Each unidimensional system is Hamiltonian, so
that each unidimensional system is quantizable

Abstract
I prove that the field of classical trajectories can be a field Hamiltonian
projection of higher dimension.
I hypothesize that the same is valid for any dimension: each system
is Hamiltonian, and each system is quantizable using the corrispondence
principle

Unidimensional Hamiltonian System

Each unidimensional trajectory can be described by a differential equation
of high order, and high degree (each derivable function can be approximate
by a sum of Taylor, Fourier and Laplace series, that is a solution of a linear
differential equation, but an improved approximation is a nonlinear differential
equation):
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the derive of the differential equation is linear in the higher derivative:
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so that each polynomial differential equation can be write linearly in the
maximum derivative; so that:
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this system can be the half of an Hamiltonian system H =), p; f;, that
have N new momenta:
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the trajectories in the coordinates are ever the same, for each momentum
initial condition; the volume of the phase space is an invariant in the space
(coordinates,momenta) and the sum of the areas is invariant, because of there
is a momenta compensation.
In this case, each quantum system is equal to the classical system:
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there are two classical solutions:

91 =N
yN = fn (8)
dy1 _ .—M:dt

T T TN
ob+ 32, fi0h =0
that is a surface solution, in an N+1 dimensional space (coordinates
and times), and 1) is the solution of the differential equation.

Another solution is the Hamilton-Jacobi equation, that give the classical
solution of the Hamiltonian:
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in this case the function ¢ permit to calculate the momenta values
like a gradient of the v function. Also in this case the classical solution, and
the quantum solution, coincide; and the equation for the amplitude, or the
probability, are equal because of the linearity of the equation.



