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Abstract

The electromagnetic shift of energy levels of H-atom electrons is determined by
calculating the mean square amplitude of oscillation of an electron coupled to the
relic photon fluctuations of the electromagnetic field. Energy shift of electrons in
H-atom is determined in the framework of non-relativistic quantum mechanics.

The cosmical rays including relic photons were predicted by Gamow as a consequence

of the Big Bang. The Mach cone is created when the high energy cosmical particles move

with the speed greater than the velocity of sound in cosmical relic photon sea (Pardy,

2013a; 2013b).

The accidental discovery of the CMB in 1964 by American radio astronomers Arno

Penzias and Robert Wilson was the culmination of work initiated in the 1940, and earned

the discoverers the 1978 Nobel Prize. We consider here the influence of the heat bath of

the relic photons on the energy shift of H-atom electrons.
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Relic photons form so called blackbody, which has the distribution law of photons

derived in 1900 by Planck (1900, 1901), (Schöpf, 1978). The derivation was based on the

investigation of the statistics of the system of oscillators inside of the blackbody. Later

Einstein (1917) derived the Planck formula from the Bohr model of atom where electrons

have the discrete energies and the energy of the emitted photons are given by the Bohr

formula h̄ω = Ei − Ef , Ei, Ef are the initial and final energies of electrons.

Now, let us calculate the modified Coulomb potential due to blackbody. The starting

point of the determination of the energy shift in the H-atom is the potential V0(x), which

is generated by nucleus of the H-atom. The potential at point V0(x + δx), evidently is

(Akhiezer, et al., 1953; Welton, 1948):

V0(x+ δx) =
{
1 + δx∇+

1

2
(δx∇)2 + ...

}
V0(x). (1)

If we average the last equation in space, we can eliminate so called the effective po-

tential in the form

V (x) =
{
1 +

1

6
(δx)2T∆+ ...

}
V0(x), (2)

where δx)2T is the average value of te square coordinate shift caused by the thermal photon

fluctuations. The potential shift follows from eq. (2):

δV (x) =
1

6
(δx)2T∆V0(x). (3)

The corresponding shift of the energy levels is given by the standard quantum me-

chanical formula (Akhiezer, et al., 1953)

δEn =
1

6
(δx)2T (ψn∆V0ψn). (4)

In case of the Coulomb potential, which is the case of the H-atom, we have

V0 = − e2

4π|x|
. (5)

Then for the H-atom we can write

δEn =
2π

3
(δx)2T

e2

4π
|ψn(0)|2, (6)

where we used the following equation for the Coulomb potential

∆
1

|x|
= −4πδ(x). (7)

Motion of electron in electric field is evidently described by elementary equation

δẍ =
e

m
ET , (8)
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which can be transformed by the Fourier transformation into the folowing equation

|δxTω|2 =
1

2

(
e2

m2ω4

)
E2

Tω, (9)

where the index ω concerns the Fourier component of above functions.

On the basis of the Bethe idea of the influence of vacuum fluctuations on the energy

shift of electron (Bethe, 1947), the following elementary relations was used by Welton

(1948), Akhiezer et al. (1953) and Berestetzkii et al. (1999):

1

2
E2

ω =
h̄ω

2
(10)

and in case of the thermal bath of the blackbody, the last equation is of the following

form (Isihara, 1971):

E2
Tω = ϱ(ω) =

(
h̄ω3

π2c3

)
1

e
h̄ω
kT − 1

, (11)

because the Planck law in (11) was written as

ϱ(ω) = G(ω) < Eω >=

(
ω2

π2c3

)
h̄ω

e
h̄ω
kT − 1

, (12)

where the term

< Eω >=
h̄ω

e
h̄ω
kT − 1

(13)

is the average energy of photons in the blackbody and

G(ω) =
ω2

π2c3
(14)

is the number of electromagnetic modes in the interval ω, ω + dω.

Then,

(δxTω)
2 =

1

2

(
e2

m2ω4

)(
h̄ω3

π2c3

)
1

e
h̄ω
kT − 1

, (15)

where (δxTω)
2 involves the number of frequences in the interval (ω, ω + dω).

So, after some integration, we get

(δx)2T =
∫ ω2

ω1

1

2

(
e2

m2ω4

)(
h̄ω3

π2c3

)
1

e
h̄ω
kT − 1

=
1

2

(
e2

m2

)(
h̄

π2c3

)
F (ω2 − ω1), (16)

where F (ω) is the primitive function of the omega-integral

J =
1

ω

1

e
h̄ω
kT − 1

, (17)

which cannot be calculated by the elementary integral methods and it is not involved in

the tables of integrals.
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Frequencies ω1 and ω2 will be determined with regard to the existence of the fluctuation

field of thermal photons. It was determined in case of the Lamb shift (Bethe, 1947 ;

Welton, 1947) by means of the physical analysis of the interaction of the Coulombic atom

with the surrounding fluctuation field. We suppose here that the Bethe and Welton

arguments are valid and so we take the frequencies in the Bethe-Welton form. In other

words, electron cannot respond to the fluctuating field if the frequency which is much less

than the atom binding energy given by the Rydberg constant (Rohlf, 1994) ERydberg =

α2mc2/2. So, the lower frequency limit is

ω1 = ERydberg/h̄ =
α2mc2

2h̄
, (18)

where α ≈ 1/137 is so called the fine structure constant.

The specific form of the second frequency follows from the elementary argument, that

we expect the effective cutoff, since we must neglect the relativistic effect in our non-

relativistic theory. So, we write

ω2 =
mc2

h̄
. (19)

If we take the thermal function of the form of the geometric series

1

e
h̄ω
kT − 1

= q(1 + q2 + q3 + .....); q = e−
h̄ω
kT , (20)

∫ ω2

ω1

q(1 + q2 + q3 + .....)
1

ω
dω = ln |ω|+

∞∑
k=1

(− h̄ω
kT
)k

k!k
+ ....; q = e−

h̄ω
kT (21)

and the first thermal contribution is

Thermal contribution = ln
ω2

ω1

− h̄

kT
(ω2 − ω1), (22)

Then, with eq. (6)

δEn ≈ 2π

3

(
e2

m2

)(
h̄

π2c3

)(
ln
ω2

ω1

− h̄

kT
(ω2 − ω1)

)
|ψn(0)|2, (23)

where (Sokolov et al., 1962)

|ψn(0)|2 =
1

πn2a20
(24)

with

a0 =
h̄2

me2
. (25)

Let us only remark that the numerical form of eq. (23) has deep experimental astro-

physical meaning.
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In article by author (Pardy, 1994), which is the continuation of author articles on

the finite-temperature Čerenkov radiation and gravitational Čerenkov radiation (Pardy,

1989a; ibid., 1989b), the temperature Green function in the framework of the Schwinger

source theory was derived in order to determine the Coulomb and Yukawa potentials

at finite-temperature using the Green functions of a photon with and without radiative

corrections, and then by considering the processes expressed by the Feynman diagrams.

The determination of potential at finite temperature is one of the problems which

form the basic ingredients of the quantum field theory (QFT) at finite temperature. This

theory was formulated some years ago by Dolan and Jackiw (1974), Weinberg (1974) and

Bernard (1974) and some of the first applications of this theory were the calculations of

the temperature behavior of the effective potential in the Higgs sector of the standard

model.

Information on the systematic examination of the finite temperature effects in quantum

electrodynamics (QED) at one-loop order was given by Donoghue, Holstein and Robinett

(1985). Partovi (1994) discussed the QED corrections to Planck’s radiation law and

photon thermodynamics,

A similar discussion of QED was published by Johansson, Peressutti and Skagerstam

(1986) and Cox et al. (1984).

Serge Haroche (2012) and his research group in the Paris microwave laboratory used

a small cavity for the long life-time of photon quantum experiments performed with

the Rydberg atoms. We consider here the gas of relic photons (at temperature T) as

the preamble for new experiments for the determination of the energy shift of H-atom

electrons interacting with the relic photon gas. It is not excluded, that the experiments

performed by the well educated experts will be the Nobelian ones.
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