′ 3′ holds. (One can actually include
an additional model for this purpose.) This corresponds directly to
a statement 2 < 3 that “holds” in M where 2, <, 3 are names for
the corresponding “formal” objects. In general, if used, “primed”
statements of this type are expressed directly in terms of the corre-
sponding “not primed” expressions. Robinson keeps the statements
used to discuss behavior of the members of his set of symbols distinct
from those in W by simply defining such a set and leaving the rest to
ones intuition.

The use of the embedding i now seems of little significance. The
embedding was used so that E could simply be considered as entities
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from the theory of natural numbers with its long history of empirical
consistency. In the beginning of nonstandard analysis where simpli-
fied type theory was employed and formal set-theory was not con-
sidered, such a consistency notion might be useful. But since formal
set-theory is now being considered, any consistency considerations
depends upon the assume consistency of the set-theory axioms being
employed. Hence, as demonstrated, the removing of the function i
from both the foundations and expressions should not effect any of
the interpreted results.

If i is so removed, then the set of equivalence classes is usually
denoted by W and they are now partial sequences of members of the
language W rather than the codes produced by application of i. From
the viewpoint of the nonstandard model, this would mean that rather
than an ultraword being considered as a partial hyper-sequence of
members of ∗IN with some “symbols” being represented by members
of ∗IN− IN, some *symbols are represented by members of ∗W −W.

There is, of course, a bijection w:W → E, there w(a) = [g] and
there is a f ∈ [g] such that f ∈ T 0 and f(0) = i(a) (or simply
f(0) = a. This bijection may be useful for further developments of
this Theory of Ultralogics.
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Chapter 3

DEDUCTIVE PROCESSES

3.1 Introduction.

In all that follows, intuitive objects are denoted by roman font.
We approach the investigation of various special deductive processes
by defining them for some A ⊂ W as being k ⊂ F (A)×A or C:P(A) →
P(A). These sets are all considered mapped to objects relative to
P(E) × P(E) for formal investigation. In at least one case, a map
C :P(A) → P(A) is defined for each nonempty A ∈ ∗N and it is shown
(trivially) that such a map is a consequence operator. Any C ∈ ∗N
which satisfies (in ∗N ) axioms (2), (3), (4) or their *-transform is
a subtle consequence operator or subtle reasoning process, where for
convenience C is restricted to A ⊂ ∗E.

3.2 The Identity Process.

Let A ⊂ E be any nonempty set. For each B ⊂ A, define I(B) =
B. Obviously, this is the identity operator from P(A) onto P(A).

Theorem 3.2.1. Let A ⊂ E be nonempty. Then the identity
operator on P(A) is a consequence operator.

Proof. Let B ⊂ A. Then I(B) = B implies that B ⊂ I(B) ⊂ A.
Moreover, I(I(B)) = I(B) = B for each B ⊂ A. Finally, B = I(B) =
⋃

{F | F ∈ F (B)} =
⋃

{I(F ) | F ∈ F (B)} and the result follows.

Let H be a nonempty set of Tarski type deductive processes.
That is if h ∈ H, then h ⊂ F (E1) × E1 for some E1 ⊂ E. Also let
H0 be a nonempty set of consequence operators on some P(E2) for
E2 ⊂ E. Then ∗H ∪ ∗H0 = D0 is considered a set of subtle reasoning
processes. Notice that if C ∈ H0, then ∗C ∈ D0 may not be a
consequence operator under our definition. The first reason for this
is that axiom (4) *-transforms to read that for every internal subset
of B ⊂ ∗E2,

∗C(B) =
⋃

{ ∗C(F ) | F ∈ ∗F (B)}. For the sentence

∀x(x ∈ P(E2) → ∀w(w ∈ E2 → (w ∈ C(x) ↔

∃y(y ∈ F (x) ∧ w ∈ C(y))))). (3.2.1)

holds in M; hence in ∗M. As is well known a *-finite set need not be
finite. However, there is at least one map from P(A) into P(A) for any
A ⊂ ∗E2 which is a true consequence operator as shown by Theorem
3.2.1. Consider any infinite A ⊂ E2. Then no map C :P( ∗A) → P( ∗A)
can be written as an extended standard map (i.e. the star of a stan-
dard map) from P(A) into P(A). This follows from the next result.
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Theorem 3.2.2. Let infinite A ⊂ E2 and G:P(A) → P(A).
Then there exists a subset of ∗A upon which ∗G is not defined.

Proof. Let infinite A ⊂ E2, G:P(A) → P(A) and D(G) be the
domain of G = P1[G]. For an appropriate Xm, the sentence

(3.2.2) ∀x(x ∈ Xm → (x ∈ D(G) ↔ x ∈ P(A))).

holds in M; hence in ∗M. The *-transfer reads

(3.2.3) ∀x(x ∈ ∗Xm → (x ∈ D( ∗G) ↔ x ∈ ∗(P(A)))),

when the elementary properties of the *-map are applied. The ∗G is
only defined on the internal subsets of ∗A. Since ∗A − A is external
then this result follows.

Corollary 3.2.2.1 There exist purely subtle reasoning processes.

As to the cardinality of E, it follows immediately that since each
x ∈ E is finite, then |E| = ω. Note the following that will be used
throughout this investigation. Recall that the identification σX0 = X0

is being used. Then if f ∈ PH it follows, since f is a finite sequence
of members of X0 that ∗f = f under this identification. Also, since
for each f ∈ PH the set [f ] is finite, then ∗ [f ] = [f ]. Thus σE = E.
This reduction of finite sets of finite sets of partial sequences continues
to other cases such as σ(F (PH )) = { ∗A | A ∈ F (PH)} = {A | A ∈
F (PH)} = F (PH).

With the above results in mind, it follows that each x ∈ ∗E−E is a
nonfinite *-finite subset of ∗P for the sentence ∀x(x ∈ E → x ∈ F (P ))
holds in ∗M. Consequently, ∗E ⊂ ∗(F (P )) and E ⊂ F (P ) imply that
∗E −E ⊂ ∗(F (P ))−F (P ). Let infinite A ⊂ E. Then it is an important
fact that there exists a *-finite B ∈ ∗(F (A)) such that σA ⊂ B ⊂
∗A ⊂ ∗E. For let Q = {(x, y) | y ∈ F (A)∧x ∈ A∧x ∈ y}. Assume that
(a1, b1), . . . , (an, bn) ∈ Q. Then letting b = b1 ∪ · · · ∪ bn it follows that
(a1, b), . . . , (an, b) ∈ Q. Therefore, Q is a standard concurrent relation.
Thus there exists some B ∈ ∗(F (A)) such that ∗x ∈ B for each x ∈ A.
Now internal B is not finite since σA is not finite. Indeed, as is well
know |B| = |[0, ν]| ≥ 2ω, where ν ∈ ∗IN− IN = IN∞. Thus | ∗A| ≥ 2ω.
From the above remarks, it also follows that for E ∈ ∗E−E, |E| ≥ 2ω.

A few other useful results are easily obtained. For example,

(i) if P :P(A) → Y and B ∈ P(A), then ∗(P(B)) = ∗P( ∗B).

(ii) Consider the finite power set operator F. If F :P(A) → Y and
B ∈ P(A), then ∗(F (B)) = ∗F ( ∗B).
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(iii) If C is a map from P(A) into P(B), then for D ∈ P(A) it
follows that ∗(C(D)) = ∗C( ∗D).

The proofs of (i), (ii) and (iii) are easily obtained. Indeed, all
three follow from the formal definition of a map. First, assuming
that A,Y ∈ N . All the objects with which we shall be concerned
will also be members of N . Indeed, if necessary to obtain bounded
sentences, we know that there is some n ∈ ω such that everything
needed to characterize (i), (ii), and (iii) are members of X0 ∪Xn. For
example, consider (i). Then the two sentences ∀x(x ∈ P(A) → ∃y(y ∈
Y ∧ (x, y) ∈ P)), and ∀x∀y∀z(x ∈ P(A)∧y ∈ Y ∧z ∈ Y ∧ (x, y) ∈ P ∧
(x, z) ∈ P → y = z) imply, by *-transfer, that ∗P is a map from ∗P(A)
into ∗Y . Further, (B,P(B)) ∈ P implies that ( ∗B, ∗(P(B))) ∈ ∗P .
Hence, since ∗P is a map, mapping notation yields that ∗(P(B))) =
∗P( ∗B). Now (ii) follows in like manner. Indeed, the following set
of sentences shows that ∗F generates the hyperfinite subsets of any
internal subset of ∗A.

∀x∀w(x ∈ P(P(A)) ∧ w ∈ P(A) → ((A, x) ∈ F ↔

x = ∅ ∨ ∃y∃z(z ∈ Xn ∧ y ∈ IN ∧ ∀v(v ∈ A ∧ v ∈ x →

∃i(i ∈ IN ∧ 0 ≤ i ≤ y ∧ z(i) = v))))) (3.2.4)

It is well known that, in general, if A =
⋃

{Bi | i ∈ IN}, then
∗A 6=

⋃

{ ∗Bi | i ∈ IN}. However, if A =
⋃

{B}, then by *-transfer
of the definition it follows that ∗A =

⋃

{ ∗B} = ∗(
⋃

{B}). This is
incorporated in the proof of the next result.

Theorem 3.2.3 Let A ∈ N , A ⊂ Xn. If B is a partition of A,
then ∗B is a partition of ∗A.

Proof. The sentences

∀x(x ∈ Xn → (x ∈ A ↔ ∃y(y ∈ B ∧ x ∈ y)));

∀x∀y(x ∈ B ∧ y ∈ B → x = y ∨ x ∩ y = ∅), (3.2.5)

hold in M; hence in M. Thus by *-transfer, ∗B is a partition of ∗A
and ∗A =

⋃

{ ∗B} = ∗(
⋃

{B}). This completes the proof.

3.3 Adjective Reasoning (Also see page 46.)

Following the ideas of Tarski (20) it appears that the set BP is
a meaningful set of sentences. Define for BP an intuitive deductive
process as follows: Let A ∈ F(BP). Then A ⊢a b, b ∈ BP if b ∈ A or
b is obtained from some x ∈ A be removing a finite number (6= 0) of
“very,|||” strings from x. Due to its form, this process ⊢a is termed
adjective reasoning. Denote the relation in F (BP) × BP obtained by
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⊢a by the symbol “a.” Let nonempty B ⊂ BP. Then for each b ∈ B
it follows that ({b},b) ∈ a. Hence “a” is singular and Ca satisfies
axiom (2) of the Tarski axioms. Let (A,b) ∈ a and A ⊂ B ∈ F(BP).
Then (B,b) ∈ a since b is obtained entirely from an element in A.
Assume that (A,b1), . . . , (A,bn) ∈ a and that ({b1, · · · ,bn}, c) ∈ a.
Then c is either some bi, i = 1, · · · , n; or c is obtained from some
bi by removing finitely many “very,|||” symbol strings. But either
this bi ∈ A or this bi is obtained from some x ∈ A also by removing
finitely many “very,|||” symbol strings. Thus c is either an element of
A or is obtained from A by removing finitely many “very,|||” symbol
strings from a member of A. Thus (A, c) ∈ a and Ca is a consequence
operator on P(BP) by Theorem 1.3.3. For the next results, recall that
when no confusion might occur the set σD is denoted by D.

A remark concerning notation is necessary. Two special abbre-
viations are used in certain explicit formal sentences. The first is the
symbol [x] for x ∈ P. This denotes the unique object z that satisfies
the sentence

(3.3.1) ∃!z(z ∈ E ∧ x ∈ z ∧ x ∈ P ),

where ∃!zA(z) means ∃z(z ∈ E ∧ ∀y(y ∈ E → (A(y) ↔ z = y))).
Now in the first formula in the proof of Theorem 3.3.2 the formula
∃!z1∃!z2((z1 ∈ E) ∧ (z2 ∈ E) ∧ (y ∈ z1) ∧ (y1 ∈ z2) ∧ (z2 ∈ Ca({z1})))
could be inserted. Also, the notation {x} denotes the unique singleton
set that satisfies the following for any A ∈ N ,

∀z(z ∈ A → ∃!x(x ∈ P(A)∧

(3.3.2) ∀w(w ∈ A ∧ w ∈ x → w = z))).

We could insert for z2 ∈ Ca({z1}) the formula

∃!z3(z3 ∈ P(E) ∧ ∀w3(w3 ∈ E ∧ w3 ∈ z3 →

(3.3.3) w3 = z1) ∧ z2 ∈ Ca(z3)).

Of course, these formulas are not inserted, but the appropriate
abbreviations are used when needed. Recall that only constants which
represent elements of N are “starred” in either the *-transform or any
explicit partial formula obtained from the more general statement. All
the internal objects which are not standardly internal take on constant
names from an extended language. Thus if A ∈ ∗E − E, then A = [a],
where a ∈ ∗P. The same holds for any singleton set. If a ∈ ∗A−A, then
we write {a}. For each A ∈ N and any nonempty finite {a1, . . . , an} ⊂
A it follows that ∗{a1, . . . , an} = { ∗a1, . . . ,

∗an} ⊂ { ∗x | x ∈ A} = σA.
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In what follows, other simplifying processes are employed when
writing formal sentences. In many cases, these sentences do not ap-
pear to be written in the usual special bounded form. In most cases,
the additional formal expressions can be easily added. In general,
this is done by the addition of another A ∧ type expression and an
equivalent formula obtained, or A → when ↔ appears. Many of the
missing expressions are of these types. Here is one example of this
process. Let T = i[W].

Consider the set of all “natural number” intervals (i.e. segments)
H1 = {[0, n] | n ∈ IN}. From the construction of the superstructure it
follows that there exists some m ∈ ω such that IN × T ⊂ X0 ∪ Xm.
Hence P(IN× T ) ⊂ P(X0 ∪ Xm) = Xm+1, where m ≥ 1. Since no
atoms are in IN × T , the set IN × T ⊂ Xm. For each x ∈ H1, T x ∈
P(IN× T ) ⊂ Xm+1. Obviously, H1 ∈ X2. Hence, we also have that
H1 ∈ Xm+1. Observe that for each x ∈ H1, w ∈ T x ⊂ x × T ⊂
IN×T ⊂ X0∪Xm implies since no atoms are involved that w ∈ Xm ⊂
Xm+1. Thus, all of the objects being considered in an expression of
the type w ∈ T x are all members of the set Xm+1. Notice that in
the formal language w ∈ T x is a 2-place predicate replaceable by
∃y∃z(y ∈ IN ∧ 0 ≤ y ≤ x ∧ z ∈ T ∧ (y, z) ∈ w) ∧ ∀y1∀z1∀x1(y1 ∈
IN ∧ z1 ∈ T ∧ x1 ∈ T ∧ (y1, z1) ∈ w ∧ (y1 , x1) ∈ w → x1 = z1)).
Suppose that you have a formula with the expression “∧(w ∈ T x)”
as a subformula. Then replace it by “ ∧(w ∈ Xm) ∧ (w ∈ T x).”
Now the explicit specially constructed formula usually used in the
literature for such bounded formula is obtained by expanding the finite
sequences of “∧” into the equivalent forms “( → ( . . .” since recall
that for the propositional calculus an expressing such as P∧Q → S is
equivalent to P → (Q → S). With these processes, all of the formula
that seem to have quantified variables with missing bounding objects
can be modified into an equivalent bounded form. Further, there are
equivalent formula such as ∀x(x ∈ C → ∃y(y ∈ x . . .)) where C is
standard that express the requirement that the quantified variables
vary over members of our superstructure. Also, N and ∗N are closed
under the basic set-theoretic operations.

For each f ∈ P, let [f ] denote the equivalence class in E containing
f. For each g ∈ ∗P, let [g] denote the equivalence class containing g
and determined by the partition ∗E of ∗P.

Theorem 3.3.1. For each f ∈ P, it follows that ∗ [f ] = [ ∗f ] =
[σf ] = [f ].

Proof. Let f ∈ P. Then f ∈ [f ] ∈ E implies that ∗f ∈ ∗P and
∗f ∈ ∗ [f ] ∈ ∗E by properties of the *-map. Now the sentence

f ∈ P → ∃!z(z ∈ E ∧ f ∈ z) (3.3.4)
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holds in M; hence in ∗M. Thus there is a unique set A ∈ ∗E such that
∗f ∈ A ∈ ∗E. This set is denoted by [ ∗f ] since it contains ∗f, and ∗E
is a partition. The uniqueness implies that ∗ [f ] = [ ∗f ] and the finite
nature of f yields that [σf ] = [f ] under our conventions.

Theorem 3.3.2. There exists a purely subtle d ∈ ∗BP − BP

such that ∗Ca({d}) ∩BP = an infinite set and ∗Ca({d}) ∩ ( ∗BP−
BP) = an infinite set.

Proof. Let “just” be a member of BP and consider the sentence

∀x(x ∈ IN ∧ x > 0 → ∃y(y ∈ T x ∧ ∀w(w ∈ IN∧

0 < w ≤ x → y(w) = very,||| ∧ y(0) = just)∧

∀z(z ∈ IN ∧ z ≤ x → ∃y1(y1 ∈ T z ∧ ∀w1(w1 ∈ IN∧

0 < w1 ≤ z → y1(w1) = very,||| ∧ y1(0) = just∧

(3.3.5) [y1] ∈ Ca({[y]})))))).

which holds in M; hence, in ∗M. So, let ν ∈ ∗IN−IN. Then there exists
some *-partial sequence f ∈ ( ∗T )ν − P such that f(w) = i(very,|||)
for each 0 < w ≤ ν and f(0) = i(just). Also for each n ∈ IN, n > 0,
there exists a partial sequence fn ∈ Tn such that for each n ∈ IN,
where 0 < w ≤ n, fn(w) = i(very,|||) and fn(0) = i(just). Notice
that if n,m ∈ IN− {0} and n 6= m, then ∗ [fn] 6= ∗ [fm]. Now for each
n ∈ IN, n > 0, ∗ [fn] ∈ σBP. Application of Theorem 3.3.1 implies
that ∗ [fn] = [ ∗fn] = [fn] and the above sentence yields that for each
such n ∈ IN, ∗ [fn] ∈ ∗Ca({[f ]}). Consequently, ∗Ca({[f ]}) ∩ BP =
an infinite set.

Consider the infinite set R = {νn | νn = ν − n ∧ n ∈ IN ∧ n ≥
1} ⊂ ∗IN − IN. By *-transform of the above, for each n ∈ IN, n ≥ 1,
there exists some gn ∈ ( ∗T )νn − P such that gn(w) = i(very,|||) for
each w ∈ ∗IN; 0 < w ≤ vn < ν and gn(0) = i(just). Observe that if
n,m ∈ IN and n 6= m, then νn 6= νm. Moreover, the following sentence

∀x∀y(x ∈ IN ∧ y ∈ IN ∧ x > 0 ∧ y > 0 ∧ x 6= y →

∀w∀w1∀z∀z1(w ∈ T x ∧ w1 ∈ T y ∧ z ∈ IN ∧ z1 ∈ IN∧

0 < z ≤ x ∧ 0 < z1 ≤ y ∧ w(z) = very,||| ∧ w1(z1) = very,|||∧

(3.3.6) w(0) = just ∧ w1(0) = just → [w] 6= [w1]))

holds in M; hence in ∗M. By *-transfer, if n,m ∈ ∗IN − IN, n,m >
0, n 6= m, then [gn] 6= [gm]. Since for each such n ∈ ∗IN − IN, [gn] ∈
∗Ca({[f ]}), it follows that ∗Ca({[f ]}) ∩ ( ∗BP − BP) = an infinite
set.

Corollary 3.3.2.1 There exists a purely subtle d ∈ ∗E − E such
that ∗Ca({d}) ∩ E = an infinite set and ∗Ca({d}) ∩ ( ∗E − E) = an
infinite set.
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Of course, in order to apply these results to descriptions that
involve members of BP an interpretation procedure is required. We
have previously discussed the intuitive interpretation for any [f ] ∈
∗E−E, where the range of f ∈ ∗P is a subset of i[W]. Hence, if A ∈ σE ,
then A = ∗ [g] = [g], where [g] ∈ E. Thus in the usual manner, first
interpret ∗ [g] to be [g] ∈ E and then proceed to the second step and
interpret [g] by selecting any f ∈ [g] and applying our previously
discussed inverse procedure. Clearly, this interpretation method is a
one-to-one correspondence from a subset of ∗E into W.

The concept of adjective deduction, which is obviously isomorphic
to a subsystem of ordinary propositional deduction, was originally in-
troduced to give a measure of the strength of various behavioral prop-
erties. These intuitive strengths may not be codifiable by a numerical
measure. Thus, intuitively, “very,|||very,|||bold” is a stronger concept
than “very,|||bold”. The exact same process can be applied to physi-
cal concepts as well. Even though it may not be possible to measure
the combined strengths of all of the intuitive forces that my be al-
tering the appearance of a physical entity such as a thunderhead, the
term “very,|||” could be replaced by other terms such as “greater,|||”
or “weaker,|||” coupled with terms such as “force” and the like. The
same type of ⊢a analysis would follow.

With respect to the above remarks, later in this book, we consider
the reasoning process called simply S, which is an axiomatically pre-
sented subsystem of propositional deduction. The process S is closely
associated with adjective reasoning, if the set BP is constructed in a
different manner and from different objects. One of the minor prob-
lems with these constructions is their relation to formal languages and
the use of parentheses within such formal languages. Another illus-
tration of the use of these nonstandard methods that does parallel
Robinson’s original work along this line requires BP to be formally
embedded into a propositional language with the insertion and re-
moval of such parentheses.

3.4 Propositional Reasoning

Let S0 denote the consequence operator determined by the usual
propositional deduction ⊢ as defined on say pages 108-109 of [7] (i.e.
Group A1 deduction). Technically, BP0 6⊂ L0 since BP0 is constructed
without use of parentheses. Let L′ = L0∪BP0. Extend ⊢ and S0 in the
obvious manner. Let A ∈ BP0− j[B]. Then A = V∧ . . .∧V∧b, where
b ∈ j[B] and there are n ≥ 1 connectives ∧. We now consider inserting
parentheses in the following manner called the insertion procedure. (1)
Moving from left to right put a “(” before each V, keeping count of
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the number of “(” so placed. (2) Place the same number of “)” after
the “b” as your count in step (1). Denote this new symbol by A(.
Note that A( ∈ L0.

Example. Suppose that you are given A = V ∧ V ∧ V ∧ V ∧ b.
Then A( = (V ∧ (V ∧ (V ∧ (V ∧ b)))).

This process of considering a method of inserting parentheses and
doing it in an ordered effective manner is no more complex and no
less effective than Kleene’s concept of “closure with respect to (just)
x1, . . . , xq” on page 105 of [8]. Now to define in the obvious manner
⊢′⊂ F (L′) × L′. First, consider BP0( = {x( | x ∈ BP0 − j[B]} ∪ j[B].
Then BP0( ⊂ L0. For F ∈ F(L′), consider F( = {x( | x ∈ F∩ (BP0)} ∪
(F − (BP0 − j[B])) ⊂ L0. Then (i) if F( ⊢ B ∈ L0, define F ⊢′ B. (ii)
If F( ⊢ B1 ∈ L0 and D is B1 with all of the parentheses removed and
D ∈ BP0, then let F ⊢′ D. (iii) Finally, remove superfluous parenthesis
if you wish [7, p. 74]. Only the procedure in this paragraph is to be
used to obtain a B ∈ L′ such that F ⊢ B.

Obviously, ⊢′ is closely related to ⊢, since it is well known that for
A, B, C ∈ L0,⊢ (A∧(B∧C)) ↔ ((A∧B)∧C). By an abuse of notation
we often write ⊢ for ⊢′, S0 for S0

′ and L0 for L′ as well as suppressing
parentheses insertion and removal for the elements of BP0. The next
result follows from the fact that for A, B ∈ L0, A ∧ B ⊢ B.

Theorem 3.4.1 There exists a purely subtle d ∈ ∗BP0 − BP0

such that ∗S0({d}) ∩ BP0 = an infinite set and also ∗S0({d}) ∩
( ∗BP0 −BP0) = an infinite set.

Proof. Make the following changes in the formal first-order
sentences explicitly given in the proof of Theorem 3.3.2. First, let
b ∈ j[B]. Now for the every “just” substitute the symbol “b”. Then
for every “very,|||” string substitute the symbols “V ∧ ”. With these
substitutions made, the proof is exactly as for Theorem 3.3.2.

Corollary 3.4.1.1 There exists a purely subtle d ∈ ∗L0 − L0

such that ∗S0({d})∩L0 = an infinite set and also ∗S0({d})∩( ∗L0−
L0) = an infinite set.

[Remark: The above theorems for the propositional consequence
operator also hold for the consequence operator S and other such
variations discussed later in this book.]

It is easily shown that for a propositional formula, say A, that
A ⊢′ A ∧ · · · ∧ A, with any n ∈ ω number of connectives ∧.

Theorem 3.4.2 For any q ∈ L0 it follows that ∗S0({q})∩L0 =
an infinite set and ∗S0({q}) ∩ ( ∗L0 − L0) = and infinite set.
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Proof. Let q = [f ], f ∈ T 0, f(0) = i(A), A ∈ L0. The sentence

∀z(z ∈ IN ∧ z > 0 → ∃y(y ∈ T z ∧ ∀w(w ∈ IN ∧ 0 < w ≤ z →

y(w) = i(A ∧ ) ∧ y(0) = i(A) ∧ [y] ∈ S0({q})))) (3.4.1)

holds in M; hence in ∗M. Now proceed in the same manner as in the
proof ot Theorem 3.3.2, making the obvious changes, starting with
the statement, “Also for each n ∈ IN, n > 0, . . . . ” This completes
the proof.

3.5 Modus Ponens Reasoning

The reasoning termed Modus Ponens (MP) is, of course, the ma-
jor step in propositional deduction. One can, however, get more basic
than S0 and define MP reasoning to produce a subsystem of S0 in
the following (intuitive) manner. Simply let MP be the same deduc-
tion process as determines S0 but with no axiom schemata. Use the
symbol MP to represent the consequence operator obtained from this
process. Then, for each A ⊂ L0, it follows that A ⊂ MP(A) ⊂ S0(A).
Thus for each internal B ⊂ ∗L0, B ⊂ ∗MP(B) ⊂ ∗S0(B) ⊂ ∗L0.

Besides applying MP to L0, it is straightforward to apply it
to certain meaningfully constructed collections of intuitive read-
able sentences. For example, consider the set of symbols B1 =
{If|||perfect,|||then|||x. | x ∈ BP}. Now apply MP to any finite sub-
set of BP ∪ B1 ∪ {perfect}. Clearly, we can associate MP deduction
formally to BP0 in a meaningful way. Simply let c ∈ {Pi | i ∈
ω} − ({V} ∪ j[B]) and B′′ = {c → x | x ∈ BP0}, etc. We leave to
the reader the simple consequences of MP deduction in this case.

3.6 Predicate Deduction

In this section, predicate deduction in L1, say as defined by
Kleene on page 82 page [7], is briefly discussed relative to lengths
of formal proofs. Robinson mentions [15, p. 25], what is well known
from Gödel’s work, that using formal predicate deduction there is for
each n ∈ IN a readable sentence in L1 that is provable as a theorem
from the empty set of hypotheses, but requires n or more steps.

Let S1 denote the operator determined by predicate deduction
with respect to L1. Then S1(∅) is the set of all provable formula (i.e.
theorems). Of course, all the properties of S1 are now referred to E.
Hence there exists a relation RL1

⊂ IN×S1(∅) with the property that
(x, y) ∈ RL1

iff y ∈ S1(∅), y ∈ L1, x ∈ IN and x = the length of a
formal proof that yields y ∈ S1(∅).
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Theorem 3.6.1 For each ν ∈ ∗IN − IN there is a subtle d ∈
∗L1, d ∈ S1(∅) and for each λ ∈ ∗IN, λ < ν, (λ, d) /∈ ∗RL1

. Moreover,
there exists some ν0 ∈ ∗IN− IN such that ν0 ≥ ν and (ν0, d) ∈ ∗RL1

.

Proof. As stated above the sentence

∀x(x ∈ IN → ∃y(y ∈ S1(∅) ∧ ∀w(w ∈ IN∧ 0 ≤ w ≤ x →

(3.6.1) (w, y) /∈ RL1
) ∧ ∃z(z ∈ IN ∧ z ≥ x ∧ (z, y) ∈ RL1

)))

holds in M; hence in ∗M. The result follows by *-transfer.

We now investigate a little more fully what is meant by the
“length of a formal proof.” There exists a partial sequence f ′ of ele-
ments of L1 such that the domain D(f ′) = [0, n], n ∈ IN, [rather than
n ∈ ω], the range of f ′ = Rn(f ′) ⊂ L1 and f ′(n) = A ∈ S1(∅) and the
length of the formal proof that yields A ∈ S1(∅) is n+1. Of course, f ′

actually gives the elements of L1 that appear in such a specific formal
proof. Now relate this intuitive partial sequence f ′ to a correspond-
ing partial sequence in P in the following manner. Let (x, y) ∈ fL1

iff y = i(w) and (x,w) ∈ f ′. Denote by PL1
⊂ P the set of all such

length of proof sequences. Then (x, y) ∈ ∗RL1
iff x ∈ ∗IN, y ∈ ∗S1(∅)

and there is some f ∈ ∗PL1
such that y = [f(x)]. By *-transfer the

hyperlength of the proof would be x + 1. The set PL1
may be used to

characterize the concept intuitively associated with the proof length
for objects in S1(∅). These sequences have other properties as well but
these will not be considered in this investigation. With this in mind,
then ∗PL1

represents the subtle concept of proof length for elements
in ∗S1(∅). It’s the proof length concept we employ in one application
of the results from this chapter. Theorem 3.6.1 can now be stated in
an alternate form.

Theorem 3.6.2 For each ν ∈ ∗IN−IN there is a subtle d ∈ ∗S1(∅)
such that for each λ ∈ ∗IN− IN, λ < ν, there does not exist some g ∈
∗PL1

such that d = [g(λ)]. Moreover, there exists some ν0 ∈ ∗IN − IN

such that ν0 ≥ ν and some f ∈ ∗PL1
such that d = [f(ν0)].

Corollary 3.6.2.1 There exists d ∈ ∗S1(∅), f ∈ ∗PL1
and

ν ∈ ∗IN − IN such that d = [f(ν)] and for each g ∈ ∗PL1
and each

ν′ ∈ ∗IN such that d = [g(ν′)], |D(g)| ≥ 2ω.

[Remarks: It should be apparent to the reader that statements
that hold in M relative to consequence operators or deductive pro-
cesses are obtained from the corresponding intuitive reasoning pro-
cesses by application of θ. The proofs that these statements hold in
the intuitive case are straightforward or obvious, and are omitted in
all cases. The term “ultralogics” is reserved for various special subtle
consequence operators to be used in various cosmogony investigations
that will be discussed later in this book.]
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Chapter 4

SPECIAL DEDUCTIVE PROCESSES

4.1 Introduction.

There are certain words that intuitively denote an upper [resp.
lower] bound to such concepts as “stronger” [resp. “weaker”]. With
respect to certain philosophic studies, one such concept is the notion of
“perfect” when associated with a language like BP. In what follows,
this “perfect” associated with BP is used as a prototype for these
other cases. Two types of deductive processes associated with this
prototype will be introduced, a very trivial one followed by a much
more interesting and significant procedure.

4.2 Reasoning From the Perfect Type W

First, an intuitive extension of BP is defined. Let BPC| = BP ∪
{perfect} and for convenience denote the readable string “perfect” by
the single c. Now we define type W reasoning from the perfect by
considering an intuitively defined operator, ΠW , from P(BPC|) into
P(BPC|).

For any finite F ⊂ BPC|:

(i) if c ∈ F, then ΠW (F) = BPC|;

(ii) if c /∈ F, then ΠW (F) = F;

(iii) and for arbitrary A ⊂ BPC|, let

ΠW (A) =
⋃

{ΠW (F) | F ∈ F (A)}

Theorem 4.2.1 The map ΠW :P(BPC|) → P(BPC|) is a con-
sequence operator.

Proof. Let A ⊂ BPC|. Clearly, axiom (4) holds by the definition.
Let a ∈ A. Then {a} ∈ F (A). Now if a 6= c, then ΠW ({a}) = {a}.
If a = c, then ΠW ({a}) = BPC|. In these two cases, (iii) of the
definition yields that a ∈ ΠW (A). Thus, even when A = ∅, it follows
that A ⊂ ΠW (A) ⊂ BPC| and axiom (2) holds.

Since axiom (4) holds and A ⊂ ΠW (A), it follows that ΠW (A) ⊂
ΠW (ΠW (A)). Now either ΠW (A) = A; in which case ΠW (ΠW (A)) =
ΠW (A) = A or ΠW (A) = BPC|; in which case ΠW (ΠW (A)) =
ΠW (BPC|) = BPC| = ΠW (A). Thus axiom (3) holds and this com-
pletes the proof.

Recall that T = i[W] and if w ∈ W, then fw ∈ P denotes the
partial sequence which is an element of T 0 and fw(0) = i(w), w =
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[fw ]. Also, due to their finitary character, each x ∈ E is often identified
with ∗x ∈ σE .

Theorem 4.2.2 For each internal B ⊂ BPC| if c = [ ∗fc] = [fc],
then ∗ΠW (B) = ∗BPC| = ∗BP∪ {c} = ∗BP∪ {[fc]}, where [fc] ∈
σE and σE = E under the basic identification of σIN with IN.

Proof. Simply consider the sentence

(4.2.1) ∀x(x ∈ P(BPC|) ∧ c ∈ x → ΠW({[fc]}) = BPC|)

that holds in M; hence in ∗M. The result follows by *-transfer.

Corollary 4.2.2.1 The set ∗ΠW({[fc]}) = ∗ΠW({[ ∗fc]}) =
∗BPC|.

Corollary 4.2.2.2 For each b ∈ i[B] and each ν ∈ ∗IN− IN there
exists a subtle fb ∈ ( ∗T )ν − P such that for each x ∈ ∗IN, where
0 < x ≤ ν, fb(x) = i(very,|||) and fb(0) = b. Moreover, [fb] ∈
∗ΠW({[fc]}).

For each b ∈ i[B] and a fixed ν ∈ ∗IN − IN, apply the axiom
of choice and let fb denote one of the subtle objects that exists by
Corollary 4.2.2.2 and satisfies the stated properties. Since B is finite,
the set Fν = {[fb] | b ∈ i[B]} is internal. The next result is obvious.

Theorem 4.2.3 For each ν ∈ ∗IN − IN, internal Fν ⊂
∗ΠW({[fc])}).

Observe that there exist, at least, 2ω distinct Fν sets.

4.3 Strong Reasoning From the Prefect

For the second type of reasoning from the perfect, our attention
will be restricted to L′ = L0 ∪ BP0 and the set BP0 that bijectively
corresponds to BP. Let a specific c ∈ {Pi | i ∈ ω} − ({V} ∪ j[B]).
Correspond c to the readable sentence “prefect.” Let

C( = {(c → x() | x ∈ BP0 − j[B]}
⋃

{(c → x) | x ∈ j[B]}
⋃

{c}.

C = {c → x | x ∈ BP0 − j[B]}
⋃

{c → x | x ∈ j[B]}
⋃

{c}.

Why do we go through the following exercise of inserting and
removing parentheses so as to conform more closely to the formula of
a formal language? The basic reason is related to some of the results
later in this book that refer to counting of symbols by means of the
partial sequences. Clearly, parenthesis insertion does correspond to
the increase strength idea of adjective reasoning, as does the ordering
of the very,||| symbols by the partial sequences. However, in certain
deductive processes, all of the axioms for the propositional logic are
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not used. Hence even though it is certainly of no importance, due to
equivalence, when all of the usual axioms are used to write a formal
(V ∧ (V → b)) as V ∧ V → b, it may not be possible to establish this
equivalence for these restrictive deductive processes. The process we
now outline simply removes this formal difficulty at the cost of a more
involved finitary process.

Let BPC0 = BP0 ∪ C and BPC0( = BP0( ∪ C(. The axioms
are elements of the set Ax = {(V ∧ x) → x | x ∈ BP0(} with the
suppression of the outer most parentheses for simplicity in application
of MP. Let ⊢π denote ordinary propositional deduction but only using
the axiom set Ax and only formula from the set Ax∪BPC0( in the steps
of any proof. For a specific A( ∈ BP0(, let A be the element of BP0

formed by removing all parentheses from A(. Define Π:P(BPC0) →
P(BPC0) as follows: Let finite F ⊂ BPC0 ⊂ L′ and F( = (BP0 ∩
F)( ∪ (C ∩ F)(. Then for any D ⊂ BPC0, X ∈ Π(D) iff there exists a
finite F ⊂ D and A ∈ BPC0( such that F( ⊢π A( and if A( ∈ C(, then
X = A or if A( ∈ BP0(, then A = X. It is not difficult to show that
Π is a consequence operator since it is the restriction of formal ⊢π to
BPC0( and Π is called strong reasoning from the perfect.

By way of a reminder, *-transfer and the fact that E0 = j[B]
and i[E0] are finite imply that f ∈ ∗BP0 − ∗E0 iff there exists some
n ∈ ∗IN, n > 0, and b ∈ i[E0] such that f(w) = i(V∧) and f(0) = b for
each w ∈ ∗IN such that 0 < w ≤ n. Further, for each b ∈ i[E0] and each
b ∈ i[E0] and each n ∈ ∗IN, n > 0, there exists a f ∈ ∗BP0− ∗E0 such
that for each w ∈ ∗IN, where 0 < w ≤ n, f(w) = i(V∧) and f(0) = b.
Notice also that [g] ∈ ∗E0 iff g ∈ ( ∗T )0, g(0) = b ∈ i[E0] and
|[g]| = 1. The set ∗E0 being nonempty and finite implies that ∗E0 =
{ ∗ [g1], . . . ,

∗ [gn]} = σE0 = E0. Finally, due to the identification of
each specific ∗i(e) with i(e), it follows that ∗g = g, where, as usual,
this follows from the finitary character of each equivalence class.

We know that for fixed n ∈ ∗IN and any b ∈ i[E0] there exists a
unique gb ∈ ( ∗T )n such that gb(0) = b and if w ∈ ∗IN and 0 < w ≤ n,
then gb(w) = i(V∧). Let Gn = {[gb] | b ∈ i[E0]} for n ∈ ∗IN − {0}.
Now Gn has the same general properties as the previously defined
set Fn. In particular, each Gn is internal and if ν ∈ IN∞, then Gν is
purely subtle.

Theorem 4.3.1. If n ∈ ∗IN − {0}, m ∈ ∗IN − {0} are such
that 0 < m ≤ n and f ∈ ( ∗T )m has the property that for each
w ∈ ∗IN, where 0 < w ≤ m; f(w) = i(V∧) and f(0) = b ∈ i[E0], then
[f ] ∈ ∗Π(Gn). Moreover, if [g] ∈ i[E0], then [g] ∈ ∗Π(Gn).

Proof. First, since Gn is internal, n ∈ ∗IN − {0}, and ∗BP0 ⊂
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∗BP0 ∪ ∗C = ∗BPC0 and Gn ⊂ ∗BP0, it follows that Gn is in the
domain of ∗Π.

Let A ∈ BP0, A = V ∧ · · · ∧ V ∧ b,b ∈ E0 and that are n ≥
1, (n ∈ ω) connectives ∧. We prove by induction that for any n ∈ ω
such that 0 < w ≤ n, the symbol string B = V ∧ · · · ∧ V ∧ b with
w ≥ 1 connectives ∧ or B = b has the property that A( ⊢π B(, where
if B = b, then B( = b.

Case 1. Let n = 1. Then A = V ∧ b. Consider A( = (A ∧ b).
The following is a proof that A( ⊢π b. (i) (V ∧ b), (ii) (V ∧ b) → b,
(iii) b. A proof composed of step (i) only yields the trivial result that
A( ⊢π A).

Case (n+1). Suppose that the result holds for n, and A = V∧· · ·∧
V∧b has n+1 connectives ∧. The formula A( = (V∧(A · · · (V∧b) · · ·)).
Let B( = (V∧ (A · · · (V∧ b) · · ·)) have n connectives ∧. The following
is a proof that A( ⊢π B(. (i) A( = (V ∧ B(), (ii) (V ∧ B() → B(, (iii)
B(. Thus A( ⊢π B(. From the induction hypothesis, B( ⊢π E(, where
E( has w connectives ∧ such that 0 < w ≤ n, or E( = b. Since ⊢π

is transitive, it follows that A( ⊢ E(. The trivial proof using step (i)
yields that A( ⊢π A(, and the basic result above follows by induction.

We have shown that for each b ∈ i[E0], the following sentences

∀y∀x∀w∀z((x ∈ IN) ∧ (x > 0) ∧ (y ∈ IN) ∧ (0 < y ≤ x)∧

(w ∈ T x) ∧ ∀w1((w1 ∈ IN) ∧ (0 < w1 ≤ x) → (w(w1) = i(V∧))∧

(w(0) = b)) ∧ (z ∈ T y) ∧ ∀z1((z1 ∈ IN) ∧ (0 < z1 ≤ y) →

(4.3.1) z(z1) = i(V∧)) ∧ (z(0) = b) → ([z] ∈ Π({[x]}))).

∀x∀y∀w∀z((x ∈ IN) ∧ (x > 0) ∧ (w ∈ T x) ∧ ∀w1((w1 ∈ IN)∧

(0 < w1 ≤ x) → w(w1) = i(V∧)) ∧ (w(0) = b)∧

(4.3.2) (z ∈ T 0) ∧ (z(0) = b) → ([z] ∈ Π({[x]})))

hold in M, hence in ∗M. Since the singleton subsets of Gn are *-finite,
it follows that

⋃

{ ∗Π({[gb]}) | b ∈ i[E0]} ⊂ ∗Π(Gn) by *- transfer of
Axiom (4). Let n ∈ ∗IN−{0}, f ∈ ( ∗T )m, 0 < m ≤ n, f(w) = i(V∧)
for each w ∈ IN, 0 < w ≤ m and f(0) = b. Then by *-transfer of
sentence (4.3.1), we have that

(4.3.3) [f ] ∈ ∗Π({[gb]}) ⊂ ∗Π(Gn).

For g ∈ T0 such that g(0) = b, *-transfer of sentence (4.3.2)
yields ∗ [g] = [ ∗g] = [g] ∈ ∗Π({[gb]}) ⊂ ∗Π(Gn) and this completes
the proof.
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Corollary 4.3.1.1 If ν ∈ IN∞, then BP0 ∩ Gν = ∅, BP0 ⊂
∗Π(Gν) and BP0 ∪ Gν ⊂ ∗Π(Gν).

For A ∈ L0, let #(A) denote the length of the formula A.

Theorem 4.3.2 Let B ⊂ BP0, A = V∧· · ·∧V∧b, b ∈ E0, where
there are n ≥ 1 connections ∧ and for each Z ∈ B,#(A) > #(Z). Then
A /∈ Π(B).

Proof. (Note: In this proof certain of the indicated parentheses
may be superfluous.) Assume the hypothesis of the theorem. We
show that there does not exist a finite F ⊂ B such that F( ⊢π A(.
Assume that there exists a finite F ⊂ B such that F( ⊢π A(. A relation
Rm ⊂ BPC0(×BPC0( is called an m-chained sequence of MP processes
if there exists an m ∈ ω, m ≥ 1 such that (X,Y ) ∈ Rm has the
form (Ai, (Ai) → (Ai−1)) for i = 1, . . . ,m, where A0 = A(. Also
each Ai = V∧ (Ai−1) and Ai is a step in the proof of F( ⊢π A(, where
i = 1, . . . ,m. We now show by induction that, for each m ∈ ω, m ≥ 1,
there exists an m-chained sequence of MP processes in the proof that
F( ⊢π A(.

Case m =1. We know that A( ∈ BP0( implies that A( is not an
instance of the use of an axiom since no axioms appear in BP0(. Since
A /∈ B then A( /∈ F(. Thus A( being the last step in the proof implies
that A( is the conclusion of an MP process with premises (D) → (A()
and D. Assume that D = c. Then the single step which contains the
primitive c could not be an axiom nor an assumption since c /∈ B.
Hence c would be the conclusion of a prior MP process. Therefore a
prior step would be of the form (E) → c. This is impossible; all steps
must be formula in Ax∪BPC0(. Thus D 6= c implies that (D) → (A()
is an instance of an axiom or the conclusion of a prior MP process.
However, since no step can be of the form (E) → ((D) → (A()), it fol-
lows that (D) → (A() must be an instance of an axiom. Consequently,
D = V ∧ (A() = A1 ∈ BPC0( and D is a step in the proof. Therefore,
R1 = (A1, (A1) → (A0)), A0 = A( is a 1- chained sequence of MP
processes.

Assume the result holds for m.

Case m + 1. Let Rm = {(Am, (Am) → (Am−1)), . . . ,
(A1, ((A1) → (A0))} be an m-chained sequence of MP processes.
Now Am = V ∧ (Am−1) implies by a simple induction proof that
#(Am) > #(A0) = #(A(). Hence, Am /∈ B(. Thus Am /∈ F(.
Moreover, Am /∈ C, Am /∈ Ax for the primary connective is ∧. This
implies that Am ∈ BP0( and Am must be the conclusion of some MP
process with premises (D) → (Am) and D. As in case m =1, it follows
that D 6= c and that (D) → (Am) must be an instance of an axiom.
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Consequently, D = V∧ (Am). Let D = Am+1. Since D is a step in the
proof, D ∈ BPC0(. Thus, Rm+1 = {(Am+1, (Am+1) → (Am))} ∪Rm is
an m + 1-chained sequence of MP processes.

The length of the proof that F( ⊢π A( is some finite number, say
n ∈ ω, n ≥ 1. The above shows that there exists an n+1-chained
sequence of MP processes for this proof. Since |P1(Rn+1)| = n + 1
(note that for each i, j ∈ ω such that 0 ≤ i < j ≤ n + 1, #(Ai) <
#(Aj)) and each element of P1(Rn+1) is a distinct step in the proof,
this contradicts the fact that the proof length is n. Consequently,
there does not exist a finite F ⊂ B such that F( ⊢π A(. Therefore
A /∈ Π(B) and this completes the proof of this theorem.

Under our embedding, Theorem 4.3.2 is interpreted by θ as
embedded into M. When this is done the length of a formula A,
#(A), is the length of the preimage A of the map i associated with
the special partial sequence fA(0) = i(A). Let G = {Gn | (n >
0) ∧ (n ∈ ω)} ∪ {G0}, G0 = E0, and |i[E0]| = m + 1. Indeed,
E0 = j[B] = {b0, . . . ,bm}. Let G ⊂ Xn. The following sentences hold
in M; hence in ∗M.

∀x(x ∈ Xn → ((x ∈ G) ↔ ∃y∃y0 · · · ∃ym((y ∈ IN)∧(y ≥ 0)∧(y0 ∈ T y)

∧ · · · ∧ (ym ∈ T y) ∧ ∀w((w ∈ IN) ∧ (0 < w ≤ y) → (y0(w) =

i(V∧)) ∧ · · · ∧ (ym(w) = i(V∧))) ∧ (y0(0) = b0)

(4.3.4) ∧ · · · ∧ (ym(0) = bm ∧ ([y0] ∈ x) ∧ · · · ∧ ([ym] ∈ x)))).

Sentence (4.3.4) can also be written as

∀x(x ∈ Xn → (x ∈ G ↔ ∃y((y ∈ IN) ∧ (y ≥ 0) ∧ A(y))));

(4.3.5) ∀y((y ∈ IN) ∧ (y ≥ 0) → A(y)),

where A(y) is the obvious expression taken from (4.3.4). The objects
that exist for each “y” in the A(y) expression (i.e. the yj ∈ T y, j =
0, . . . ,m) are unique with respect to the property expressed in A(y).
Obviously, for each n ∈ IN, Gn ∈ ∗G. Moreover, there exists a bijec-
tion F : IN → G such that F (n) = Gn. Now let n, m ∈ IN, n,m and
A = V∧ . . .∧b, b ∈ E0 has m connectives ∧. Then #(A) > #(Z) for
each [fZ ] ∈ Gn. It follows from Theorem 4.3.2 that [fA] /∈ Π(Gn).

Theorem 4.3.3 If n, m ∈ ∗IN, 0 ≤ n < m, b ∈ i[E0] and
f ∈ ( ∗T )m such that f(w) = i(V∧) for each w ∈ ∗IN, 0 < w ≤ m,
and f(0) = b, then it follows that [f ] /∈ ∗Π(Gn).

Proof. Let b ∈ i[E0]. From the above discussion, the following
sentence

∀x∀y∀z((x ∈ IN) ∧ (y ∈ IN) ∧ (0 ≤ y < x) ∧ (z ∈ T x)∧
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∀w((w ∈ IN) ∧ (0 < w ≤ x) → (z(w) = i(V∧))∧

(z(0) = b)) → ([z] /∈ Π(F (y)))) (4.3.6)

holds in M; hence in ∗M. The result follows by *-transfer.

Corollary 4.3.3.1 For each n ∈ ∗IN, ∗Π(Gn) 6= ∗Π( ∗BP0)
and ∗Π(Gn) =

⋃

{Gx | (x ∈ ∗IN) ∧ (0 ≤ x ≤ n)}.

Proof. Since Gn ⊂ ∗BP0, ∗Π(Gn) ⊂ ∗Π( ∗BP0). Theorems
4.3.1 and 4.3.3 along with the above discussion completely character-
izes the elements of ∗Π(Gn). This completes the proof.

For ν ∈ IN∞, let Gν =
⋃

{Gx | (x ∈ IN∞)∧ (x < ν)}. Then Gν is a
purely subtle external object. This follows from the fact that ∗Π(Gν)
is internal, BP0 is external and ∗Π(Gν) = Gν ∪BP0∪Gν . Moreover,
observe that if λ, ν ∈ IN∞, ν > λ, then ∗Π(Gλ)∩Gν = ∅ and that Gν

and BP0 are not in the domain of ∗Π unless we extend ∗Π, say by
the identity operator.

Theorem 4.3.4 The set ∗Π( ∗BP0) = ∗BP0.

Proof. (Note once again that some superfluous parentheses may
have been added to some formula in this proof.) It is know that
∗BP0 ⊂ ∗Π( ∗BP0). Let finite F ⊂ BP0, A ∈ C and assume that
F( ⊢π A. Then A = c or A = c → (x), x ∈ BP0(.

Case 1. Assume that A = c. Since c /∈ F( ⊂ BP0( and A = c is
not an instance of an axiom, A = c must be the conclusion of an MP
process. Thus a prior step is of the form (D) → c. This is impossible
for (D) → c /∈ Ax ∪ BP0(.

Case 2. Assume that A = c → (x), x ∈ BP0(. Again c → (x) is
the conclusion of an MP process. This is impossible since no formula
of the type (D) → (c → (x)) is an element of Ax ∪ BP0(. Hence by *-
transfer of the appropriate first-order sentence, after the θ embedding,
it follows that ∗Π( ∗BP0) ⊂ ∗BP0.

Corollary 4.3.4.1 The set ∗Π( ∗BP0)
⊂
6=

∗Π( ∗BPC0).

It is easy to see that Π(C) = BPC0. For let A ∈ BP0 and consider
the proof (1) c, (2) c → (A(), (3) A(. Thus {c, c → (A()} ⊢π A( yields
that A ∈ Π(C). Hence Π(C) = BPC0. Also, ∗Π( ∗C) = ∗BPC0.

Theorem 4.3.5 Let internal A ⊂ ∗BP0 and internal B ⊂
∗BPC0. Then ∗Π(A ∪ B) = ∗BPC0 iff ∗C ⊂ B.

Proof. For the sufficiency, let internal A ⊂ ∗BP0, internal ∗C ⊂
B. Then A ∪ B is internal and ∗Π( ∗C) = ∗BPC0 ⊂ ∗Π(B) ⊂
∗Π(A ∪ B) ⊂ ∗BPC0. Thus ∗BPC0 = ∗Π(A ∪ B).
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For the necessity, assume that internal A ⊂ ∗BP0, internal B ⊂
∗BPC0 and that ∗Π(A∪B) = ∗BPC0. Let A1 ⊂ BP0, B1 ⊂ BPC0

and Π(A1 ∪ B1) = BPC0. It follows from Theorem 4.3.4 that B1 6⊂
BP0. Indeed, given any finite F ⊂ A1 ∪ (B1 ∩ BP0). If D ∈ Π(F),
then D ∈ BP0. Thus only for a finite F1 ⊂ B1 ∩ C can there be an
E ∈ C such that E ∈ Π(F1). Hence all that needs to be shown is that
C ⊂ Π(B1 ∩C) implies that B1 ∩C = C. So, assume that B1 ∩C 6= C.
Hence either c /∈ B1 ∩ C or there exists some A( ∈ BP0( such that
c → (A() /∈ (B1 ∩ C).

Case 1. Assume that c /∈ B1 ∩ C and F is any finite subset of
B1∩C such that F ⊢π c. Of course, c is the last step in a formal proof.
c is the conclusion of some MP process since c is not an assumption
nor an axiom. Thus some formula of the form (D) → c must be in a
prior step in the formal proof. This is impossible since no formula of
this form is an element of BPC0(.

Case 2. Assume that there exists some A( ∈ BP0( such that
c → (A() /∈ B1 ∩ C and there exists finite F ⊂ B1 ∩ C such that
F ⊢π c → (A(). Again c → (A() is not an assumption nor an axiom.
Consequently, c → (A() is the conclusion of an MP process. Thus
there exists some formula of the form (D) → (c → (A()) in a prior
step. Again this is impossible.

These two cases imply that B1 ∩ C = C. Therefore, C ⊂ B1

implies the sentence

∀x∀y((x ∈ P(BP0)) ∧ (y ∈ P(BPC0))∧

(4.3.7) (Π(x ∪ y) = BPC0) → (C ⊂ y))

holds in M; hence in ∗M. The result follows from *-transfer.

Note that all of the results in this section hold for BP and BPC,
where C is constructed without parentheses.

4.4 Order

We briefly look at two special types of order relations, the “num-
ber of symbols” order and the “better than” order. Previously the
concept of the length of a formula or word A (i.e. #(A)) was intro-
duced. This type of order has few properties unless it is restricted to
certain interesting types of subsets.

Let nonempty B, D ⊂ BPC (or BPC0), then define B ≤# D if
for each b ∈ B and for each d ∈ D, it follows that #(b) ≤ #(d).
This order is obviously a pre-order in the sense that it is reflexive and
transitive. However, in general, it should probably not be considered a
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partial order since antisymmetry does not imply set equality although
it does imply that all the symbol strings have equal length in both
B and D. Also other pre-orders of this type appear not to be partial
orders for the same reason. If ≤# is restricted to certain collections
of sets, then it does become a useful partial order under set equality.

Consider the collection {Gn | n ∈ ∗IN}. Then the pre-order ≤#

restricted to this set is isomorphic to the simple order of ∗IN. Indeed,
Gn ≤# Gm iff n ≤ m, where n, m ∈ ∗IN and ≤ is the usual extension
of the simple order induced on IN by ω. Moreover, notice that Gn =
Gm iff n = m, and Gn 6=# Gm iff Gn ∩ Gm = ∅.

For the collection {Gν | ν ∈ IN∞}, it follows that Gγ ⊂ Gλ iff γ ≤
λ. Thus {Gν | ν ∈ IN∞} is ordered by inclusion when the simple order
of the subscripts is considered. Notice also that

⋂

{Gν | ν ∈ IN∞} = ∅.

Let fixed ν ∈ IN∞. Then there exist infinitely many Gλ which
differ only be a finite set of subtle objects. Simply consider the set
{Gν+n | n ∈ IN}. If n, m ∈ IN and m > n, then |Gν+m − Gν+n| =
(m − n)|G0| ∈ IN. Also there exist infinitely many sets “longer than”
any Gν+n, where n ∈ IN or strictly containing any Gν+n. To see this
consider ν2 < ν3 < · · · < νn < · · · , n ∈ IN, and observe that ν2 − ν =
ν(ν − 1) ∈ IN∞. Thus the length of an interval [νm, νn], m < n, is an
infinite natural number and for any n ∈ IN, this implies that ν + n <
ν2. Hence for any n ∈ IN such that n > 1, it follows that Gν+n ⊂ Gνn

and Gν+n ≤# Gνn . It is also interesting to note that for each pair ν, λ
of infinite natural numbers, such that ν ≤ λ, ∗Π(Gν) ⊂ ∗Π(Gλ) and
conversely.

The “better than” order is only defined for comparable readable
sentences. For this research, the domain of definition is restricted
to the set BP0 [resp. BP]. Two elements [f ], [g] ∈ BP0 [resp.
BP] are comparable if there exists b ∈ i[E0] [resp. i[B]] such that
fb ∈ [f ] and gb ∈ [g]. Recall that fb and gb are unique element
of Tn and Tm, respectively, where n and m count the number “V∧”
[resp. “very,|||”] symbol strings. The fb, gb are restricted to Tn, Tm,
where ν = n,m > 0. For example, 0 < x ≤ n, fb(x) = i(very,|||) and
fb(0) = b ∈ i[B]. For two comparable objects [f ], [g] define [f ] ≤B [g]
if n ≤ m. Two nonempty sets A, D ⊂ BP0 [resp. BP] have the
property that A ≤B D if for each [f ] ∈ A there exists some [g] ∈ D
such that [f ] ≤B [g]. This is the better than pre-order and usually
[f ] ≤B [g] is stated as follows: “[g] is better than [f ]” or some similar
expression. Actually, for the BP0 [resp. BP], the “better than order”
is a partial order and, in some cases, it is equivalent to the ≤# order.
Of course, ≤B and ≤# are *-transferred to ∗M.



46 The Theory of Ultralogics

For each b ∈ B, let Cb = {x | (x ∈ BP) ∧ (b ≤B x)}.

Theorem 4.4.1 There exists a purely subtle c ∈ ∗Cb such that
Cb

∗≤B{c}.

Proof. The sentence
∀x(x ∈ IN → ∃y(y ∈ T x ∧ [y] ∈ Cb ∧ ∀z∀w(z ∈ IN ∧ z ≤ x ∧ w ∈ T z∧

(4.4.1) [w] ∈ Cb → [w] ≤B [y]))

holds in M; hence, in ∗M.

Let ν ∈ ∗IN − IN, then there is a f ∈ ( ∗T )ν and a purely subtle
c = [f ] ∈ ∗Cb, where [f ] satisfies the remainder of the *-transformed
(4.4.1) statement. Let a ∈ Cb ⊂ ∗Cb. Then there is some m ∈ IN and
some g ∈ Tm such that a = [g]. Thus, since m ≤ ν, then [g] ∗≤B [f ].
Consequenely, Cb

∗≤B{c}.

The following is somewhat trivial and is not formalized as a the-
orem. (Herrmann, R. A. General Logic-Systems and Finite Conse-
quence Operators, Logica Universalis, 1(2006):201-208 (Partial paper
at http://arxiv.org/abs/math/05012559).) Consider the usual repre-
sentation for c = [f ], f ∈ ( ∗T )ν , ν ∈ ∗IN − IN. Intuitively, members
of ∗Cb({c}), are obtained by removing *-finitely many (including 0)
i(very, |||) from c. Let n ∈ IN. Then {x | (x ∈ ∗IN) ∧ (n ≤ x ≤ ν)}
is *-finite. By *-transfer of the appropriate sentence, you have the
following for each m ∈ IN. If m = 0, then [g] ∈ ∗Ca({c}), where
g(0) = b. If m ≥ 1, then [g] ∈ ∗Ca({c}), where g(0) = b and, for each
j ∈ IN, such that 1 ≤ j ≤ m, g(j) = i(very, |||). Thus, for ∗Ca({c}),
which is simply a restriction of *-propositional deduction, one has
that attribute b as well as all of the very, ||| · · · very, |||b attributes are
rationally related to c. When Theorem 4.4.1 is interpreted, then c is
stronger than, better than, greater than, b or any of these standard
strengthens of the basic b.

(Note: Adjective reasoning can also be determined by a general
logic system. (Herrmann, R. A. General Logic-Systems and Finite
Consequence Operators, Logica Universalis, 1(2006):201-208 (Partial
paper at http://arxiv.org/abs/math/05012559).) Let x ∈ BP have
n > 0 very, ||| strings to the left of a c ∈ C0 (page 24). Then a rule
of inference Rx for x is constructed by reduction as follows: remove
one very, ||| from x. Write the result as x1. Then let (x, x1) ∈ Rx.
Continue this finite reduction until c ∈ C0 is obtained. Hence, the
last member of Rx so constructed is (x, c). By definition, the set of
all such finite binary relations Rx obtained for each such x yields a
general logic-system. (This is not a unique construction.) From this
system, the corresponding consequence operator Ca is obtained.)


