Each unidimensional system is Hamiltonian, so that each unidimensional system is quantizable

Abstract
I prove that the field of classical trajectories can be a field Hamiltonian projection of higher dimension.
I hypothesize that the same is valid for any dimension: each system is Hamiltonian, and each system is quantizable using the corrispondence principle

Unidimensional Hamiltonian System

Each unidimensional trajectory can be described by a differential equation of high order, and high degree (each derivable function can be approximate by a sum of Taylor, Fourier and Laplace series, that is a solution of a linear differential equation, but an improved approximation is a nonlinear differential equation):

$$
\begin{gather*}
0=\mathcal{F}(y, \dot{y}, \ddot{y}, \cdots)=a_{10 \ldots}+a_{010 \cdots y}+a_{0010 \ldots \dot{y}}+\cdots+a_{0101 \ldots y} y \ddot{y}+\cdots \tag{1}\\
0=\mathcal{F}(y, \dot{y}, \ddot{y}, \cdots)=\sum_{i_{0}, \cdots, i_{n}} a_{i_{0}, \cdots, i_{n}} \frac{d^{i_{0}} y}{d t^{i_{0}}} \cdots \frac{d^{i_{n}} y}{d t^{i_{n}}} \tag{2}
\end{gather*}
$$

the derive of the differential equation is linear in the higher derivative:

$$
\begin{align*}
& 0=\frac{d \mathcal{F}(y, \dot{y}, \ddot{y}, \cdots)}{d t}=\frac{d}{d t} \sum_{i_{0}, \cdots, i_{n}} a_{i_{0}, \cdots, i_{n}} \prod_{s=1}^{n}\left(\frac{d^{s} y}{d t^{s}}\right)^{i_{s}}=\sum_{k, i_{0}, \cdots, i_{n}} a_{i_{0}, \cdots, i_{n}} \prod_{s=1}^{n} i_{k}\left(\frac{d^{s} y}{d t^{s}}\right)^{i_{s}-\delta_{s k}} \frac{d^{k+1} y}{d t^{k+1}} \tag{3}\\
& \frac{d^{N} y}{d t^{N}}=\mathcal{G}\left(y, \frac{d y}{d t}, \ldots, \frac{d^{N-1} y}{d t^{N-1}}\right) \tag{4}
\end{align*}
$$

so that each polynomial differential equation can be write linearly in the maximum derivative; so that:

$$
\left\{\begin{array}{l}
y=y_{0} \tag{5}\\
\dot{y}_{0}=y_{1} \\
\dot{y}_{1}=y_{2} \\
\vdots \\
\dot{y}_{N-2}=y_{N-1} \\
\dot{y}_{N-1}=\mathcal{G}\left(y_{0}, \cdots, y_{N-1}\right)
\end{array}\right.
$$

this system can be the half of an Hamiltonian system $H=\sum_{i} p_{i} f_{i}$, that have N new momenta:

$$
\begin{align*}
& H=\sum_{i=0}^{N} p_{i} f_{i}=\sum_{j=0}^{N} p_{i}\left\{y_{i+1}+\delta_{i N}\left[-y_{i+1}+\mathcal{G}\right]\right\}=\sum_{i=0}^{N-1} p_{i} y_{i+1}+p_{N} \mathcal{G} \\
& \left\{\begin{array}{l}
\dot{y}_{j \neq N}=\frac{\partial H}{\partial p_{j}}=f_{j}=y_{j+1} \\
\dot{y}_{N}=\frac{\partial H}{\partial p_{N}}=f_{N}=\mathcal{G} \\
\dot{p}_{j \neq N}=-\frac{\partial H}{\partial y_{j}}=-p_{N} \frac{\partial \mathcal{G}}{\partial y_{j}}-p_{j-1} \\
\dot{p}_{N}=-\frac{\partial H}{\partial y_{N}}=-p_{N-1}
\end{array}\right. \tag{6}
\end{align*}
$$

the trajectories in the coordinates are ever the same, for each momentum initial condition; the volume of the phase space is an invariant in the space (coordinates,momenta) and the sum of the areas is invariant, because of there is a momenta compensation.

In this case, each quantum system is equal to the classical system:

$$
\begin{align*}
& H=p_{i} f_{i} \\
& i \hbar \partial_{t} \psi=-i \hbar \sum_{i} f_{i} \partial_{i} \psi \\
& 0=\partial_{t} \psi+\sum_{i} f_{i} \partial_{i} \psi \tag{7}
\end{align*}
$$

there are two classical solutions:

$$
\begin{gather*}
\left\{\begin{array}{l}
\dot{y}_{1}=f_{1} \\
\vdots \\
\dot{y}_{N}=f_{N}
\end{array}\right. \tag{8}\\
\frac{d y_{1}}{f_{1}}=\cdots=\frac{d y_{N}}{f_{N}}=d t \\
\partial_{t} \psi+\sum_{i} f_{i} \partial_{i} \psi=0
\end{gather*}
$$

that is a surface solution, in an $\mathrm{N}+1$ dimensional space (coordinates and times), and ψ is the solution of the differential equation.

Another solution is the Hamilton-Jacobi equation, that give the classical solution of the Hamiltonian:

$$
\begin{gather*}
H=p_{i} f_{i} \\
\partial_{t} \psi+H\left(p_{i}=\partial_{i} \psi, y_{i}\right)=0 \tag{9}\\
\partial_{t} \psi+\sum_{i} f_{i} \partial_{i} \psi=0
\end{gather*}
$$

in this case the function ψ permit to calculate the momenta values like a gradient of the ψ function. Also in this case the classical solution, and the quantum solution, coincide; and the equation for the amplitude, or the probability, are equal because of the linearity of the equation.

