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Abstract

The Effective Sample Size (ESS) is an important measure of efficiency of Monte Carlo
methods such as Markov Chain Monte Carlo (MCMC) and Importance Sampling (IS)
techniques. In the IS context, an approximation ÊSS of the theoretical ESS definition is
widely applied, involving the inverse of the sum of the squares of the normalized importance
weights. This formula, ÊSS, has become an essential piece within Sequential Monte Carlo
(SMC) methods, to assess the convenience of a resampling step. From another perspective,
the expression ÊSS is related to the Euclidean distance between the probability mass
described by the normalized weights and the discrete uniform probability mass function
(pmf). In this work, we derive other possible ESS functions based on different discrepancy
measures between these two pmfs. Several examples are provided involving, for instance,
the geometric mean of the weights, the discrete entropy (including the perplexity measure,
already proposed in literature) and the Gini coefficient among others. We list five theoretical
requirements which a generic ESS function should satisfy, allowing us to classify different ESS
measures. We also compare the most promising ones by means of numerical simulations.

Keywords: Effective Sample Size; Perplexity; Importance Sampling; Sequential Monte
Carlo; Particle Filtering; Bayesian Inference.

1 Introduction

Sequential Monte Carlo (SMC) methods (a.k.a., particle filtering algorithms) are important
tools for Bayesian inference [10], extensively applied in signal processing [9, 17, 29, 26] and
statistics [11, 30, 35]. A key point for the success of a SMC method is the use of resampling
procedures, applied for avoiding the degeneracy of the importance weights [9, 11]. However, the
application of resampling yields loss of diversity in the population of particles and entails an
additional computational cost [9, 12], [6, page 21]. Furthermore, resampling limits the parallel
implementation of the filter (since it needs the information of all the weights at a specific iteration).
Hence, one would desire to perform resampling steps parsimoniously, only when it is strictly



required [12, pages 13 and 15]. This adaptive implementation of the resampling procedure needs
the use of the concept of Effective Sample Size (ESS) of a set of weighted samples [9, 23, 35].

The ESS is a measure of the efficiency of different Monte Carlo methods, such as Markov
Chain Monte Carlo (MCMC) and Importance Sampling (IS) techniques [4, 15, 23, 35, 25, 27].
ESS is theoretically defined as the equivalent number of independent samples generated directly
form the target distribution, which yields the same efficiency in the estimation obtained by the
MCMC or IS algorithms. Thus, a possible mathematical definition [15, 21] considers the ESS
as a function proportional to the ratio between the variance of the ideal Monte Carlo estimator
(drawing samples directly from the target) over the variance of the estimator obtained by MCMC
or IS techniques, using the same number of samples in both estimators.

The most common choice to approximate this theoretical ESS definition in IS is the formula

ÊSS = 1PN
n=1 w̄

2
n
, which involves (only) the normalized importance weights w̄n, n = 1, . . . , N

[9, 11, 35, 22]. This expression is obtained by several approximations of the initial theoretical

definition so that, ÊSS provides an accurate estimation of the ESS values (given by the theoretical
definition) only in specific cases. For this reason other ESS expressions have also been proposed,
e.g., the perplexity, involving the discrete entropy of the weights [7] has been suggested in [2]; see
also [35, Chapter 4], [12, Section 3.5], [18]. The discrete entropy has been also considered in order
to design criteria for adaptive resampling schemes in [32, Section 2.3], [31]. More recently, other

alternative formulas ÊSS have also been analyzed in [18]. In [37], a conditional ÊSS formula is
introduced in order to study similarities between successive pdfs within a sequence of densities.

However, the ESS approximation ÊSS = 1PN
n=1 w̄

2
n

is widely used in practice, and it generally

provides good performance. Furthermore, several theoretical studies related to ÊSS can be found

in literature (e.g., see [1, 36, 32, 31]). It is possible to show that ÊSS is also related to the
discrepancy between the probability mass function (pmf) defined by the normalized weights w̄n,
n = 1, . . . , N , and the uniform pmf U{1, 2, . . . , N}. When the pmf defined by w̄n is close to the

uniform pmf U{1, 2, . . . , N}, ÊSS provides high values otherwise, when the pmf defined by w̄n is

concentrated mainly in one weight, ÊSS provides small values. More specifically, we show that

ÊSS is related to the Euclidean distance between these two pmfs.
It is possible to obtain other ESS functions based on different discrepancy measures, as we

show in this work. We describe and discuss five requirements, three strictly needed and two
welcome conditions, that a Generalized ESS (G-ESS) function should satisfy. Several examples,
involving for instance the geometric mean, discrete entropy [7] and the Gini coefficient [16, 24] of
the normalized weights, are presented. Additionally, four families of proper G-ESS functions are
designed. We classify the novel G-ESS functions (including also the perplexity measure [2, 35])
according to the conditions fulfilled. We focus on the G-ESS functions which satisfy all the
desirable conditions and compare them by means of numerical simulations. This analysis shows
that different G-ESS expressions present interesting features from a theoretical and practical point
of view and it can be considered valid alternatives of the standard formula 1PN

n=1 w̄
2
n
.

The rest of the paper is organized as follows. Section 2 recalls the required background material.

In Section 3, we highlight that the standard formula ÊSS = 1PN
n=1 w̄

2
n

is related to the Euclidean

distance between two pmfs. The definition of a generalized ESS function is given in Section 4, and
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novel ESS families are introduced in Section 5. Section 6 provides several numerical simulations.
Finally, Section 7 contains some brief conclusions.

2 Effective Sample Size for Importance Sampling

Let us denote the target pdf as π̄(x) ∝ π(x) (known up to a normalizing constant) with x ∈ X .
Moreover, we consider the following integral involving π̄(x) and a square-integrable (w.r.t. π̄)
function h(x),

I =

∫

X
h(x)π̄(x)dx, (1)

that we desire to approximate using a Monte Carlo approach. If we are able to draw N independent
samples x1, . . . ,xN from π̄(x), then the Monte Carlo estimator of I is

Î =
1

N

N∑

n=1

h(xn) ≈ I, (2)

where xn ∼ π̄(x), with n = 1, . . . , N . However, in general, generating samples directly from
the target, π̄(x), is impossible. Alternatively, we can draw N samples x1, . . . ,xN from a simpler

proposal pdf q(x),1 and then assign a weight wn = π(xn)
q(xn)

, n = 1, . . . , N , to each sample, according

to the importance sampling (IS) approach. Defining the normalized weights,

w̄n =
wn∑N
i=1wi

, n = 1, . . . , N, (3)

then the IS estimator is

Ĩ =
N∑

n=1

w̄nh(xn) ≈ I, (4)

with xn ∼ q(x), n = 1, . . . , N . In general, the estimator Ĩ is less efficient than Î, since the samples
are not directly generate by π̄(x). In several applications [9, 11, 17, 26], it is necessary to measure

in some way the efficiency that we lose using Ĩ instead of Î. The idea is to define the Effective
Sample Size (ESS) as ratio of the variances of the estimators [21],

ESS = N
varπ[Î]

varq[Ĩ]
. (5)

Remark 1. The ESS value in (5) can be interpreted as the number of independent samples drawn

directly from the target π̄ required in order to obtain an estimator Î with a variance equal to
varq[Ĩ].
Namely, ESS represents the number of samples from π̄ required to obtain a Monte Carlo estimator
Î with the same efficiency of the IS estimator Ĩ (considering q as proposal). Heuristically speaking,

1We assume that q(x) > 0 for all x where π̄(x) 6= 0, and q(x) has heavier tails than π̄(x).
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we can assert that ESS measures how many independent identically distributed (i.i.d.) samples,
drawn from π̄, are equivalent to the N weighted samples, draw from q and weighted according to
the ratio π(x)

q(x)
[5, Section 3].

Finding a useful expression of ESS derived analytically from the theoretical definition above is
not straightforward. Different derivations [21, 22], [11, Chapter 11], [35, Chapter 4] proceed using
several approximations and assumptions for yielding an expression useful from a practical point
of view. A well-known ESS approximation, widely used in literature [11, 23, 35], is

ÊSS =
1∑N

i=1 w̄
2
n

,

=

(∑N
i=1wn

)2

∑N
i=1w

2
n

, (6)

, P
(2)
N (w̄),

where we have used the normalized weights w̄ = [w̄1, . . . , w̄N ] in the first equality, and the

unnormalized ones in the second equality. The reason of using the notation P
(2)
N (w̄) will appear

clear later (the subindex N denotes the number of weights involved, and the reason of the super-
index will be clarified in Section 5). An interesting property of the expression (6) is that

1 ≤ P
(2)
N (w̄) ≤ N. (7)

3 P
(2)
N as a discrepancy measure

Although, in the literature, P
(2)
N (w̄) is often considered a suitable approximation of the theoretical

ESS definition, the derivation of P
(2)
N [21, 34, 35],[5, Section 3] contains several approximations

and strong assumptions. As a consequence, P
(2)
N differs substantially from the original definition

ESS = N varπ [bI]
varq [eI] in many scenarios (e.g., see the numerical results in Section 6.2). In Appendix

A, we list the approximations needed in the derivation of P
(2)
N and we also discuss its limitations.

Despite of the previous consideration, the expression P
(2)
N (w̄) is widely used in the adaptive

resampling context [9, 12], [6, page 21] within population Monte Carlo and particle filtering

schemes [3, 11, 14, 17, 26].2 For this reason, several theoretical studies about P
(2)
N can also

be found in literature [1, 36, 32, 31], showing that P
(2)
N has good theoretical properties (e.g.,

monitoring P
(2)
N is enough to prevent the particle system to collapse [1, 31, 32]).

2 In a standard resampling procedure [12, 6], the indices of the particles employed at the next generation are
drawn according to a multinomial distribution defined by the normalized weights w̄n = wnPN

i=1 wi
, with n = 1, . . . , N .

In order to perform resampling steps adaptively, i.e., only in certain specific iterations, the common practice is
to estimate the ESS, using typically the approximation ÊSS = P

(2)
N . Afterwards, the approximated value ÊSS

is compared with pre-established threshold εN , with ε ∈ [0, 1] [11, 12, 6]; if ÊSS ≤ εN , then the resampling is
applied.
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We believe that one of the reasons of the success of P
(2)
N in adaptive resampling is due

to its connection with the discrepancy between two pmfs: the pmf defined by the weights
w̄ = [w̄1, . . . , w̄N ] and the discrete uniform pmf defined by w̄∗ =

[
1
N
, . . . , 1

N

]
. Roughly speaking, if

the vector w̄ is reasonably close to w̄∗, then the resampling is considered unnecessary. Otherwise,
the resampling is applied. More precisely, we can show that P

(2)
N is related to the Euclidean

distance L2 between these two pmfs, i.e.,

||w̄ − w̄∗||2 =

√√√√
N∑

n=1

(
w̄n −

1

N

)2

=

√√√√
(

N∑

n=1

w̄2
n

)
+N

(
1

N2

)
− 2

N

N∑

n=1

w̄n

=

√√√√
(

N∑

n=1

w̄2
n

)
− 1

N

=

√
1

P
(2)
N (w̄)

− 1

N
. (8)

Hence, maximizing P
(2)
N is equivalent to minimizing the Euclidean distance ||w̄ − w̄∗||2. Thus,

it appears natural to consider the possibility of using other discrepancy measures between these
pmfs, in order to derive alternative ESS functions. In Appendix C, we show other possible ESS
expressions induced by non-Euclidean distances. In the following, we define a generic ESS function
through the introduction of five conditions (three of them strictly required, and two welcome
conditions), and then we provide several examples.

4 Generalized ESS functions

In this section, we introduce some properties that a Generalized ESS (G-ESS) function, based
only on the information of the normalized weights, should satisfy. Here, first of all, note that any
possible G-ESS is a function of the vector of normalized weights w̄ = [w̄1, . . . , w̄N ],

EN(w̄) = EN(w̄1, . . . , w̄N) : SN → [1, N ], (9)

where SN ⊂ RN represents the unit simplex in RN . Namely, the variables w̄1, . . . , w̄N are subjected
to the constrain

w̄1 + w̄2 + . . .+ w̄N = 1. (10)

4.1 Conditions for the G-ESS functions

Below we list five conditions that EN(w̄) should fulfill to be consider a suitable G-ESS function.
The first three properties are strictly necessary, whereas the last two are welcome conditions, i.e.,
no strictly required but desirable (see also classification below):
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C1. Symmetry: EN must be invariant under any permutation of the weights, i.e.,

EN(w̄1, w̄2, . . . , w̄N) = EN(w̄j1 , w̄j2 , . . . , w̄jN ), (11)

for any possible set of indices {j1, . . . , jN} = {1, . . . , N}.

C2. Maximum condition: A maximum value is N and it is reached at w̄∗ =
[

1
N
, . . . , 1

N

]
(see

Eq. (51)), i.e.,
EN (w̄∗) = N ≥ EN(w̄). (12)

C3. Minimum condition: the minimum value is 1 and it is reached (at least) at the vertices
w̄(j) = [w̄1 = 0, . . . , w̄j = 1, . . . , w̄N = 0] of the unit simplex in Eq. (52),

EN(w̄(j)) = 1 ≤ EN(w̄). (13)

for all j ∈ {1, . . . , N}.

C4. Unicity of extreme values: (welcome condition) The maximum at w̄∗ is unique and the
the minimum value 1 is reached only at the vertices w̄(j), for all j ∈ {1, . . . , N}.

C5. Stability - Invariance of the rate EN (w̄)
N

: (welcome condition) Consider the vector of
weights w̄ = [w̄1, . . . , w̄N ] ∈ RN and the vector

v̄ = [v̄1, . . . , v̄MN ] ∈ RMN , M ≥ 1, (14)

obtained repeating and scaling by 1
M

the entries of w̄, i.e.,

v̄ =
1

M
[w̄, w̄, . . . , w̄︸ ︷︷ ︸

M−times

]. (15)

Note that, clearly,
∑mN

i=1 v̄i = 1
M

[
M
∑N

n=1 w̄n

]
= 1. The invariance condition is expressed

as

EN(w̄)

N
=

EMN(v̄)

MN

EN(w̄) =
1

M
EMN(v̄), (16)

for all M ∈ N+.

The condition C5 is related to the optimistic approach described in Appendix B. For clarifying
this point, as an example, let us consider the vectors

w̄ = [0, 1, 0],

v̄′ =

[
0,

1

2
, 0, 0,

1

2
, 0

]
=

1

2
[w̄, w̄],

v̄′′ =

[
0,

1

3
, 0, 0,

1

3
, 0, 0,

1

3
, 0

]
=

1

3
[w̄, w̄, w̄],
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with N = 3. Following the optimistic approach, we should have EN(w̄) = 1, E2N(v̄′) = 2 and
E3N(v̄′′) = 3, i.e., the rate EN/N is invariant

EN(w̄)

N
=
E2N(v̄′)

2N
=
E3N(v̄′′)

3N
=

1

3
.

4.2 Classification of G-ESS functions

We divide the possible G-ESS functions in different categories depending on the conditions fulfilled
by the corresponding function (see Table 1). Recall that the first three conditions are strictly
required. All the G-ESS functions which satisfy at least the first four conditions, i.e., from C1 to
C4, are proper functions. All the G-ESS functions which satisfy the first three conditions, C1, C2
and C3 but no C4, are considered degenerate functions. When a G-ESS function fulfills the last
condition is called stable. Thus, the G-ESS functions which satisfy all the conditions, i.e., from
C1 to C5, are then proper and stable whereas, if C4 is not satisfied, they are degenerate and stable.
We can also distinguish two type of degeneracy: type-1 when EN(w̄) reaches the maximum value
N also in some other point w̄ 6= w̄∗, or type-2 if EN(w̄) reaches the minimum value 1 also in some
point that is not a vertex.

Table 1: Classification of G-ESS depending of the satisfied conditions.

Class of G-ESS C1 C2 C3 C4 C5

Degenerate (D) Yes Yes Yes No No
Proper (P) Yes Yes Yes Yes No

Degenerate and Stable (DS) Yes Yes Yes No Yes
Proper and Stable (PS) Yes Yes Yes Yes Yes

5 G-ESS families and further examples

We can easily design G-ESS functions fulfilling at least the first three conditions, C1, C2, and C3.
As examples, considering a parameter r ≥ 0, we introduce four families of G-ESS functions which
have the following analytic forms

P
(r)
N (w̄) =

1

ar
∑N

n=1 (w̄n)r + br
, r ∈ R, D

(r)
N (w̄) =

1

ar

[∑N
n=1 (w̄n)r

] 1
r + br

, r ≥ 0,

V
(r)
N (w̄) = ar

N∑

n=1

(w̄n)r + br, r ∈ R, S
(r)
N (w̄) = ar

[
N∑

n=1

(w̄n)r
] 1
r

+ br, r ≥ 0,

where ar, br are constant values depending on the parameter r (and the corresponding family).
The values of the coefficients ar, br can be found easily as solutions of linear systems (see Appendix
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D), with equations obtained in order to fulfill the conditions C2 and C3. The resulting G-ESS
functions are in general proper, i.e., satisfying from C1 to C4 (with some degenerate and stable
exceptions). The solutions of the corresponding linear systems are given in Table 2. Replacing
these solutions within the expressions of the different families, we obtain

P
(r)
N (w̄) =

N (2−r) −N
(1−N)

∑N
n=1 (w̄n)r +N (2−r) − 1

, (17)

D
(r)
N (w̄) =

N
1
r −N

(1−N)
[∑N

n=1 (w̄n)r
] 1
r

+N
1
r − 1

, (18)

V
(r)
N (w̄) =

N r−1(N − 1)

1−N r−1

[
N∑

n=1

w̄rn

]
+

N r − 1

N r−1 − 1
, (19)

S
(r)
N (w̄) =

N − 1

N
1−r
r − 1



(

N∑

n=1

w̄rn

) 1
r


+ 1− N − 1

N
1−r
r − 1

, (20)

These families contain different G-ESS functions previously introduced, and also other interesting
special cases. Table 3 summarizes these particular cases (jointly with the corresponding

classification) corresponding to specific values the parameter r. Some of them (D
(0)
N and S

(0)
N )

involve the geometric mean of the normalized weights,

GeoM(w̄) =

[
N∏

n=1

w̄n

]1/N

, (21)

other ones (D
(1)
N = P

(1)
N and S

(1)
N = V

(1)
N ) involve the discrete entropy [7] of the normalized weights,

H(w̄) = −
N∑

n=1

w̄n log2(w̄n), (22)

and others use the number of zeros contained in w̄, NZ = #{w̄n = 0, ∀n = 1, . . . , N}. The
derivations of these special cases are provided in Appendices D.1 and D.2. Note that Table 3
contains a proper and stable G-ESS function

S
(1/2)
N (w̄) =

(
N∑

n=1

√
w̄n

)2

, (23)

not introduced so far. Other examples of G-ESS functions, which do not belong to these families,
are given below.

Example 1. The following function

QN(w̄) = −N
N+∑

i=1

w̄+
i +N+ +N, (24)
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Table 2: G-ESS families and their coefficients ar and br.

P
(r)
N (w̄) D

(r)
N (w̄) V

(r)
N (w̄) S

(r)
N (w̄)

1

ar
PN
n=1(w̄n)r+br

1

ar[
PN
n=1(w̄n)r]

1
r +br

ar
∑N

n=1 (w̄n)r + br ar

[∑N
n=1 (w̄n)r

] 1
r

+ br

ar = 1−N
N(2−r)−N

ar = N−1

N−N
1
r

ar = Nr−1(N−1)
1−Nr−1

ar = N−1

N
1−r
r −1

br = N(2−r)−1
N(2−r)−N br = 1−N

1
r

N−N
1
r

br = Nr−1
Nr−1−1 br = N

1−r
r −N

N
1−r
r −1

Table 3: Special cases of the families P
(r)
N (w̄), S

(r)
N (w̄), D

(r)
N (w̄) and V

(r)
N (w̄).

Parameter: r→ 0 r→ 1 r = 2 r→∞

P
(r)
N (w̄)

N
NZ+1

−N log2(N)
−N log2(N)+(N−1)H(w̄)

1PN
n=1(w̄n)2

{ N, if w̄ 6= w̄(i),
1, if w̄ = w̄(i).

Degenerate (type-1) Proper Proper-Stable Degenerate (type-1)
Parameter: r→ 0 r = 1

2 r→ 1 r→∞

S
(r)
N (w̄)

(N2 −N)GeoM(w̄) + 1
(∑N

n=1

√
w̄n

)2 N−1
log2(N)H(w̄) + 1 N + 1−N max[w̄1, . . . , w̄N ]

Degenerate (type-2) Proper-Stable Proper Proper
Parameter: r→ 0 r→ 1 r→∞

D
(r)
N (w̄)

1

(1−N)GeoM(w̄)+1
−N log2(N)

−N log2(N)+(N−1)H(w̄)
1

max[w̄1,...,w̄N ]

Degenerate (type-2) Proper Proper-Stable
Parameter: r→ 0 r→ 1 r→∞

V
(r)
N (w̄)

N −NZ
N−1

log2(N)H(w̄) + 1
{
N if w̄ 6= w̄(i),
1, if w̄ = w̄(i).

Degenerate (type-1)-Stable Proper Degenerate (type-1)

with
{w̄+

1 , . . . , w̄
+
N+} =

{
all w̄n: w̄n ≥ 1/N, ∀n = 1, . . . , N

}
,

and N+ = #{w̄+
1 , . . . , w̄

+
N+}, is proper and stable. It is related to the L1 distance between w̄ and

w̄∗ as shown in Appendix C.

Example 2. The following functions involving the minimum of the normalized weights,

T1,N(w̄) =
1

(1−N) min[w̄1, . . . , w̄N ] + 1
, (25)

T2,N(w̄) = (N2 −N) min[w̄1, . . . , w̄N ] + 1, (26)

are degenerate (type-2) G-ESS measures.
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Example 3. The perplexity function introduced in [2] and also contained in a ESS family studied
in [18, pages 13 and 22], is defined as

PerN(w̄) = 2H(w̄), (27)

where

H(w̄) = −
N∑

n=1

w̄n log2(w̄n), (28)

is the discrete entropy [7] of the pmf w̄n, n = 1, . . . , N . The perplexity is a proper and stable
G-ESS function.

Example 4. Let us consider the Gini coefficient G(w̄) [16, 24], defined as follows. First of all,
we define the non-decreasing sequence of normalized weights

w̄(1) ≤ w̄(2) ≤ . . . ≤ w̄(N), (29)

obtained sorting in ascending order the entries of the vector w̄. The Gini coefficient is defined as

G(w̄) = 2
s(w̄)

N
− N + 1

N
, (30)

where

s(w̄) =
N∑

n=1

nw̄(n). (31)

Then, the G-ESS function defined as

GiniN(w̄) = −NG(w̄) +N, (32)

is proper and stable.

Example 5. The following G-ESS function (inspired by the L1 distance),

N-plusN(w̄) = N+ = #
{
w̄n ≥ 1/N, ∀n = 1, . . . , N

}
. (33)

is also degenerate (type 2) and stable.

5.1 Summary

In the previous sections, we have found different stable G-ESS functions, satisfying at least the
conditions C1, C2, C3, and C5. They are recalled in Table 4. The following ordering inequalities

D
(∞)
N (w̄) ≤ P

(2)
N (w̄) ≤ S

( 1
2

)

N (w̄) ≤ V
(0)
N (w̄), ∀w̄ ∈ SN ,

can be also easily proved.
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Table 4: Stable G-ESS functions.

D
(∞)
N (w̄) P

(2)
N (w̄) S

( 1
2

)

N (w̄) V
(0)
N (w̄)

1
max[w̄1,...,w̄N ]

1PN
n=1 w̄

2
n

(∑N
n=1

√
w̄n

)2
N −NZ

proper proper proper degenerate (type-1)

QN(w̄) N-plusN(w̄) GiniN(w̄) PerN(w̄)

−N∑N+

i=1 w̄
+
i +N+ +N N+ −NG(w̄) +N 2H(w̄)

proper degenerate (type-2) proper proper

5.2 Distribution of the ESS values

An additional feature of the G-ESS measures is related to the distribution of the effective sample
size values obtained with a specific G-ESS function, when the vector w̄ is considered as a realization
of a random variable uniformly distributed in the unit simplex SN . Namely, let us consider the
random variables W̄ ∼ U(SN) and E = EN

(
W̄
)

with probability density function (pdf) pN(e),
i.e.,

E ∼ pN(e). (34)

Clearly, the support of pN(e) is [1, N ]. Studying pN(e), we can define additional properties for
discriminating different G-ESS functions. For instance, in general pN(e) is not a uniform pdf.
Some functions EN concentrate more probability mass closer to the maximum N , other functions
closer to the minimum 1. This feature varies with N , in general. For N = 2, it is straightforward
to obtain the expression of the pdf p2(e) for certain G-ESS functions. Indeed, denoting as I1(e)
and I2(e) the inverse functions corresponding to the monotonic pieces of the generic function
E2 (w̄1, 1− w̄1) = E2(w̄1), then we obtain

p2(e) =

∣∣∣∣
dI1

de

∣∣∣∣+

∣∣∣∣
dI2

de

∣∣∣∣ , e ∈ [1, N ], (35)

using the expression of transformation of a uniform random variable, defined in [0, 1]. Thus, we

find that p2(e) = 2
e2

for D
(∞)
2 and p2(e) = 2

e2
√

2
e
−1

for P
(2)
2 , for instance. Figure 1 depicts the pdfs

p2(e) for D
(∞)
2 , T2,2 in Eq. (26) and P

(2)
2 in Eq. (6). We can observe that P

(2)
2 is more optimistic

than D
(∞)
2 judging a set of weighted samples and assigning a value of the effective size, since p2(e)

in this case is unbalanced to the right side close to 2. From a practical point of view, the pdf
pN(e) could be used for choosing the threshold values for the adaptive resampling. The limiting
distribution obtained for N →∞,

p∞(e) = lim
N→∞

pN(e), (36)

is also theoretically interesting, since it can characterize the function EN . However, it is not
straightforward to obtain p∞(e) analytically. In Section 6, we approximate different limiting pdfs
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p∞(e) of different G-ESS functions via numerical simulation.
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Figure 1: (a) G-ESS functions, D(∞)
2 (squares), P (2)

2 in Eq. (6) (circles), and T2,2 in Eq. (26) (dashed
lines), all of them with N = 2 (then, w̄2 = 1 − w̄1). We can see that D(∞)

2 has a sub-linear increase to
the value N = 2, whereas P (2)

2 a super-linear increase. (b)-(c)-(d) Pdfs pN (e) associated to D(∞)
2 , P (2)

2

and T2,2, respectively. For D
(∞)
2 (Fig. (b)) more probability mass is located close to 1, whereas for

P
(2)
2 (Fig. (d)), p2(e) is unbalanced to the right side close to 2.

6 Simulations

6.1 Analysis of the distribution of ESS values

In this section, we study the distribution pN(e) of the values of the different G-ESS families. With
this purpose, we draw different vectors w̄′ uniformly distributed in the unit simplex SN , and then
we compute the corresponding ESS values (e.g., using the procedure described in [8]). We generate
2000 independent random vectors w̄′ uniformly distributed in the unit simplex SN ⊂ RN . After
that we evaluate the different proper and stable G-ESS functions (summarized in Table 4) at each
drawn vector w̄′. The resulting histograms of the rate ESS/N obtained by the different functions
are depicted in Figure 2. Figures 2(a)-(c) correspond to N = 50, whereas (b)-(d) correspond

to N = 1000. Figures 2(a)-(c) show the histograms of the rate corresponding D
(∞)
N , P

(2)
N , S

( 1
2

)

N ,
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whereas Figures (b)-(d) show the histograms of the rate corresponding QN , GiniN and PerN . The
empirical means and standard deviations for different N are provided in Table 5.

Table 5: Statistics of p̂N(e), empirical approximation of pN(e), corresponding to different G-ESS
functions. The greatest standard deviations for a given N are highlighted with boldface.

Description N D
(∞)
N /N P

(2)
N /N S

(1
2

)

N /N QN/N GiniN/N PerN/N

mean

50 0.2356 0.5194 0.7902 0.6371 0.5117 0.6655
200 0.1776 0.5057 0.7868 0.6326 0.5020 0.6568
103 0.1366 0.5013 0.7858 0.6324 0.5007 0.6558

5 103 0.1121 0.5005 0.7856 0.6322 0.5002 0.6554

std

50 0.0517 0.0622 0.0324 0.0345 0.0410 0.0492
200 0.0336 0.0341 0.0168 0.0171 0.0204 0.0248
103 0.0213 0.0158 0.0077 0.0077 0.0091 0.0111

5 103 0.0145 0.0071 0.0034 0.0034 0.0040 0.0050
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(b) N = 50
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Figure 2: The histograms of the rates ESS
N corresponding to the proper and stable G-ESS functions in

Table 4, with N ∈ {50, 1000}.
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We can observe that all the G-ESS functions concentrate the probability mass of the ESS values
around one mode, located in different positions. The variances of these distributions decrease as
N grows. The statistical information provided by these histograms can be used for choosing the
threshold value in an adaptive resampling scheme. Typically, the condition for applying resampling
is

EN(w̄) ≤ εN,

where 0 ≤ ε ≤ 1. Namely, the information provided by Table 5 can be useful for choosing ε,
depending on the used G-ESS function. For instance, Doucet et al. [12, Section 3.5] suggest to

use ε = 1
2

for P
(2)
N . This suggestion can be explained considering the mean of the ESS values of

P
(2)
N , which is ≈ 0.5. Moreover, the standard deviation can help us to understand the capability

of each formula in differentiating different vectors w̄. The greatest standard deviation for each N
is highlighted with boldface. In this sense, D

(∞)
N seems the most “discriminative” for large values

of N , whereas P
(2)
N seems the more convenient for small values of N (however, other studies can

suggest the opposite; see below).

6.2 Approximation of the theoretical ESS definition

Let us recall the theoretical definition of ESS in Eq. (5),

ESSvar(h) = N
varπ[Î(h)]

varq[Ĩ(h)]
, (37)

where we stress the dependence on the choice of the integrand function h. As also discussed in
Appendix A, a more convenient definition for small values of N is

ESSMSE(h) = N
MSEπ[Î(h)]

MSEq[Ĩ(h)]
= N

varπ[Î(h)]

MSEq[Ĩ(h)]
. (38)

considering the Mean Square Error (MSE) of the estimators, instead of only the variance. For large

values of N the difference between the two definitions is negligible since the bias of Ĩ is virtually
zero. In this section, we compute approximately via Monte Carlo the theoretical definitions
ESSvar(x), ESSMSE(x), and compare with the values obtained with different G-ESS functions.
More specifically, we consider a univariate standard Gaussian density as target pdf,

π̄(x) = N (x; 0, 1), (39)

and also a Gaussian proposal pdf,
q(x) = N (x;µp, σ

2
p), (40)

with mean µp and variance σ2
p. Furthermore, we consider different experiment settings:

S1 In this scenario, we set σp = 1 and vary µp ∈ [0, 2]. Clearly, for µp = 0 we have the ideal
Monte Carlo case, q(x) ≡ π̄(x). As µp increases, the proposal becomes more different from
π̄. We consider the estimation of the expected value of the random variable X ∼ π̄(x), i.e.,
we set h(x) = x in the integral of Eq. (1).
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S2 In this case, we set µp = 1 and consider σp ∈ [0.23, 4]. We set h(x) = x.

S3 We fix σp = 1 and µp ∈ {0.3, 0.5, 1, 1.5} and vary the number of samples N . We consider
again h(x) = x.

S4 In order to analyze the dependence on the choice of h(x) of the theoretical definition (37)
and of the numerical results, we consider hr(x) = xr, r = 1, . . . , R = 10. More specifically,
we define the averaged ESS (A-ESS) value,

A-ESS =
1

R

R∑

r=1

ESSvar(hr), (41)

where ESSvar(hr) is given in Eq. (37). First, we set σp = 1, N ∈ {1000, 5000}, and vary
µp ∈ [0, 2], as in the setting S1, but we also compute A-ESS in Eq. (41). Then, we set
σp = 1, µp = {0.3, 1}, and vary N , similarly as S3.

In the first two cases, we test N ∈ {5, 1000}. Figure 3 shows the theoretical ESS curves
(approximated via simulations) and the curves corresponding to the proper and stable G-ESS
formulas (averaged over 105 independent runs), for the experiment settings S1 and S2. For
N = 1000, the difference between ESSvar(x) and ESSMSE(x) is negligible, so that we only
show ESSvar(x). For N = 5 and S1 we show both curves of ESSvar(x) and ESSMSE(x), whereas
for N = 5 and S2 we only provide ESSMSE(x) since the bias is big for small value of σp so that
it is difficult to obtain reasonable and meaningful values of ESSvar(x). Figure 4 and 5 provide
the results of the experiment setting S3 and S4, respectively. Note that, for simplicity, in Figure
5 we only show the results of D

(∞)
N , P

(2)
N and GiniN , jointly with the theoretical ones, ESSvar(x)

and A-ESS.
In the setting S1 with N = 5 shown Fig. 3(a), first of all we observe that ESSvar(x) and

ESSMSE(x) are very close when µp ≈ 0 (i.e., q(x) ≈ π̄(x)) but they differ substantially when the
bias increases. In this case, the G-ESS function GiniN provides the closest values to ESSvar(x),

in general. Moreover, P
(2)
N and D

(∞)
N also provide good approximations of ESSvar(x). Note that

ESSvar(x) is always contained between D
(∞)
N and P

(2)
N . In the case S1 with N = 1000 shown Fig.

3(b), the formula P
(2)
N provides the closest curve to ESSvar(x). The G-ESS function D

(∞)
N gives a

good approximation when µp increases, i.e., the scenario becomes worse from a Monte Carlo point
of view. The G-ESS function GiniN provides the best approximation when µp ∈ [0, 0.5]. Again,

ESSvar(x) is always contained between D
(∞)
N and P

(2)
N .

In the second scenario S2 with N = 5 shown Fig. 3(c), all G-ESS functions are not able to
reproduce conveniently the shape of ESSMSE(x). Around to the optimal value of σp, GiniN and

P
(2)
N provide the best approximation of ESSMSE(x). For the rest of value of σp, D

(∞)
N provides the

closest results. In the second setting S2 with N = 1000 shown Fig. 3(d), P
(2)
N seems to emulate

better the evolution of ESSvar(x). However, D
(∞)
N provides the closest results for small values of

σp.
In the experiment setting S3 (see Figure 4), we observe that the behavior of the different

G-ESS functions as N grows. When µp = 0.3 and µp = 0.5, the function GiniN(w̄) provides

15



0 0.5 1 1.5 2
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

µp

ESS/N

(a) Setting S1 with N = 5.

0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

µp

ESS/N

(b) Setting S1 with N = 1000.

0 1 2 3 4
0

0.2

0.4

0.6

0.8

1
ESS/N

�p

(c) Setting S2 with N = 5.

0 1 2 3 4
0

0.2

0.4

0.6

0.8

1
ESS/N

�p

(d) Setting S2 with N = 1000.

Figure 3: ESS rates corresponding to ESSvar(x) (solid line), ESSMSE(x) (dashed line; shown only in
(a)-(c)), P (2)

N (circles), D(∞)
N (squares), GiniN (stars), S(1/2)

N (triangles up), QN (x-marks), PerN (triangles
down).

the best approximation of the theoretical definition, i.e., ESSvar(x). In particular, with µp = 0.3,
GiniN(w̄) seems to approximate precisely the evolution of ESSvar(x). As the proposal differs more

to the shape of the target, i.e., for µp = 1 and µp = 1.5, D
(∞)
N (w̄) becomes the best option. With

µp = 1.5, D
(∞)
N (w̄) reproduces closely the evolution of ESSvar(x). In these last two cases, µp = 1

and µp = 1.5, P
(2)
N (w̄) provides also good performance. We conclude that, in this setup, when the

proposal and the target substantially differ, D
(∞)
N (w̄) provides the best results. Roughly speaking,

when the shape of proposal is is closer to the shape of target, the function GiniN(w̄) provides

also good results. Moreover, GiniN(w̄) seems to perform better than P
(2)
N (w̄) when the number of

particles N is small. In intermediate situations, P
(2)
N (w̄) seems to be a good compromise. Finally,

in the last setting S4, we can observe (see Figure 5) that A-ESS in Eq. (41) is in general smaller

than ESSvar(x) (which considers only h(x) = x). In these experiments, the G-ESS function D
(∞)
N

is the closest approximation of A-ESS.
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Figure 4: [Setting S3] ESS rates as function of N , corresponding to the theoretical ESS, i.e., ESSvar(x)
(solid line), and the G-ESS functions: P (2)

N (circles), D(∞)
N (squares), GiniN (stars), S(1/2)

N (triangles up),
QN (x-marks), PerN (triangles down).

6.3 Adaptive Resampling in Particle Filtering

In this example, we apply P
(2)
N and D

(∞)
N within a particle filter in order to decide adaptively when

performing a resampling step. Specifically, we consider a stochastic volatility model where the
hidden state xt follows an AR(1) process and represents the log-volatility [19] of a financial time
series at time t ∈ N. The equations of the model are given by

{
xt = αxt−1 + ut,

yt = exp
(
xt
2

)
vt,

t = 1, . . . , T. (42)

where α = 0.99 is the AR parameter, and ut and vt denote independent zero-mean Gaussian
random variables with variances σ2

u = 1 and σ2
v = 0.5, respectively. Note that vt is a multiplicative

noise. For the sake of simplicity, we implement a standard particle filter (PF) [9, 10, 17] using
as propagation equation of the particles exactly the AR(1) process, i.e., the particles xi,t’s are
propagated as xi,t ∼ p(xt|xi,t−1), where i = 1, . . . , N is the particle index. We set T = 3000 and
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Figure 5: [Setting S4] ESS rates corresponding to the theoretical definitions ESSvar(x) (solid line),
A-ESS (solid line with rhombuses), and the G-ESS functions P (2)

N (circles), D(∞)
N (squares), GiniN

(stars).

N = 1000 number of particles. The resampling is performed adaptively, only a certain iterations,

T = {t∗1, . . . , t∗r}, (43)

where r = #T (clearly, r varies in each run). More specifically, denoting as w̄t = [w̄1,t, . . . , w̄N,t]
at a specific PF iteration t, the conditions for applying the resampling are

P
(2)
N (w̄t) ≤ ε1N, D

(∞)
N (w̄t) ≤ ε2N,

respectively, where εi ∈ [0, 1], i = 1, 2, are a constant threshold values (with εi = 0, no resampling
is performed; with εi = 1, the resampling is applied at each iteration).

Let us denote as T1 = {t∗1, . . . , t∗r1} and T2 = {τ ∗1 , . . . , τ ∗r2} the set of resampling instants

obtained by P
(2)
N and D

(∞)
N , respectively (r1 = #T1 and r2 = #T2). Since D

(∞)
N (w̄t) ≥ P

(2)
N (w̄t)

for all w̄t ∈ S, and if ε1 = ε2, using D
(∞)
N we apply more resampling steps than when P

(2)
N is used,
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i.e., r2 ≥ r1 if ε1 = ε2. However, an equal resampling rate R, i.e., the ratio of the averaged number
of the performed resampling steps over T ,

R = E

[
# Resampling

T

]
=

1

T
E[r], (44)

can be obtained using different threshold values ε1 and ε2 for P
(2)
N and D

(∞)
N . In our case, for

obtaining the same resampling rate we need that ε1 ≥ ε2, as shown in Figure 6(a). Note that
0 ≤ R ≤ 1.
Goal. Given a resampling rate R, our purpose is to discriminate which G-ESS function, between
P

(2)
N and D

(∞)
N , selects the better iteration indices t∗’s for applying the resampling steps, i.e., when

it is more adequate to apply resampling in order to improve the performance.
Results. We test 100 different values of ε1 and ε2 (we have considered a thin grid of values from 0
to 1 with width 0.01, for both). For each value of εi, i = 1, 2, we run 500 independent simulations
of the PF for inferring the sequence x1:t, given a sequence of observations y1:T generated according
to the model in Eq. (42). Hence, we compute the Mean Square Error (MSE) in the estimation
of x1:t obtained by the PF, in each run. Moreover, for each value of εi, i = 1, 2, we calculate
the resampling rate R (averaged over the 500 runs). Then, we can plot two curves of averaged

MSE versus the resampling rate R, corresponding to P
(2)
N and D

(∞)
N . In this way, we can compare

the performance of the PF using the same resampling rate R but obtained with different G-ESS
functions, P

(2)
N and D

(∞)
N . The results are shown in Figure 6(b) in log-log-scale. We can see that,

for a given resampling rate R, the G-ESS function D
(∞)
N always provides a smaller MSE w.r.t.

P
(2)
N . This confirms that, at least in certain scenarios, D

(∞)
N is a good measure of ESS and it is a

valid alternative for P
(2)
N . Furthermore, the range of useful values of ε in P

(2)
N is smaller than in

D
(∞)
N as shown in Figure 6(a).
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Figure 6: (a) Resampling Rate R as function of ε1 = ε2 = ε for P (2)
N (solid line) and D(∞)

N (dashed line).
b Mean Square Error (MSE) as function of the resampling Rate R for P (2)

N (solid line) and D(∞)
N (dashed

line), in log-log-scale (N = 1000 and T = 3000).
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7 Conclusions
In this work, we have proposed new classes of alternative ESS approximations for importance
sampling, discussing and testing them from a theoretical and practical point of view. Indeed
the novel ESS expressions, jointly with other formulas already presented in literature, have been
classified according to five theoretical requirements presented in this work. This classification has
allowed to select six different ESS functions which satisfy all these necessary conditions. Then,
we have tested them by numerical simulations. Some of them, such as D

(∞)
N (w̄) and GiniN(w̄)

present interesting features and some benefit, compared to the standard ESS formula P
(2)
N (w̄).

When the proposal pdf differs substantially to the target density, D
(∞)
N (w̄) provides the best

approximations. When the proposal is close to the target, the function GiniN(w̄) provides also

good results. Moreover, GiniN(w̄) seems to perform better than P
(2)
N (w̄) when the number of

particles N is small. In intermediate scenarios, P
(2)
N (w̄) can be also considered a good compromise.

Furthermore, D
(∞)
N (w̄) behaves as a “lower bound” for the theoretical ESS definition, as shown

in the numerical simulations. The simulation study also provides some useful value for choosing
the threshold in an adaptive resampling context. For instance, the results in Table 5 suggest to
use of ε ≥ 1

2
for P

(2)
N (w̄) (as already noted in [12, Section 3.5]) and GiniN(w̄), or ε ≥ 0.11 for

D
(∞)
N (w̄), in the resampling condition EN(w) ≤ εN . We have also tested D

(∞)
N and P

(2)
N within a

particle filter for tracking a stochastic volatility variable. The application of G-ESS function D
(∞)
N

has provided smaller MSE in estimation w.r.t. P
(2)
N , considering equal resampling rates (i.e., the

number of the performed resampling steps over the total number of iterations of the filter).
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A Analysis of the theoretical derivation of P
(2)
N

In the following, we summarize the derivation of P
(2)
N , that can be partially found in [21] and [23,

Section 2.5], stressing the multiple approximations and assumptions:
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1. In Section 2, the ESS has been conceptually defined as the ratio between the performance of
two estimators, the Î, where samples are drawn from the target π̄, and Ĩ, the self-normalized

IS estimator. The definition ESS = N varπ [bI]
varq [eI] in Eq. (5) does not take in account the bias

of Ĩ (which can be significant for small N). Therefore, a more complete definition is

ESS = N
MSE

[
Î
]

MSE
[
Ĩ
] = N

varπ

[
Î
]

MSE
[
Ĩ
] , (45)

where we have considered the Mean Square Error (MSE) and we have taken into account

that the bias of Ĩ. In [21], the derivation starts with the definition in Eq. (5) justifying that

“the bias is of the order of 1/N and can be ignored for large N” and that Î is unbiased.
Indeed, roughly speaking, the squared bias is typically of order N−2, which is negligible
compared to the variance which is of order N−1. Nevertheless, P

(2)
N is employed regardless

the N . Then, the ratio of variances overestimates the theoretical value ESS = N
MSE[bI]
MSE[eI] .

2. In the derivation of [21], all the samples are considered to be i.i.d. from a single proposal,

i.e. xn ∼ q(x), for n = 1, ..., N . Nevertheless, P
(2)
N is also used in algorithms which employ

multiple proposal pdfs under many different weighting strategies [13].

3. A first delta method is first applied in order to approximate varq[Ĩ] in [21, Eq. (6)].

4. The second delta method is applied again to approximate the expectation Eπ[w(x)f(x)2] in

[21, Eq. (9)], where w(x) = π(x)
q(x)

.

5. In the whole derivation, the target is assumed to be normalized (see [21] and [23, Section
2.5]). This is a strong assumption that very rarely occurs in practical scenarios. If this were
not the case, the normalizing constant would appear in [21, Eq. (7)-(9)], and therefore also
in [21, Eq. (11)-(12)]. As a consequence of the normalized constant assumption, the ESS is
approximated as

ESS ≈ N

1 + Varq[w(x)]
. (46)

Since w is the unnormalized weights, different scaled version of the target would yield
different approximation of the ESS. In order to overcome this problem, it has been proposed
(see [35] and the further explanation in [34]) to modify the approximation of Eq. (46) by

ESS ≈ N

1 + varq [w(x)]

Z2

=
N

1 + CV2 , (47)

where CV represents the coefficient of variation (also as relative standard deviation) defined as
the ratio of the standard deviation

√
varq[w(x)] and the mean Eq[w(x)] = Z [23]. The well-known
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P
(2)
N can be derived as an empirical approximation of Eq. (47),

P
(2)
N ≈ N

1 +
1
N

PN
n=1 w

2
n−( 1

N

PN
n=1 wn)2

( 1
N

PN
n=1 wn)2

(48)

=
N

1
N

PN
n=1 w

2
n

( 1
N

PN
n=1 wn)2

(49)

=
1∑N

n=1 w̄
2
n

. (50)

Nevertheless, if the target distribution is not assumed to be normalized, the approximation of Eq.
(47) is no longer valid. In other words, the metric P

(2)
N is approximated with the assumption of

Z = 1 in the whole derivation, except in the last step where the Z is re-incorporated.

Consequences One consequence of these approximations is that, given the values of w̄n’s, the
final formula P

(2)
N does not depend directly on the particles xn, n = 1, . . . , N , which is obviously a

drawback since we are trying to measure the effective sample size of the set of weighted particles
(see Figure 7).3 Moreover, P

(2)
N is independent from the function h, whereas the theoretical

definition ESS = N varπ [bI]
varq [eI] involves h. Finally, the inequalities 1 ≤ P

(2)
N ≤ N always hold, which

can appear an interesting feature after a first examination, but actually it does not encompass

completely the theoretical consequences included in the general definition ESS = N varπ [bI]
varq [eI] .

Indeed, by this general definition of ESS, we have

0 ≤ ESS ≤ B, B ≥ N,

i.e., namely ESS can be less than 1, when varq[Ĩ] >> varπ[Î], and even greater than N , when

varq[Ĩ] < varπ[Î]: this case occurs when negative correlation is induced among the generated
samples [13, 33]. Figure 7 shows the progressive loss of information, first normalizing the weights
and then removing the information related to the position of the particles.

x1 x2x3

w2 = 2.01

w1 = 1
w3 = 0.9

x1 x2x3

w̄2 = 0.51
w̄1 = 0.25

w̄3 = 0.23

w̄2 = 0.51

w̄1 = 0.25 w̄3 = 0.23

1 2 3
x x n

Figure 7: Graphical representation of the loss of statistical information normalizing the weights and
ignoring the values of the particles (N = 3).

3 As an example, consider the degenerate set of particles where all the samples are the same, i.e., xi = xj for all
i, j. In this case, we always have P (2)

N (w̄) = N which is clearly meaningless (if the target π is not a delta function).
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B The optimism of P
(2)
N (w̄)

Here, we analyze the behavior of P
(2)
N (w̄) in two extreme cases. If all the samples are drawn

directly from the target distribution all the weights wn are equal, so that w̄n = 1
N

, n = 1, . . . , N .
the vector with equal components w̄n = 1

N
, n = 1, . . . , N , is denoted

w̄∗ =

[
1

N
, . . . ,

1

N

]
, (51)

Note that the converse is not always true: namely the scenario w̄n = 1
N

, n = 1, . . . , N , could
occur even if the proposal density is different from the target. Hence, in this case, we can assert
ESS ≤ N (considering independent, non-negative correlated, samples). The other extreme case
is

w̄(j) = [w̄1 = 0, . . . , w̄j = 1, . . . , w̄N = 0], (52)

i.e., w̄j = 1 and w̄n = 0 ( it can occurs only if π(xn) = 0), for n 6= j with j ∈ {1, . . . , N}. The best
possible scenario, in this case, is that the j-th sample (associate to the weight w̄j = 1) has been
generated exactly from π̄(x) (hence, with effective sample size equal to 1). Thus, in this case, one

can consider ESS ≤ 1. The function P
(2)
N (w̄) employ an optimistic approach for the two extreme

cases previously described above:

P
(2)
N (w̄∗) = N, (53)

P
(2)
N (w̄(j)) = 1, ∀j ∈ {1, . . . , N}. (54)

Moreover, considering a vector of type

w̄ =

[
0,

1

C
,

1

C
, 0, . . . , 0, 0,

1

C
, . . . , 0

]
,

where only C entries are non-null with the same weight 1
C

, note that

P
(2)
N (w̄) = C. (55)

Figure 8 summarizes graphically these cases. This approach can appear as a limitation given the
previous observations but, using only the information of w̄, appears reasonable.

C G-ESS functions induced by non-Euclidean distances

In Section 3, we have pointed out the relationship between P
(2)
N and the L2 distance between w̄

and w̄∗. Here, we derive other G-ESS functions given based on non-Euclidean distances.
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Figure 8: Graphical summary of the optimistic approach employed by P (2)
N (w̄).

Distance L1 We derive a G-ESS function denoted as QN(w̄), induced by the L1 distance. Let
us define two disjoint sets of weights

{w̄+
1 , . . . , w̄

+
N+} =

{
all w̄n: w̄n ≥ 1/N, ∀n = 1, . . . , N

}
, (56)

{w̄−1 , . . . , w̄−N−} =
{

all w̄n: w̄n < 1/N, ∀n = 1, . . . , N
}
, (57)

where N+ = #{w̄+
1 , . . . , w̄

+
N+} and N− = #{w̄−1 , . . . , w̄−N+}. Clearly, N− + N+ = N and∑N+

i=1 w̄
+
i +

∑N−

i=1 w̄
−
i = 1. Thus, we can write

||w̄ − w̄∗||1 =
N∑

n=1

∣∣∣∣w̄n −
1

N

∣∣∣∣

=
N+∑

i=1

(
w̄+
i −

1

N

)
+

N−∑

j=1

(
1

N
− w̄−j

)

=
N+∑

i=1

w̄+
i −

N−∑

i=1

w̄−i −
N+ −N−

N
(58)

and replacing the relationships
∑N+

i=1 w̄
+
i = 1−∑N−

i=1 w̄
−
i and N− = N −N+,

||w̄ − w̄∗||1 = 2

[
N+∑

i=1

w̄+
i −

N+

N

]
,

= 2
N
∑N+

i=1 w̄
+
i −N+

N
,

= 2

[
N −QN(w̄)

N

]
+ 2, (59)
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where

QN(w̄) = −N
N+∑

i=1

w̄+
i +N+ +N. (60)

Note that 1 ≤ QN(w̄) ≤ N , with QN(w̄∗) = N and QN(w̄(i)) = 1 for all i ∈ {1, . . . , N}.
Maximizing QN is equivalent to minimizing the L1 distance between the pmf w̄ and the discrete
uniform pmf w̄∗. We remark that this is only one of the possible ESS functions induced by the
L1 distance. We choose QN(w̄) since it is proper and stable.

Norm L0 Interesting G-ESS expressions can be also obtained considering also the distance of
the vector w̄ with respect to the null vector containing all zeros as entries (i.e., the norm of w̄).
For instance, based on the Hamming distance [7], i.e., we have

V
(0)
N (w̄) = N −NZ , (61)

where Nz is the number of zeros in w̄, i.e.,

NZ = #{w̄n = 0, ∀n = 1, . . . , N}. (62)

Observe that 1 ≤ V
(0)
N (w̄) ≤ N and V

(0)
N (w̄∗) = N and V

(0)
N (w̄(i)) = 1 for all i ∈ {1, . . . , N}.

Norm L∞ Other kind of norms can suggest other suitable ESS formulas. For instance,

||w̄||∞ = max [|w̄1| , . . . , |w̄N |] =
1

DN(w̄)
, (63)

where

D
(∞)
N (w̄) =

1

max [w̄1, . . . , w̄N ]
. (64)

This G-ESS function has also been recently considered in [18].

D Derivation of Generalized ESS families

It is possible to design proper G-ESS fulfilling at least the conditions C1, C2, C3 and C4 (with
some degenerate exception), given in the previous section. Below, we show a possible simple
procedure but several could be used. Let us consider a function f(w̄) : RN → R, which satisfies
the following properties:

1. f(w̄) is a quasi-concave or a quasi-convex function, with a minimum or a maximum
(respectively) at w̄∗ =

[
1
N
, . . . , 1

N

]
.
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2. f(w̄) is symmetric in the sense of Eq. (11).

3. Considering the vertices of the unit simplex w̄(i) = δ(i) in Eq. (52), then we also assume

f(w̄(i)) = c,

where c ∈ R is a constant value, the same for all i = 1, . . . , N .

Let also consider the function af(w̄)+b obtained as a linear transformation of f(w̄) where a, b ∈ R
are two constants. Note that, we can always set a > 0 if f(w̄) is quasi-concave, or a < 0 if f(w̄)
is quasi-convex, in order to obtain g(w̄) is always quasi-concave. Hence, we can define the G-ESS
function as

EN(w̄) =
1

af(w̄) + b
, or EN(w̄) = af(w̄) + b, (65)

In order to fulfill the properties 2 and 3 in Section 4, recalling w̄∗ = [ 1
N
, . . . , 1

N
] and w̄(i) = δ(i),

we can properly choose the constant values a, b in order to satisfy the following system of N + 1
equations and two unknowns a and b,





af(w̄∗) + b =
1

N
,

af(w̄(i)) + b = 1, ∀i ∈ {1, . . . , N}.
(66)

or
{
af(w̄∗) + b = N,

af(w̄(i)) + b = 1, ∀i ∈ {1, . . . , N},
(67)

respectively. Note that they are both linear with respect to with unknowns a and b. Moreover,
since f(w̄(i)) = c for all i ∈ {1, . . . , N}, the system above is reduced to a 2× 2 linear system with
solution





a =
N − 1

N [f(w̄(i))− f(w̄∗)]
,

b =
f(w̄(i))−Nf(w̄∗)

N [f(w̄(i))− f(w̄∗)]
.

(68)

and




a =
N − 1

f(w̄∗)− f(w̄(i))
,

b =
f(w̄∗)−Nf(w̄(i))

(w̄(i))− f(w̄(i))
.

(69)

respectively. Below, we derive some special cases of the families P
(r)
N , D

(r)
N , V

(r)
N , and S

(r)
N defined in

Section 5 and obtained used the procedure above. In these families, we have fr(w̄) =
∑N

n=1(w̄n)r

for P
(r)
N , and V

(r)
N , and fr(w̄) =

[∑N
n=1(w̄n)r

]1/r

for D
(r)
N and S

(r)
N .
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D.1 Special cases of P
(r)
N (w̄)

In the following, we analyze some special cases of the family P
(r)
N (w̄) in Eq. (17):

Case r→ 0. In this case, the constants in Table 2 reach the values ar → a0 = − 1
N

and
br → b0 = N+1

N
. Let us define 00 = 0, considering that limr→0+ 0r = 0 (i.e., r approaches 0

from the right). With this assumption, Thus, if no zeros are contained in w̄ then f0(w̄) = N and

P
(0)
N (w̄) = 1

Na0+b0
= N , whereas if w̄ contains NZ zeros, we have f0(w̄) = N −NZ and

P
(0)
N (w̄) =

N

NZ + 1
, (70)

where we recall that NZ is the number of zero within w̄. Note that, clearly, P
(0)
N (w̄(i)) = 1 for all

i ∈ {1, . . . , N}, since NZ = N − 1.

Case r= 1. In this case, ar → ±∞, br → ∓∞, when r → 1. Since fr(w̄) → 1 if r → 1,
we have an indeterminate form for gr(w̄) = ar + br of type ∞−∞. Note that the limit

lim
r→1

P
(r)
N (w̄) = lim

r→1

N (2−r) −N
(1−N)

∑N
n=1 (w̄n)r +N (2−r) − 1

,

presents an indeterminate form of type 0
0
. Hence, using the L’Hôpital’s rule [20], i.e., deriving

both numerator and denominator w.r.t. r and computing the limit, we obtain

P
(1)
N (w̄) = lim

r→1

−N (2−r) log(N)

−N (2−r) log(N)− (N − 1)
∑N

n=1 w̄
r
n log(w̄n)

,

=
−N log(N)

−N log(N)− (N − 1)
∑N

n=1 w̄n log(w̄n)
,

=
−N log2(N)

log2 e

−N log2(N)
log2 e

− (N − 1)
∑N

n=1 w̄n
log2(w̄n)

log2 e

,

=
−N log2(N)

−N log2(N) + (N − 1)H(w̄)
, (71)

where we have denoted as H(w̄) = −∑N
n=1 w̄n log2(w̄n) the discrete entropy of the pmf w̄n,

n = 1, . . . , N . Observe that H(w̄∗) = log2N then P
(1)
N (w̄) = −N log2(N)

− log2N
= N , whereas H(w̄(i)) = 0

(considering 0 log2 0 = 0), P
(1)
N (w̄) = 1.

Case r= 2. In this case, a2 = 1 and b2 = 0, hence we obtain

P
(2)
N (w̄) =

1∑N
n=1 (w̄n)2

.
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Case r→∞. We have ar → a∞ = N−1
N

and br → b∞ = 1
N

. If w̄ 6= w̄(i) for all
possible i ∈ {1, . . . , N}, then we have lim

r→∞
fr(w̄) = 0 (since 0 < w̄n < 1, in this case) and

P
(∞)
N (w̄) = 1

br
= N . Otherwise, if w̄ = w̄(i) for some i ∈ {1, . . . , N}, then lim

r→∞
fr(w̄) = 1 (where

we have considered lim
r→∞

0r = 0 and lim
r→∞

1r = 1) and P
(∞)
N (w̄) = 1

ar+br
= 1. We can summarize

both scenarios as

P
(∞)
N (w̄) =

{
N, if w̄ 6= w̄(i), ∀i ∈ {1, . . . , N},
1, if w̄ = w̄(i), ∀i ∈ {1, . . . , N}.

(72)

D.2 Special cases of D
(r)
N (w̄)

Below, we analyze some special cases of the family D
(r)
N (w̄) in Eq. (18):

Case r→ 0. The coefficients of this family given in Table 2 reach the values ar → a0 = 0
and br → b0 = 1. In this case, If w̄ = w̄(i), we have lim

r→0
fr(w̄) = 1 (considering again 00 = 0 and

1∞ = 1). Whereas, when w̄ is not a vertex, i.e., w̄ 6= w̄(i), then

lim
r→0

fr(w̄) = lim
r→0

[
N∑

n=1

(w̄n)r
] 1
r

=∞.

so that lim
r→0

arfr(w̄) has the indeterminate form of type 0 × ∞ that can be converted to ∞
∞ as

shown below. We can write

lim
r→0

ar

[
N∑

n=1

(w̄n)r
] 1
r

= (1−N) lim
r→0

[∑N
n=1 (w̄n)r

]1/r

N1/r −N . (73)

Moreover, when r → 0 we have
[∑N

n=1 (w̄n)r
]1/r

N1/r −N ≈

[∑N
n=1 (w̄n)r

]1/r

N1/r
=

[
1

N

N∑

n=1

(w̄n)r
]1/r

, when r → 0. (74)

For r → 0, we can also write

(w̄n)r = exp(r log w̄n) ≈ 1 + r log w̄n, (75)

where we have used the Taylor expansion of first order of exp(r log w̄n). Replacing (w̄n)r ≈
1 + r log w̄n inside 1

N

∑N
n=1(w̄n)r we obtain

1

N

N∑

n=1

(w̄n)r ≈ 1

N
N + r

1

N

N∑

n=1

log w̄n = 1 + r
1

N
log

N∏

n=1

w̄n (76)

= 1 + r log

[
N∏

n=1

w̄n

] 1
N

. (77)
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Thus, we can write
[

1

N

N∑

n=1

(w̄n)r

]1/r

≈


1 + r log

[
N∏

n=1

w̄n

] 1
N




1/r

. (78)

Moreover, given x ∈ R, for r → 0 we have also the relationship

(1 + rx)
1
r → exp(x),

by definition of exponential function. Replacing above, for r → 0,


1 + r log

[
N∏

n=1

w̄n

] 1
N




1/r

−→ exp


log

[
N∏

n=1

w̄n

] 1
N


 =

[
N∏

n=1

w̄n

] 1
N

. (79)

Thus, finally we obtain

lim
r→0

ar

[
N∑

n=1

(w̄n)r
] 1
r

= (1−N)

[
N∏

n=1

w̄n

]1/N

, (80)

and

lim
r→0

D
(r)
N (w̄) =

1

(1−N)
[∏N

n=1 w̄n

]1/N

+ 1

, (81)

D
(0)
N (w̄) =

1

(1−N)GeoM(w̄) + 1
(82)

Case r= 1. With a similar procedure used for P
(1)
N , we obtain D

(1)
N (w̄) = P

(1)
N (w̄).

Case r→∞. In this case, ar → a∞ = 1 and br → b∞ = 0 and, since the distance[∑N
n=1 (w̄n)r

] 1
r

converges to the L∞ distance, max[w̄1, . . . , w̄N ], when r → ∞ [28], we obtain

D
(∞)
N (w̄) = 1

max[w̄1,...,w̄N ]
.

D.3 Special cases of V
(r)
N (w̄)

In the following, we study some special cases of the family V
(r)
N (w̄) in Eq. (19):

Case r→ 0. The coefficients of this family given in Table 2 are a0 = 1 and b0 = 0. If w̄
does not contain zeros then fr(w̄) =

∑N
n=1(w̄n)r = N . Otherwise, assuming 00 = 0, If w̄ contains

NZ zeros, we have fr(w̄) =
∑N

n=1(w̄n)r = N −NZ . Thus, in general, we have

V (0)(w̄) = N −NZ .
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Case r→ 1. In this, the coefficients ar and br diverge. We can consider the limit

lim
r→1

(
N r−1(N − 1)

1−N r−1

[
N∑

n=1

w̄rn

]
+

N r − 1

N r−1 − 1

)
=

= (N − 1) lim
r→1

[∑N
n=1 w̄

r
n

]
− 1

1−N r−1
,

where we have a indetermination of type 0
0
. Using the L’Hôpital’s rule [20], i.e., deriving both

numerator and denominator w.r.t. r and computing the limit, we obtain (since log x = log2 x
log2 e

)

lim
r→1

[∑N
n=1 w̄

r
n

]
− 1

1−N r−1
= lim

r→1

[∑N
n=1(w̄rn log w̄n)

]

−N r−1 logN
,

=

[
−∑N

n=1(w̄n log w̄n)
]

logN
=

[
−∑N

n=1(w̄n log2 w̄n)
]

(log2 e)
log2N
log2 e

,

=
H(w̄)

log2N
,

hence, finally,

V
(1)
N (w̄) = (N − 1)

H(w̄)

log2N
+ 1. (83)

Case r→∞. The coefficients converge to the values ar → a∞ = 1 − N and br → b∞ = N . If
w̄ 6= w̄(i) then fr(w̄) =

∑N
n=1(w̄n)r = 0, so that V

(∞)
N (w̄) = b∞ = N . Otherwise, If w̄ = w̄(i), since

0∞ = 0 and considering 1∞ = 1, then fr(w̄) =
∑N

n=1(w̄n)r = 1, so that V
(∞)
N (w̄) = a∞ + b∞ = 1.

D.4 Special cases of S
(r)
N (w̄)

Let us consider the family S
(r)
N (w̄). Four interesting special cases are studied below:

Case r→ 0. The coefficients given in Table 2 in this case are ar → a0 = 0 and br → b0 = 1. If
w̄ 6= w̄(i) then fr(w̄) → ∞, Otherwise, If w̄ = w̄(i), since 0∞ = 0 and considering 1∞ = 1, then

fr(w̄)→ 1. With a procedure similar to D
(0)
N , it is possible to show that

S(0)(w̄) = (N2 −N)GeoM(w̄) + 1. (84)

Case r→ 1
2
. We have a1/2 = 1 and b1/2 = 0. Then, in this case, S

( 1
2

)

N (w̄) = f1/2(w̄) =(∑N
n=1

√
w̄n

)2

.
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Case r→ 1. With a similar procedure used for V
(1)
N , it is possible to obtain

S
(1)
N (w̄) = (N − 1)

H(w̄)

log2N
+ 1. (85)

Case r→∞. In this case, ar → a∞ = −N , br → b∞ = N+1. Moreover, fr(w̄)→ max[w̄1, . . . , w̄n]
[28], so that

S
(∞)
N (w̄) = (N + 1)−N max[w̄1, . . . , w̄n]. (86)

Table 3 summarizes all the special cases.
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