
Physical law from experimental data

Abstract

This article proofs how to get physical laws — polynomial differential equations
— starting from experimental data, with relative numerical errors. This method
permits to describe every phenomenon in a compact and simple way, and chose
indirectly the optimal approximation functions for a real function. It is also shortly
proofed how to obtain the numerical trajectory of every differential equation

Introduction

In the last ten years there have been many works on differential equa-
tion regression. They work on noisy data from experimental data obtaining
biochemical dynamic, chaotic dynamic or chaotic electronic circuit. These
methods have a problem: the physical law is a geometric surface in a deriva-
tive space, therefore equal surfaces must be equal physical laws; for example
ÿ− g = 0 and (ÿ− g)M = 0 have equal surfaces, solutions, and physical laws.
My theory solves this dilemma using personal error function and personal F-
test.

0 2 4 6 8 10 12

t
-1

-0.5
0

0.5
1

yÐ

0 2 4 6 8 10 12
-0.5

0
0.5

1

y

0 2 4 6 8 10 12
-0.5

0
0.5

1
1.5

y

-0.5
0

0.5
1

1.5y

-0.5
0
0.5

1y

-1

-0.5

0

0.5

1

yÐ

-0.5
0

0.5
1

1.5y

-0.5
0
0.5

1y

Fig. 1. Physical law and trajectory of y(t)=0.1t+sin(t)

It is clear that a surface is identified by infinite nonintersecting trajecto-
ries; it is possible to obtain the exact differential equation of a chaotic system
because the trajectory is quasi-uniform on the differential equation (trajec-
tory has noninteger dimension greater of one). I discovered that is possible
to obtain the exact differential equation for non-chaotic system using a lit-
tle number of non-intersecting trajectories (using different initial conditions);
this can happen only for parameter-controllable systems: it is possible to use

Preprint submitted to Elsevier 4 February 2016

a physical — cybernetics — model, with exact and simplified mathematical
behavior of any real physical system with controlled conditions (e.g. thermo-
dynamic, hydrodynamic, analogic electronic, etc.).

I observed with Mathematica that the differential regression trajectories
are hard to obtain (numerically and analytically), then I discovered two gen-
eral methods to obtain the trajectories. The first method approximates the
surface in the derivative space with infinitesimal plane. The second method is
similar to Parker-Sochacki method: it search an orthogonal serie minimizing
the distance between trajectory and surface in the derivative space (it could
be applied to celestial mechanics). I wrote open source programs to verify all
these methods.

0

10

20y

0
10

20
y

0

5

10

15

yÐ

0

10

20y

0
10

20

Fig. 2. Physical laws of noisy t3 and of noisy t3, t3 + 3

Polynomial differential regression

This article proofs how to obtain the differential polynomial (physical
law) in the derivative space {y, ẏ, ÿ, · · ·} tangent to the experimental data
trajectory {yn, ẏn, ÿn, · · ·}: some training data for the learning will be used,
and the law will be verified on validation data, using a range outside the
learning range.

Later on it is defined the degree of the differential equation withM, order
of the differential equation with G and the number of the differential equation
terms with MK; it is clear that the set of the linear differential equations is
complete in the class of the ∞-times derivable function C∞(R) (combination
of Taylor, Fourier and Lagrange series).

Following I defined my differential equation error on the experimental

2

data (the method is in general true for mixed partial derivative):

MFn = ~w ·M ~Dn = w1 + w2yn + w3ẏn + w4ÿn + w5y
2
n + w6ynẏn + · · ·

MT (~w) =
∑

n

∣∣∣∑kwk
MDk

n

∣∣∣1/M + Λ2

2
[1−∑kw

2
k] = S(~w) +R(~w)

MV(~w) =
∑

n

∣∣∣∑kwk
MDk

n

∣∣∣1/M
1 ~Dn = {1, yn, ẏn, ÿn}
M ~Dn =

{
1, yn, ẏn, ÿn, y

2
n, ynẏn, ynÿn, ẏ

2
n, ẏnÿn, ÿ

2
n, · · · , ÿMn

}
wk = Wk∑

k
|Wk|

tk =

 t0 + (k − 1)∆Tt 1 ≤ k ≤ TN = N

tN + (k −N)∆Vt N < k ≤ TN + VN = 5N + 1

1 ' 4
∑N−1

i=1

√
(yi−yi+1)2+(ẏi−ẏi+1)2+(ÿi−ÿi+1)2∑5N

i=N+1

√
(yi−yi+1)2+(ẏi−ẏi+1)2+(ÿi−ÿi+1)2

where:
MF is the differential equation of degree M
MT (~w) is the training error of the differential equation of degree M
MV(~w) is the validation error of degree M
MDk

n are the rescaled terms of the differential polynomial equation, the
range of the n parameter identifies if they are validation or training
terms

wk are the differential equation coefficients (the solution)

ti are the training and validation times

The error has a certain complexity to take into account some conditions:

• the training error is splitted in two part: an error S as the distance between
differential equation and experimental data, and an regularization R re-
ducing the differential equation complexity (it has attractors in points with
minimum number of parameters: Wk = δks): ”Non sunt multiplicanda entia
praeter necessitatem”
• the error has normalized coefficients otherwise the solution is trivial ~W = ~0
• the coefficient normalization with the Manhattan norm — and only with

this norm — has the property that every mth power of the differential
equation has equal validation error
• the Mth root of the differential equation error is used because the Mth

power of the differential equation has the same error. If the differential
equation error on the nth data is Mεn = (Fn)1/M, then the pth power

differential equation error is pMεn = (Fp
n)1/(pM) = (Fn)1/M = Mεn and the

error is equal for equal surfaces

3

• the function and the derivatives are rescaled with σ2
ÿ =

∑
n ÿ

2
n/(NT + NV)

to unitary standard deviation z̈p = ÿp/σÿ so that every term has similar
values, otherwise the derivatives with low absolute value are preferred
• the measured times are chosen so to exclude the asymptotic behavior; the

length of the trajectories — training and validation data — in the derivative
space must be in an approximate constant ratio: the asymptote y = k is a
point in the derivative space

The error is modified so that the error derivative do not diverge in the points
where the differential equation is null: it is used the least common divisor of
the integer roots to obtain integer power of the error.

The minimum power must be greater of two, so that the diagonal part of
the Hessian (necessary to minimize the validation error) is not divergent:

MT (~w) =
∑

n

∣∣∣∑kwk
MDk

n

∣∣∣Φ/M + Λ2

2
[1−∑kw

2
k]

MV(~w) =
∑

n

∣∣∣∑kwk
MDk

n

∣∣∣Φ/M
Φ =

 lcm(1, 2, · · · ,Mmax) if lcm(1, 2, · · · ,Mmax) ≥ 2Mmax

2 lcm(1, 2, · · · ,Mmax) otherwise

where the function lcm(a, b) is the least common divisor of the arguments,
including all the power from one to the maximum degree of the polynomial;
for example the power of the polynomials of order two and degree two, three
and four are {4, 2}, {6, 3, 2}, {12, 6, 4, 3}.

The discontinuity of the Manhattan norm in the error is deleted using
the θk = (Wk)1/3 coefficients (only in this way the absolute minimums are
obtained)

MT (~θ) =
∑

n

∣∣∣∣∣
∑

k θ
3
k
MDk

n∑
k |θ3

k|

∣∣∣∣∣
Φ/M

+
Λ2

2

[
1−

∑
k θ

6
k

(
∑

k |θ3
k|)

2

]

the gradient and the Hessians of the error are:

MΘp
n ≡ |

∑
k
wk
MDk

n|∑
k
wk
MDk

n

(
MDp

n −
|wp|
wp

∑
kwk

MDk
n

)
=
|MFn|
MFn

(
MDp

n −MFn
|wp|
wp

)
∂[MT]
∂Wp

= 1∑
k
|Wk|

{
Φ
M
∑

n

∣∣∣MFn

∣∣∣Φ/M−1MΘp
n − Λ2

[
wp − |wp|

wp

∑
kw

2
k

]}
∂2[MV]
∂Wp∂Wp

= 1

(
∑

k
|Wk|)

2

{
Φ
M
∑

n

∣∣∣MFn

∣∣∣Φ/M−2MΘp
n

[(
Φ
M − 1

)
MΘp

n − 2 |wp|
wp

∣∣∣MFn

∣∣∣]}
∂
∂θk

= 3θ2
k

∂
∂Wk

∂2

∂θk∂θk
= 2θk

∂
∂Wk

+ 9θ4
k

∂2

∂Wk∂Wk

the complete procedure to minimize the validation error is:

4

(1) initialize the differential equation coefficients in the neighborhood of the
optimal solution

(2) initialize the Lagrange multiplier in the neighborhood of the optimal so-
lution

(3) minimize the training error from the initial data
(4) in the absolute minimum point of the training error the validation error

is evaluate; if the validation error is reduced (using F-test statistic), it is
used as optimal solution

(5) restart from point (1)

the real differential equation is obtained reducing the validation error in a re-
gion outside the training region, measuring the generalization (extrapolation)
of the differential equation.

Statistic test

I use the F-test to choose the physical law between differential equations.
The FΦ-test is my nonstandard version of Fisher distribution measuring

the relative variation of the validation error:

FΦ(pK, q≥pK, VN) =
(pV − qV)/(qK − pK)

qV/(VN − qK)

FΦ-test value can be calculated only estimating numerically the sum of Φ-th
power of the εi errors (they are random variables with normal density): I wrote
a simple program F-test.c: it produces 25 · 106 random normal numbers with
zero mean and unit variance used to evaluate the FΦ-test values; afterwards
I leave out the distribution tail with 0.1% probability (0.999 quantile); the
FΦ-test provides the following restriction:

q≥pV <
pV

1 + (qK − pK)FΦ(pK, qK, VN)/ (VN − qK)

Table 1
FΦ-tests with 0.1% significance level. F-tests using Cochran’s theorem are given in
parentheses.

Φ FΦ(10, 4, 120) FΦ(20, 10, 120) FΦ(20, 4, 120)

2 (4.07) 16.5 (3.30) 10.3 (2.78) 7.08

4 55.1 34.1 22.4

6 206. 128. 82.9

5

the validation error reduction alone is not enough to obtain the physical law,
it exists a lower threshold that considers the statistical fluctuation of εi errors

The program

The oricchio 237D.c program minimizes the training error using the Con-
jugate Gradient method: it uses information about two subsequent minimiza-
tions along two lines to build a sequence of optimal search directions; if the
gradient evaluation is not correct, then the search directions are not optimal:
this is the reason because the directional derivative was chosen to obtain the
minimum point along the line (unlike other method).

The training error is minimized along the conjugate unit vectors ~n, rather
than along the conjugate directions ~p (the first index is the Gradient Descent
step in the line search, the second index counts the line search):

~θk+1,j = ~θmin + αk+1,j ~nj

αk+1,j = αj − vk+1,j ~nj · ∇T min

vk+1,j =


‖~θmin‖1/(ε+ |~nj · ∇T min|) and αj = 0 if k = 0

1.372vk,j and αj = αk,j and T min = T (~θk,j) if T (~θk,j) ≤ T min

0.1vk,j if T (~θk,j) > T min

this condition avoid the singularity (because of the finite precision of the ma-
chine) near the minimum; the initial velocity of descent modifies the differen-
tial equation coefficients in the solution region.

The training error minimization is interrupted along the line when the
training error is constant in three subsequent reductions (even if the coefficient
variations are not negligible):

T (~θk,j) = T (~θs>k,j) = T (~θp>s,j) = T min

the Polak-Ribière method is used to calculate the βPR parameter used to find
the conjugate direction ~pj:

βPR
j =

∇Tj+1·(∇Tj+1−∇Tj)
∇Tj·∇Tj

~pj+1 = −∇Tj+1 + βPR
j ~pj

~nj+1 =
~pj+1

‖~pj+1‖1

6

the βPR
j parameter is set to zero when the gradients in the conjugate directions

are not orthogonal (it restarts with the Gradient Descent using the Powell’s
restarting criterion):

|∇Tj+1 · ∇Tj| > 0.1 ∇Tj+1 · ∇Tj+1

moreover βPR
j is set to zero, and the coefficients are renormalized (the gradient

is reevaluated) if ‖~θmin‖1 < θ−1
max or ‖~θmin‖1 > θmax, that is if the norm has not

numerical representation.
The initial coefficients of the differential equation are chosen in the fol-

lowing way:

• an Evolutionary Strategy, or a Gradient Descent strategy (Becker-Le Cun-
Ricotti) is used; it covers the neighborhood of the minimum point of vali-
dation error:

θ0,0(s) =


θopt(s)− Γ(0, αm) ∂sV

opt

∂2s Vopt first strategy

θopt(s)− Γ(0, αm)θopt(s) second strategy

θopt(s)− Γ(0, αm)‖~θopt‖1 from third to sixth strategy

Γ(0, αm) = gaussian distribution variable with mean 0 and variance αm

αm+1 =


αm 1.1 and ~θopt = ~θmin if Vmin < Vopt

αm/1.1 if Vmin ≥ Vopt and αm > 10−3

1.0 and change strategy otherwise

• an Evolutionary Strategy on Lagrange multiplier is used:

Λm+1 =

S
1/2[1 + Γ(0, αm)] if Υ(0, 1) ≤ 0.5

Λm[1 + Γ(0, αm)] otherwise

Υ(0, 1) = uniform distribution variable in the interval [0, 1]

the regularization must be of the same order of the training error magnitude,
otherwise it can be numerically negligible (if the initial value is wrong or if
a drastic reduction of the training error occurs): a quick alignment method
is used

other conditions are listed below:

• the minimization is stopped, and the validation error is multiplied by 10, if
the number of training error evaluation is more of 105

• the minimization is stopped, and the validation error is evaluated, if the
relative reduction of the training error in 4K line search is less than 10−5

7

Table 2
Differential equations with relative noise 0 and 10−4. The error power series {6, 3}
is used. The execution times t are in minutes and [tmin, tmax] is the ranges of exper-
imental times. The training data number is 30, the validation data number is 120.
The number of validation evaluation for each degree is 5000.

y(t) t(0) V(0) F(0)

[tmin, tmax] t(10−4) V(10−4) F(10−4)

t 0.03 0.0 0 = 1.0000ÿ

[0, 10] 0.02 0.0 0 = 1.0000ÿ

tet 93.87 1.1 · 10−93 0 = 0.2500y − 0.5000ẏ + 0.2500ÿ

[0, 10] 94.03 7.0 · 10−20 0 = 0.2469y − 0.4996ẏ + 0.2520ÿ + 0.0014

e0.1t sin(t) 57.47 7.0 · 10−95 0 = 0.4570y − 0.0905ẏ + 0.4525ÿ

[0, 12] 79.92 5.2 · 10−22 0 = 0.4570y − 0.0905ẏ + 0.4525ÿ

sin(t) 56.52 0.0 0 = 0.5000y + 0.5000ÿ

[0, 12] 67.18 2.8 · 10−22 0 = 0.5000y + 0.5000ÿ

cosh(t) 63.70 0.0 0 = 0.5000y − 0.5000ÿ

[0, 6] 83.60 3.1 · 10−21 0 = 0.5000y − 0.5000ÿ

0.5t2 3.58 0.0 0 = 0.5000− 0.5000ÿ

[0, 10] 72.13 2.0 · 10−23 0 = 0.5000− 0.5000ÿ

ln(t) 67.53 9.3 · 10−48 0 = 0.5000ÿ + 0.5000ẏ2

[1, 10] 33.67 2.7 · 10−11 0 = 0.5000ÿ + 0.5000ẏ2

ln
(
e2t + 1

)
− t 61.82 1.9 · 10−46 0 = 0.3333− 0.3333ÿ − 0.3333ẏ2

[0, 2] 70.88 7.4 · 10−11 0 = 0.3332− 0.3334ÿ − 0.3332ẏ2 + 0.0002yÿ
√

3 + 2t 68.90 3.3 · 10−48 0 = 0.5000− 0.5000yẏ

[−1, 10] 38.68 6.3 · 10−12 0 = 0.4999ẏ2 + 0.5000yÿ

ln(cosh(t)) 61.38 1.1 · 10−47 0 = 0.3333− 0.3333ÿ − 0.3333ẏ2

[0, 3] 54.58 9.6 · 10−11 0 = 0.3333− 0.3333ÿ − 0.3333ẏ2

tan(t) 53.18 2.4 · 10−47 0 = 0.3333ÿ − 0.6667yẏ

[−1, 0] 38.20 5.1 · 10−11 0 = 0.3333ÿ − 0.6667yẏ

2
√
et + 2 65.77 7.0 · 10−47 0 = 0.3333yẏ − 0.3333ẏ2 − 0.3333yÿ

[−3, 3] 62.78 6.2 · 10−11 0 = 0.3317yẏ − 0.3325ẏ2 − 0.3311yÿ + 0.0011ẏ − 0.0029ÿ + 0.0006ÿ2

0.1t+ sin(t) 66.27 1.1 · 10−46 0 = 0.3103 + 0.0627ẏ − 0.3135ẏ2 − 0.3135ÿ2

[0, 12] 56.78 1.1 · 10−10 0 = 0.3103 + 0.0627ẏ − 0.3135ẏ2 − 0.3135ÿ2

sin(t) + sin(3t) 49.02 2.8 · 10−46 0 = 0.4444− 0.4375y2 − 0.0278ẏ2 − 0.0833yÿ − 0.0069ÿ2

[0, 12] 37.45 1.2 · 10−11 0 = 0.4444− 0.4375y2 − 0.0278ẏ2 − 0.0833yÿ − 0.0069ÿ2

arctan(t) 80.67 9.1 · 10−09 0 = 0.3290− 0.2453y − 0.3280ẏ − 0.0977ÿ

[0, 5] 90.80 4.7 · 10−09 0 = 0.3321− 0.2462y − 0.3305ẏ − 0.0912ÿ

t3 60.98 8.8 · 10−47 0 = 0.9474y − 0.0526ẏÿ

[0, 3] 56.52 3.3 · 10−10 0 = 0.8003y − 0.0444ẏÿ + 0.1433ẏ − 0.0119ÿ2

cos(t)−2 68.93 3.3 · 10−46 0 = 0.4444y2 + 0.3333ẏ2 − 0.2222yÿ

[0, 1.5] 73.77 4.3 · 10−10 0 = 0.3649y + 0.0883ÿ − 0.5294y2 − 0.0149− 0.0024ẏ

t−1 56.03 1.6 · 10−47 0 = 0.6667ẏ2 − 0.3333yÿ

[1, 10] 76.55 1.1 · 10−12 0 = 0.2170ÿ + 0.4340yẏ + 0.2325ẏ2 − 0.1164yÿ − 0.0001ẏÿ

sin(t) + cos(2t) 70.68 2.9 · 10−40 0 = 0.3683− 0.3691y − 0.0880ÿ − 0.0916y2 − 0.0703ẏ2 + 0.0010yÿ − 0.0116ÿ2

[0, 12] 43.03 2.2 · 10−11 0 = 0.2478− 0.1104y − 0.0001ÿ − 0.4033y2 − 0.0276ẏ2 − 0.1832yÿ − 0.0275ÿ2

sin(t) + e0.1t 67.38 4.2 · 10−39 0 = 0.2945− 0.0029y2 + 0.0583yẏ − 0.2945ẏ2 + 0.0583ẏÿ − 0.2915ÿ2

[0, 12] 78.05 1.1 · 10−07 0 = 0.2936− 0.0028y2 + 0.0585yẏ − 0.2941ẏ2 + 0.0589ẏÿ − 0.2916ÿ2 + 0.0001y − 0.0002ÿ

e0.1t + e0.2t 90.02 3.4 · 10−94 0 = 0.0152y − 0.2273ẏ + 0.7576ÿ

[0, 12] 93.60 8.1 · 10−23 0 = 0.0151y − 0.2272ẏ + 0.7577ÿ

exp(−t2) 59.52 3.4 · 10−47 0 = 0.5000y2 − 0.2500ẏ2 + 0.2500yÿ

[0, 12] 80.60 2.0 · 10−11 0 = 0.5000y2 − 0.2500ẏ2 + 0.2500yÿ

8

Results

The theory was tested with an ANSI C program, compiled with gcc ver-
sion 4.1.2 20061115 with optimize level O2, on AMD Sempron(tm) 2400+,
and with openSUSE 10.2 (i586).

The oricchio 237D.c program is a GNU GPL free software and it is 1056
lines long; the data are passed using another program T F0 F1 F2.c: it cre-
ates files (training.swp and validation.swp), containing four data columns
tn, yn, ẏn, ÿn. The main program reads these two files and at the end writes
four separate files:

• equa err.swp containing the differential equation, error and gradient, for
each degree
• equa par.swp containing the physical law and gradients
• start.swp containing the initial parameters of each execution
• locked is an empty file, created at the end of the execution

The results are described in table 1 together the execution times.

Trajectory calculus

Once the physical law is obtained, it is necessary to use methods to cal-
culate the motion trajectory (for any differential equation). The first method
I discovered calculates the trajectory approximating the polynomial differen-
tial equation with the tangent plane to the trajectory point (in the derivative
space), and finding the solution as Taylor’s series of the linear differential
equation (tangent plane) and equating the coefficient of like power of t− t0:

Fn = w0 + w1yn + w2ẏn + w3ÿn + w4y
2
n + w5ynẏn + · · · = 0

0 ' ∂Fn

∂ÿn
(ÿ − ÿn) + ∂Fn

∂ẏn
(ẏ − ẏn) + ∂Fn

∂yn
(y − yn)

αk≤2 = dky(t0)
dtk

αk>2 = −
(
∂F
∂ẏn

/
∂F
∂ÿn

)
αk−1 −

(
∂F
∂yn

/
∂F
∂ÿn

)
αk−2

yn+1 = y(tn+1) = y(tn + ε) ∼= y(tn) + ẏ(tn)ε+ ÿ(tn) ε
2

2
+
∑

k>2 αk
εk

k!

it is not necessary to solve the differential equation to obtain the numeri-
cal solution (the same applies to differential equation with mixed derivative:
membrane differential equation), and the Taylor’s coefficients are in a recur-
rent relation (as Fibonacci sequence).

9

0
0.5

1
1.5

2 y

0
0.25

0.5
0.75

1

y

-1

-0.75

-0.5

-0.25

0

yÐ

0
0.5

1
1.5

2 y

0.25
0.5
0.75

1

-1

-0.75

-0.5

-0.25

Ð

Fig. 3. Trajectory obtained approximating the surface with infinitesimal plane in
the derivative space

The second method calculates the trajectory minimizing the differential
equation along the trajectory:

V = 1
2

∑
nFn

(
y(0)

n , y(1)
n , · · · , y(s)

n

)2

y(k)
n =

∑
s αs

(tn−t0)s−k

(s−k)!

αnew
s = αold

s − η ∂V
∂αold

s
= αold

s − η
∑

n,k

[
Fn

∂Fn

∂y
(k)
n

]
(tn−t0)s−k

(s−k)!

the absolute minimum is obtained with Conjugate Gradient or Broyden-Fletcher-
Goldfarb-Shanno method.

Conclusion

I search the surface tangent to the experimental trajectory using polyno-
mial regression.

If the parameter number of the polynomial regression is increased then the
variance is reduced, and then the minimum solution is always the one with
maximum number of parameters; a F-test statistic must be used to choose
optimal polynomial evaluating the relative variation of the variance between
different differential equation.

One problem is that ÿ − g = 0 and (ÿ − g)M = 0 are equal differential
equations because they are equal differential surfaces; these equations must
have the same error and therefore I used personal error function (depending

on the degree): ε = ÿ−g
|1|+|−g| and ε =

[
ÿ2−2gÿ+g2

|1|+|−2g|+|g2|

]1/2
=
[

(ÿ−g)2
(|1|+|−g|)2

]1/2
.

My personal nonstandard F-test distribution can be evaluated only nu-
merically for random variables with normal density, using the simple included
program.

The trajectory for each polynomial differential equation can be obtained
numerically, and I discovered two methods: one works where Lipschitz condi-
tion is verified an the other one is always applicable.

10

This theory can be applied to implicit function F (P, V, T) = 0, or F (yn, yn−1, yn−2),
using experimental data {n, Pn, Vn, Tn} instead of {tn, yn, ẏn, ÿn}.

Acknowledgements

Thanks to my brother Nicola for the translations and corrections.

References

References

[1] I. Asimov, Foundation’s edge,
Give me the idea; is a science fiction book where Hari Seldon psychohis-
tory forecast the future

[2] L.N. Tolstoj, War and peace,
Tolstoj describe the Historical science using the differential of history to
obtain the laws of history

11

