
Each system is Hamiltonian, and it is quantizable.

Quantum systems are classical systems

Abstract

I prove that the classical trajectories are a projection of an Hamiltonian
trajectory of higher dimension.

Hamiltonian System

Each trajectory in a N -dimensional space can be written:
y1 = f1(t)
...
yN = fN (t)

(1)

each coordinates motion is the solution of a linear differential equation
(there is ever a high order linear differential equation that have the solution
fs, because the differential equation have solution a sum of Taylor, Fourier and
Laplace series, and a non-linear differential equation is a best approximation);
so:

0 = Fc
(
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the derive of the differential equation is linear in the higher derivative:
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so that each polynomial differential equation can be write linearly in the
maximum derivative; so that:
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this system is the half of an Hamiltonian system H, that have N new
momenta:
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the volume of the phase space is an invariant and the sum of the areas
is invariant, because of there is a momenta compensation.

The quantum system is obtained using the correspondence principle:
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The Hamilton-Jacobi equation, that give the classical solution of the
Hamiltonian, is:
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in this case the function ψ permit to calculate the momenta values
like a gradient of the ψ function. Also in this case the classical solution, and
the quantum solution, coincide; and the equation for the amplitude, or the
probability, are equal because of the linearity of the equation.
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