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ABSTRACT

The Sequential Importance Resampling (SIR) method is the core of the Sequential Monte Carlo (SMC) algorithms (a.k.a.,
particle filters). In this work, we point out a suitable choice for weighting properly a resampled particle. This observation entails
several theoretical and practical consequences, allowing also the design of novel sampling schemes. Specifically, we describe
one theoretical result about the sequential estimation of the marginal likelihood. Moreover, we suggest a novel resampling
procedure for SMC algorithms called partial resampling, involving only a subset of the current cloud of particles. Clearly, this
scheme attenuates the additional variance in the Monte Carlo estimators generated by the use of the resampling.

Index Terms— Importance Sampling; Sequential Importance Resampling; Sequential Monte Carlo; Particle Filtering.

1. INTRODUCTION

Sequential Monte Carlo (SMC) methods have become essential tools for Bayesian analysis in statistical signal processing
[2, 8, 9, 12, 18]. SMC algorithms (a.k.a., particle filters) are based on the importance sampling technique [5, 7, 6, 11, 16, 22]
and its sequential version known as Sequential Importance Sampling (SIS) [10, 13]. Another essential piece of SMC is the
application of resampling procedures [3, 10]. The combination of SIS and resampling is often referred as Sequential Importance
Resampling (SIR).

Since the unnormalized importance weight of a resampled particle cannot be computed analytically using the standard IS
weight definition, in the classical SIR formulation, the users consider only the estimators involving normalized weights. The
concept of the unnormalized weight of a resampled particle is usually not considered, i.e., its computation is avoided and
omitted [8, 9, 10].

In this work, we introduce a proper unnormalized importance weight for a particle resampled from a set of weighted
samples, defined as the arithmetic mean of the importance weights of these samples. This weight choice is proper according to
the Liu’s definition [13, Section 2.5.4] since it provides unbiased IS estimators, as shown in this work. The introduction of this
unnormalized proper weight for a resampled particle entails several interesting consequences from a practical and theoretical
point of view. For instance, this weight definition has been already applied implicitly or heuristically in different works: in
parallel particle filters [4, 19, 20] and parallel SMC schemes, e.g., the island particle- double bootstrap method [25, 26],
or “unawarely” in certain classes of MCMC algorithms [1, 14] (where one particle is chosen among a set of candidates via
resampling, before be testing as possible future state of the chain), as we can infer from the discussion in [17]. Similarly
approaches have been implicitly used in the so-called α-SMC [27] and Nested-SMC methods [21].

Here, we also describe two additional consequences. First, we highlight that all the estimators derived in the SIS approach
can also be employed in SIR using the weight definition of a resampled particle introduced here. We show it considering
the estimation of the marginal likelihood (a.k.a., Bayesian evidence or partition function) [10, 18, 22]. In SIS, there are
two possible estimators of the marginal likelihood which are completely equivalent [18]. Using the proper unnormalized
weight for a resampled particle, we show that we can employ two equivalent estimators of the marginal likelihood also in
SIR. They coincide with the estimators in SIS as special case, when no resampling is applied. Furthermore, we describe an
alternative resampling procedure for particle filtering algorithms, called partial resampling, involving only a subset of the
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OTOSiS (TEC2013-41718-R), by the Grant 2014/23160-6 of the São Paulo Research Foundation (FAPESP) and by the Grant 305361/2013-3 of the National
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current population of particles. This scheme attenuates the loss of diversity in the population and the additional variance in the
Monte Carlo estimators generated due to the application of the resampling steps.

2. IMPORTANCE SAMPLING

Let us denote the target probability density function (pdf) as π̄(x) = 1
Zπ(x) (known up to a normalizing constant) with

x = x1:D = [x1, x2, . . . , xD] ∈ X ⊆ RD×η,

where xd ∈ Rη for all d = 1, . . . , D. We consider the Monte Carlo approximation of complicated integrals involving the target
π̄(x) and a square-integrable function h(x), e.g.,

I = Eπ̄[h(X)] =
∫

X
h(x)π̄(x)dx, (1)

where X ∼ π̄(x). In general, generating samples directly from the target π̄(x) is impossible. Thus, one usually considers a
(simpler) proposal pdf, q(x). The expression below

Eπ̄[h(X)] = Eq[h(X)w(X)],

=
1
Z

∫

X
h(x)

π(x)
q(x)

q(x)dx, (2)

where w(x) = π(x)
q(x) : X → R, suggests an alternative procedure. Indeed, we can draw N samples (also called particles)

x1, . . . ,xN from q(x),1 and then assign to each sample the following unnormalized weights

w(xn) =
π(xn)
q(xn)

, n = 1, . . . , N. (3)

If the target function π(x) is normalized, i.e., Z = 1, π̄(x) = π(x), a natural (unbiased) IS estimator [13, 22] is defined as

ÎN =
1
N

N∑

n=1

w(xn)h(xn), ÎN
P−−−−→

N→∞
I, (4)

where xn ∼ q(x), n = 1, . . . , N . If the normalizing constant Z is unknown, defining the normalized weights,

w̄(xn) =
w(xn)

∑N
i=1 w(xi)

, n = 1, . . . , N, (5)

an alternative self-normalized (biased) IS estimator [13, 22] is

IN =
N∑

n=1

w̄(xn)h(xn), IN
P−−−−→

N→∞
I. (6)

Moreover, an unbiased estimator of marginal likelihood, Z =
∫
X π(x)dx, is given by

Ẑ =
1
N

N∑

i=1

w(xi), Ẑ
P−−−−→

N→∞
Z, (7)

where we have avoided the subindex N , in order to simplify the notation in the rest of the work.

1We assume that q(x) > 0 for all x where π̄(x) 6= 0, and q(x) has heavier tails than π̄(x).



2.1. Concept of proper weighted sample

Although the weights of Eq. (3) are broadly used in the literature, the concept of a properly weighted sample, suggested in
[22, Section 14.2] and in [13, Section 2.5.4], can be used to construct more general weights. More specifically, following the
definition in [13, Section 2.5.4], a set of weighted samples is considered proper with respect to the target π if, for any square
integrable function h,

Eq[w(xn)h(xn)] = cEπ̄[h(xn)], ∀n = {1, . . . , N}, (8)

where c is a constant value, also independent from the index n, and the expectation of the left hand side is performed, in general,
w.r.t. to the joint pdf of w(x) and x, i.e., q(w,x). Namely, the weight w(x), (for a given value of x), could even be considered
a random variable.

3. IMPORTANCE WEIGHT OF A RESAMPLED PARTICLE

Let us consider the following multinomial resampling procedure [3, 8, 9]:

1. Draw N particles xn ∼ q(x) and weight them with w(xn) = π(xn)
q(xn) , with n = 1, . . . , N .

2. Draw one particle x̃′ ∈ {x1, . . . ,xN} from the discrete probability mass

π̂(x|x1:N ) =
N∑

n=1

w̄(xn)δ(x− xn), (9)

where w̄(xn) = w(xn)PN
i=1 w(xi)

.

Question 1. What is the distribution of the resampled particle x̃′ (not conditioned to x1:N )? We can easily write its correspond-
ing density as

q̃(x) =
∫

XN

[
N∏

i=1

q(xi)

]
π̂(x|x1:N )dx1:N . (10)

where π̂ is given in Eq. (9). However, the integral above cannot be computed analytically.

Question 2. Can we obtain a proper importance weight associated to the resampled particle x̃? As a consequence of the
previous observations, we are not able to evaluate the corresponding standard importance weight, w(x̃) = π(ex)eq(ex) .

For solving this issue, let us consider N resampled particles x̃1, . . . , x̃N independently obtained by the resampling proce-
dure above. In SMC and adaptive IS applications, [5, 7, 8, 9], the unnormalized importance weights of x̃1, . . . , x̃N are not
usually needed, but only the normalized ones. Thus, a well known proper strategy [8, 9, 10] in this case is to consider

w(x̃1) = w(x̃2) = . . . = w(x̃N ), (11)

and, as a consequence, the normalized weights are

w̄(x̃1) = w̄(x̃2) = . . . = w̄(x̃N ) =
1
N
. (12)

The reason why this approach is suitable lies on the Liu’s definition of proper importance weights in Section 2.1. Indeed,
considering the random variable X̃ ∼ π̂(x|x1:N ), we have

Ebπ[h(X̃)|x1:N ] =
∫
h(x)π̂(x|x1:N )dx,

=
N∑

n=1

w̄(xn)h(xn) = IN . (13)

where xn ∼ q(x) for n = 1, . . . , N , are considered fixed in the expectation Ebπ[h(X̃)|x1:N ]. Now, let us resample M times.
The self-normalized IS estimator using the M resampled particles is

ĨM =
1
M

M∑

m=1

h(x̃m) P−−−−→
M→∞

Ebπ[h(X̃)|x1:N ] = IN . (14)



Hence, we have

ĨM
P−−−−→

M→∞
IN

P−−−−→
N→∞

I, (15)

due to Eqs. (13)-(14). This proves that the choice w̄(x̃m) = 1
M , for all m = 1, . . . ,M , is proper by Liu’s definition.

However, for several theoretical and practical reasons (some of them discussed below), it is interesting to define also a proper
unnormalized importance weight of a resampled particle. Let us consider the following definition.

Definition 1. A proper choice for an unnormalized importance weight value (following Section 2.1) of a resampled particle
x̃ ∈ {x1, . . . ,xN} is

ρ(x̃) = ρ(x̃|x1:N ) = Ẑ =
1
N

N∑

i=1

w(xi). (16)

Indeed, in this case, we have

E eQ(x,x1:N )[ρ(x|x1:N )h(x)] = cEπ̄[h(x)], (17)

where Q̃(x,x1:N ) = π̂(x|x1:N )
[∏N

i=1 q(xi)
]
.

Proof. We show that Eq. (17) holds. Note that

E eQ(x,x1:N )[ρ(x|x1:N )h(x)] =
∫

X

∫

XN
h(x)ρ(x|x1:N )Q̃(x,x1:N )dxdx1:N , (18)

=
∫

X

∫

XN
h(x)ρ(x|x1:N )π̂(x|x1:N )

[
N∏

i=1

q(xi)

]
dxdx1:N . (19)

Recalling that

π̂(x|x1:N ) =
N∑

n=1

w̄(xn)δ(x− xn) =
1

∑N
n=1 w(xn)

N∑

n=1

w(xn)δ(x− xn), (20)

=
1

NẐ

N∑

n=1

w(xn)δ(x− xn), (21)

where Ẑ = Ẑ(x1:N ) = 1
N

∑N
n=1 w(xn). Recalling also w(xn) = π(xn)

q(xn) , we can rearrange the expectation above as

E eQ(x,x1:N )[ρ(x|x1:N )h(x)] =
∫

X
h(x)



N∑

j=1



∫

XN−1
ρ(x|x1:N )

w(x)

NẐ



N∏

i=1
i 6=j

q(xi)


 dx¬j





 dx, (22)

=
∫

X
h(x)


π(x)

N∑

j=1



∫

XN−1
ρ(x|x1:N )

1

NẐ



N∏

i=1
i6=j

q(xi)


 dx¬j





 dx, (23)

where x¬j = [x1, . . . ,xj−1,xj+1, . . . ,xN ]. The we have,

E eQ(x,x1:N )[ρ(x|x1:N )h(x)] =
∫

X
h(x)π(x)



N∑

j=1



∫

XN−1
ρ(x|x1:N )

1

NẐ



N∏

i=1
i6=j

q(xi)


 dx¬j





 dx, (24)



If we choose ρ(x|x1:N ) = Ẑ and replace in the expression above, we obtain

E eQ(x,x1:N )[ρ(x|x1:N )h(x)] =
∫

X
h(x)π(x)



N∑

j=1



∫

XN−1
Ẑ

1

NẐ



N∏

i=1
i 6=j

q(xi)


 dx¬j





 dx, (25)

=
∫

X
h(x)π(x)N

1
N
dx, (26)

=
∫

X
h(x)π(x)dx (27)

= cEπ̄[h(x)], (28)

where c = Z. 2

Considering N independent resampled particles, Note that with this definition we again have

ρ(x̃1) = ρ(x̃2) = . . . = ρ(x̃N ),

so that also ρ̄(x̃n) = 1
N , for all n = 1, . . . , N , denoting with ρ̄(x̃n) the corresponding normalized weights.

Remark 1. The previous definition allows is to estimate Z using the resampled particles as well. Indeed,

Z̃ =
1
N

N∑

i=1

ρ(x̃i) =
1
N

(
NẐ

)
= Ẑ, (29)

is an unbiased estimator of Z (equivalent to Ẑ).

4. APPLICATION IN SIR

Let recall x = x1:D = [x1, x2, . . . , xD] ∈ X ⊆ RD×η where xd ∈ Rη for all d = 1, . . . , D and let us consider a target pdf
π̄(x) factorized as

π̄(x) ∝ π(x) = γ1(x1)
D∏

d=2

γd(xd|x1:d−1), (30)

where γ1(x1) is a marginal pdf and γd(xd|x1:d−1) are conditional pdfs. We also denote the joint probability of [x1, . . . , xd],

π̄d(x1:d) =
1
Zd
πd(x1:d), (31)

where

πd(x1:d) = γ1(x1)
d∏

j=2

γj(xj |x1:j−1).

Clearly, π̄(x) ≡ π̄D(x1:D). We can also consider a proposal pdf decomposed in the same fashion,

q(x) = q1(x1)q2(x2|x1) · · · qD(xD|x1:D−1).

In a batch IS scheme, given the n-th sample xn = x
(n)
1:D ∼ q(x), we assign the importance weight

w(xn) =
π(xn)
q(xn)

=
γ1(x(n)

1 )γ2(x(n)
2 |x

(n)
1 ) · · · γD(x(n)

D |x
(n)
1:D−1)

q1(x(n)
1 )q2(x(n)

2 |x
(n)
1 ) · · · qD(x(n)

D |x
(n)
1:D−1)

.



The previous expression suggests a recursive procedure for computing the importance weights. Indeed, in a sequential Impor-
tance sampling (SIS) approach [8, 9], we can write

w
(n)
d = w

(n)
d−1β

(n)
d =

d∏

j=1

β
(n)
j , n = 1, . . . , N, (32)

where we have set

w
(n)
1 = β

(n)
1 =

π(x(n)
1 )

q(x(n)
1 )

and β
(n)
d =

γd(x
(n)
d |x

(n)
1:d−1)

qd(x
(n)
d |x

(n)
1:d−1)

, (33)

for d = 2, . . . , D. Clearly, w(xn) ≡ w
(n)
D . The estimator of the normalizing constant Zd =

∫
Rd×η πd(x1:d)dx1:d at the d-th

iteration is

Ẑd =
1
N

N∑

n=1

w
(n)
d =

1
N

N∑

n=1

w
(n)
d−1β

(n)
d , (34)

=
1
N

N∑

n=1




d∏

j=1

β
(n)
j


 . (35)

Again, Z ≡ ZD and Ẑ ≡ ẐD. However, an alternative formulation is often used [9, 10]

Zd =
d∏

j=1

[
N∑

n=1

w̄
(n)
j−1β

(n)
j

]
=

d∏

j=1

[∑N
n=1 w

(n)
j∑N

n=1 w
(n)
j−1

]
,

= Ẑ1

d∏

j=2

[
Ẑj

Ẑj−1

]
= Ẑ1

Ẑ2

Ẑ1

. . .
Ẑd

Ẑd−1

= Ẑd. (36)

Therefore, in SIS, Ẑd in Eq. (34) and Zd in Eq. (36) are equivalent formulations of the same estimator of Zd [18]. Furthermore,
note that Ẑd can be written in a recursive form as

Zd = Zd−1

[
N∑

n=1

w̄
(n)
d−1β

(n)
d

]
. (37)

4.1. Estimators of the marginal likelihood in SIR

Sequential Importance Resampling (SIR) [13, 22, 23, 24] combines the SIS approach with the application of the resampling
procedure described in Section 3. Considering the proper importance weight of a resampled particle given in Definition 1 and
recalling that w(n)

d the weight at the d-th iteration, we obtain the following recursion, w(n)
1 = β

(n)
1 and

w
(n)
d = w

(n)
d−1β

(n)
d , (38)

for d = 2, . . . , D, where

w
(n)
d−1 =

{
w

(n)
d−1, without resampling at (d− 1)-th it.,

Ẑd−1, with resampling at (d− 1)-th it.,
(39)

i.e., if a resampling is applied at (d− 1)-th iteration then ξ(n)
d−1 = Ẑd−1, ∀n = 1, . . . , N .

Remark 2. Using the Definition 1 and the recursive definition of the weights w(n)
d in Eqs. (38)-(39), Ẑd and Zd are both

consistent and equivalent estimators of the marginal likelihood, also in SIR. Namely, the two estimators are

Ẑd =
1
N

N∑

n=1

w
(n)
d , Zd =

d∏

j=1

[
N∑

n=1

w̄
(n)
j−1β

(n)
j

]
(40)



are equivalent, Ẑd ≡ Zd. For instance, if the resampling is applied at each iteration, they become

Zd =
d∏

j=1

[
1
N

N∑

n=1

β
(n)
j

]
, (41)

Ẑd = Ẑd−1

[
1
N

N∑

n=1

β
(n)
d

]
=

d∏

j=1

[
1
N

N∑

n=1

β
(n)
j

]
, (42)

and clearly coincide.

Figure 1 summarizes this scenario. In SIS, the estimatorsZd and Ẑd coincide with the formulaZd ≡ Ẑd = 1
N

∑N
n=1

[∏d
j=1 β

(n)
j

]

in Eq. (35). With a proper weighting of a resampled particles, in an adaptive resampling context, we have again Zd ≡ Ẑd. If
the resampling is applied at each iteration, they coincides with the expression Zd ≡ Ẑd =

∏d
j=1

[
1
N

∑N
n=1 β

(n)
j

]
.2

bZd =
1
N

NX

n=1

w
(n)
d

=
1
N

NX

n=1

w
(n)
d�1�

(n)
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dY
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"
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�
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Fig. 1. Expressions of the marginal likelihood estimators Zd and Ẑd in different SIR scenarios (without resampling, i.e., in SIS,
adaptive resampling, and applying resampling at each iterations). If a proper weighting of a resampled particle is considered,
they always coincide, Zd ≡ Ẑd.

Remark 3. Let us focus on the marginal likelihood estimators at the final iteration, i.e., Ẑ = ẐD and Z = ZD. Without using
the Definition 1 and the recursive definition of the weights w(n)

d in Eqs. (38)-(39), the only estimator of the marginal likelihood
that can be properly computed in SIR is Z, that involves only the computation of the normalized weights w̄(n)

d (omitting the
values of the corresponding unnormalized ones).

5. PARTIAL RESAMPLING

The core of Sequential Monte Carlo methods is the SIR approach [8, 9, 23]. Namely, the weights are constructed recursively
as in (32) and resampling steps, involving all the particles, are applied at some iterations. The combination of both, SIS and
resampling schemes, is possible in the standard SIR approach only if the entire set of particles is employed in the resampling
[8, 9], so that the assumption

ρ(x̃1) = ρ(x̃2) = . . . = ρ(x̃N ), (43)
2A related Matlab demo code is provided at http://www.lucamartino.altervista.org/GIS.zip.

http://www.lucamartino.altervista.org/GIS.zip


is enough for computing IN and Z, since w̄(x̃n) = 1
N for all n ∈ {1, . . . , N}. If Definition 1 is used and then the recursive

expression (38)-(39) is applied, we can define a resampling procedure involving only a subset of particles, as described in the
following. We consider to apply a partial resampling scheme at the d-th iteration:

1. Choose randomly without replacement a subset of M ≤ N samples,

R = {x(j1)
d , . . . , x

(jM )
d },

contained within the set of N particles {x(1)
d , . . . , x

(N)
d }. Let us denote also the set

N = {x(1)
d , . . . , x

(N)
d }\R,

of the particles which do not take part in the resampling.

2. Give the set R, resample with replacement M particles according to the normalized weights w̄(jm)
d = w

(jm)
dPM

k=1 w
(jk)
d

, for

m = 1, . . . ,M , obtaining R̃ = {x̃(1)
d , . . . , x̃

(M)
d }. Clearly, R̃ ⊆ R.

3. For all the resampled particles in R̃ set

w
(m)
d =

1
M

m∑

k=1

w
(jk)
d , (44)

for m = 1, . . . ,M , whereas the unnormalized importance weights of the particles in N remains invariant.

4. Go forward to the iteration d+ 1 of the SIR method, using the recursive formula (32).

The procedure above is valid since yields proper weighted samples by Liu’s definition. If M = N , it coincides with the
traditional resampling procedure. This approach can reduce the loss of diversity due to the application of the resampling
[8, 9, 13].

6. CONCLUSIONS

In this work, we have introduced a proper choice of the unnormalized weight assigned to a resampled particle. This choice
entails several theoretical and practical consequences. We have described two of them, regarding (1) the estimation of the
marginal likelihood and, (2) the application of a partial resampling involving only a subset of the cloud of particles, within SIR
techniques. Other novel algorithms (based on the partial resampling perspective) and theoretical consequences (also affecting
well-known the MCMC techniques, such as the particle Metropolis-Hastings method [1, 17], and parallel SMC implementa-
tions) will be highlighted out in an extended version of this work.
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