The Corpuscular Structure of Matter, the Interaction of Material Particles, and Quantum Phenomena as a Consequence of Selfvariations.

Emmanuil Manousos

APM Institute for the Advancement of Physics and Mathematics, 13 Pouliou str., 11523 Athens, Greece

Abstract

With the term "Law of Selfvariations" we mean an exactly determined increase of the rest mass and electric charge of material particle. In this article we present the basic theoretical investigation of the law of selfvariations. We arrive at the central conclusion that the interaction of material particles, the corpuscular structure of matter, and the quantum phenomena can be justified by the law of Selfvariations. We predict a unified interaction between material particles with a unified mechanism (Unified Selfvariations Interaction, USVI). Every interaction is the result of three clearly distinct terms with clearly distinct consequences in the USVI. We predict a wave equation, whose special cases are the Maxwell equations, the Schrödinger equation, and the related wave equations. We determine a mathematical expression for the total of the conservable physical quantities, and we calculate the current density 4 -vector. The corpuscular structure and wave behaviour of matter and their relation emerge clearly, and we give a calculation method for the rest masses of material particles. We prove the «internal symmetry» theorem which justifies the cosmological data. From the study we present, the method for the further investigation of the Selfvariations and their consequences also emerges.

Keywords: Particles and Fields, Quantum Physics, Cosmology.

1. Introduction

The present study is founded on three axioms: The principle of the conservation of the four-vector of momentum, the equation of the Theory of Special Relativity for the rest mass of the material particles, and the law of Selfvariations.

With the term "Law of Selfvariations" we mean an exactly determined increase of the rest mass and electric charge of material particle. It is consistent with the principles of conservation of energy, momentum, angular momentum and electric charge. It is also invariant under the Lorentz-Einstein transformations.

The most immediate consequence of the law of Selfvariations is that the energy, the momentum, the angular momentum, and the electric charge of material particles are distributed in the surrounding spacetime (when the material particle is electrically charged).

In order for the value of the electric charge to increase in absolute value, the electron, in some way, should 'emit' a positive electric charge in the space-time environment. Otherwise, the conservation of the electric charge is violated. Similarly, the increase of the rest mass of the material particle involves the "emission" of negative energy as well as momentum in the space-time surrounding the material particle (spacetime energymomentum, STEM). The law of Selfvariations describes quantitatively the interaction of material particles with the STEM.

Every material particle interacts both with the STEM emitted by itself due to the selfvariations, and with the STEM originating from other material particles. The material particle and the STEM with which it interacts, comprise a dynamic system which we called "generalized particle". We study this continuous interaction in the present article. For the formulation of the equations the following notation is used:
$W=$ the energy of the material particle
$\mathbf{J}=$ the momentum of the material particle
$m_{0}=$ the rest mass of the material particle
$E=$ the energy of the STEM interacting with the material particle
$\mathbf{P}=$ the momentum of the STEM interacting with the material particle
$E_{0}=$ the rest energy of the STEM interacting with the material particle
With the above symbolism, the law of Selfvariations for the rest mass is given by equations

$$
\begin{align*}
& \frac{\partial m_{0}}{\partial t}=-\frac{b}{\hbar} E m_{0} \tag{1.1}\\
& \nabla m_{0}=\frac{b}{\hbar} \mathbf{P} m_{0}
\end{align*}
$$

in every system of reference $0(\mathrm{t}, x, y, z)$., \hbar is Planck's constant, b constant, $b \neq 0, b \in \mathbb{C}$ and $\nabla=\left(\begin{array}{c}\frac{\partial}{\partial x} \\ \frac{\partial}{\partial y} \\ \frac{\partial}{\partial z}\end{array}\right)$.

The the findings resulting from the law of Selfvariations will be referred to as "the Theory of Selfvariations" (TSV). Initially, we present the TSV in inertial frames of reference.

2. The basic study of the internal structure of the generalized particle

We consider a material particle with rest mass $m_{0} \neq 0$. That is, we consider a generalized particle. The rest mass m_{0} and the rest energy E_{0} given by equations (2.1) and (2.2) respectively according to special relativity [1-4]

$$
\begin{align*}
& m_{0}^{2} c^{4}=W^{2}-c^{2} \mathbf{J}^{2} \tag{2.1}\\
& E_{0}^{2}=E^{2}-c^{2} \mathbf{P}^{2} \tag{2.2}
\end{align*}
$$

We now denote the four-vectors

$$
X=\left[\begin{array}{l}
x_{0} \tag{2.3}\\
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{l}
i c t \\
x \\
y \\
z
\end{array}\right]
$$

$$
\begin{align*}
& J=\left[\begin{array}{l}
J_{0} \\
J_{1} \\
J_{2} \\
J_{3}
\end{array}\right]=\left[\begin{array}{c}
\frac{i W}{c} \\
J_{x} \\
J_{y} \\
J_{z}
\end{array}\right] \tag{2.4}\\
& P=\left[\begin{array}{l}
P_{0} \\
P_{1} \\
P_{2} \\
P_{3}
\end{array}\right]=\left[\begin{array}{c}
\frac{i E}{c} \\
P_{x} \\
P_{y} \\
P_{z}
\end{array}\right] \tag{2.5}
\end{align*}
$$

where c is the vacuum velocity of light snd i is the imaginary unit, $i^{2}=-1$.
Using this notation, equations (1.1), (2.1) and (2.2) are written in the form of equations (2.6), (2.7) and (2.8)

$$
\begin{align*}
& \frac{\partial m_{0}}{\partial x_{k}}=\frac{b}{\hbar} P_{k} m_{0}, k=0,1,2,3 \tag{2.6}\\
& J_{0}^{2}+J_{1}^{2}+J_{2}^{2}+J_{3}^{2}+m_{0}^{2} c^{2}=0 \tag{2.7}\\
& P_{0}^{2}+P_{1}^{2}+P_{2}^{2}+P_{3}^{2}+\frac{E_{0}^{2}}{c^{2}}=0 . \tag{2.8}
\end{align*}
$$

After differentiating equation (2.7) with respect to $x_{k}, k=0,1,2,3$ we obtain

$$
J_{0} \frac{\partial J_{0}}{\partial x_{k}}+J_{1} \frac{\partial J_{1}}{\partial x_{k}}+J_{2} \frac{\partial J_{2}}{\partial x_{k}}+J_{3} \frac{\partial J_{3}}{\partial x_{k}}+m_{0} c^{2} \frac{\partial m_{0}}{\partial x_{k}}=0
$$

and with equation (2.6) we obtain

$$
J_{0} \frac{\partial J_{0}}{\partial x_{k}}+J_{1} \frac{\partial J_{1}}{\partial x_{k}}+J_{2} \frac{\partial J_{2}}{\partial x_{k}}+J_{3} \frac{\partial J_{3}}{\partial x_{k}}+\frac{b}{\hbar} P_{k} m_{0}^{2} c^{2}=0
$$

and with equation (2.7) we obtain

$$
J_{0} \frac{\partial J_{0}}{\partial x_{k}}+J_{1} \frac{\partial J_{1}}{\partial x_{k}}+J_{2} \frac{\partial J_{2}}{\partial x_{k}}+J_{3} \frac{\partial J_{3}}{\partial x_{k}}-\frac{b}{\hbar} P_{k}\left(J_{0}^{2}+J_{1}^{2}+J_{2}^{2}+J_{3}^{2}\right)=0
$$

$J_{0}\left(\frac{\partial J_{0}}{\partial x_{k}}-\frac{b}{\hbar} P_{k} J_{0}\right)+J_{1}\left(\frac{\partial J_{1}}{\partial x_{k}}-\frac{b}{\hbar} P_{k} J_{1}\right)$
$+J_{2}\left(\frac{\partial J_{2}}{\partial x_{k}}-\frac{b}{\hbar} P_{k} J_{2}\right)+J_{3}\left(\frac{\partial J_{3}}{\partial x_{k}}-\frac{b}{\hbar} P_{k} J_{3}\right)=0, k=0,1,2,3$

We now symbolize

$$
\begin{equation*}
\frac{\partial J_{i}}{\partial x_{k}}-\frac{b}{\hbar} P_{k} J_{i}=\lambda_{k i}, k, i=0,1,2,3 . \tag{2.10}
\end{equation*}
$$

With this notation, equation (2.9) can be written in the form
$J_{0} \lambda_{k 0}+J_{1} \lambda_{k 1}+J_{2} \lambda_{k 2}+J_{3} \lambda_{k 3}=0, k=0,1,2,3$.

We now need the 4×4 matrix T as given by equation

$$
T=\left[\begin{array}{llll}
\lambda_{00} & \lambda_{01} & \lambda_{02} & \lambda_{03} \tag{2.12}\\
\lambda_{10} & \lambda_{11} & \lambda_{12} & \lambda_{13} \\
\lambda_{20} & \lambda_{21} & \lambda_{22} & \lambda_{23} \\
\lambda_{30} & \lambda_{31} & \lambda_{32} & \lambda_{33}
\end{array}\right] .
$$

With this notation, equation (2.11) can be written in the form
$T J=0$.
We now prove the following theorem:

Theorem 2.1' ${ }^{\prime}$ For $m_{0} \neq 0$, and for every $k, i=0,1,2,3$ equation (2.14) holds
$\frac{\partial P_{i}}{\partial x_{k}}=\frac{\partial P_{k}}{\partial x_{i}}, k \neq i, k, i=0,1,2,3 .$.

Proof. Indeed, by differentiating equation (2.6) with respect to $x_{i}, i=0,1,2,3$ we get
$\frac{\partial}{\partial x_{i}}\left(\frac{\partial m_{0}}{\partial x_{k}}\right)=\frac{b}{\hbar} \frac{\partial}{\partial x_{i}}\left(P_{k} m_{0}\right)$
and using the identity
$\frac{\partial}{\partial x_{i}}\left(\frac{\partial m_{0}}{\partial x_{k}}\right)=\frac{\partial}{\partial x_{k}}\left(\frac{\partial m_{0}}{\partial x_{i}}\right)$
we get
$\frac{\partial}{\partial x_{k}}\left(\frac{\partial m_{0}}{\partial x_{i}}\right)=\frac{b}{\hbar} \frac{\partial}{\partial x_{i}}\left(P_{k} m_{0}\right)$
and with equation (2.6) we have
$\frac{\partial}{\partial x_{k}}\left(\frac{b}{\hbar} P_{i} m_{0}\right)=\frac{b}{\hbar} \frac{\partial}{\partial x_{i}}\left(P_{k} m_{0}\right)$
$P_{i} \frac{\partial m_{0}}{\partial x_{k}}+m_{0} \frac{\partial P_{i}}{\partial x_{k}}=P_{k} \frac{\partial m_{0}}{\partial x_{i}}+m_{0} \frac{\partial P_{k}}{\partial x_{i}}$
and with equation (2.6) we have
$P_{i} \frac{b}{\hbar} P_{k} m_{0}+m_{0} \frac{\partial P_{i}}{\partial x_{k}}=P_{k} \frac{b}{\hbar} P_{i} m_{0}+m_{0} \frac{\partial P_{k}}{\partial x_{i}}$
$m_{0}\left(\frac{\partial P_{i}}{\partial x_{k}}-\frac{\partial P_{k}}{\partial x_{i}}\right)=0$
and since $m_{0} \neq 0$, we obtain equation (2.14).
We now prove the following theorem:
Theorem 2.2 'For every $k, i, v=0,1,2,3$ the following equation holds

$$
\begin{equation*}
\frac{\partial \lambda_{k i}}{\partial x_{v}}-\frac{b}{\hbar} P_{v} \lambda_{k i}=\frac{\partial \lambda_{v i}}{\partial x_{k}}-\frac{b}{\hbar} P_{k} \lambda_{v i} . \tag{2.15}
\end{equation*}
$$

Proof. Indeed, by differentiating equation (2.10) with respect to $x_{v}, v=0,1,2,3$ we get
$\frac{\partial \lambda_{k i}}{\partial x_{v}}=\frac{\partial}{\partial x_{v}}\left(\frac{\partial J_{i}}{\partial x_{k}}\right)-\frac{b}{\hbar} \frac{\partial}{\partial x_{v}}\left(P_{k} J_{i}\right)$
and with identity

$$
\frac{\partial}{\partial x_{v}}\left(\frac{\partial J_{i}}{\partial x_{k}}\right)=\frac{\partial}{\partial x_{k}}\left(\frac{\partial J_{i}}{\partial x_{v}}\right)
$$

we get
$\frac{\partial \lambda_{k i}}{\partial x_{v}}=\frac{\partial}{\partial x_{k}}\left(\frac{\partial J_{i}}{\partial x_{v}}\right)-\frac{b}{\hbar} \frac{\partial}{\partial x_{v}}\left(P_{k} J_{i}\right)$
and with equation (2.10) we have

$$
\begin{aligned}
& \frac{\partial \lambda_{k i}}{\partial x_{v}}=\frac{\partial}{\partial x_{k}}\left(\frac{b}{\hbar} P_{v} J_{i}+\lambda_{v i}\right)-\frac{b}{\hbar} \frac{\partial}{\partial x_{v}}\left(P_{k} J_{i}\right) \\
& \frac{\partial \lambda_{k i}}{\partial x_{v}}=\frac{\partial \lambda_{v i}}{\partial x_{k}}+\frac{b}{\hbar} \frac{\partial}{\partial x_{k}}\left(P_{v} J_{i}\right)-\frac{b}{\hbar} \frac{\partial}{\partial x_{v}}\left(P_{k} J_{i}\right) \\
& \frac{\partial \lambda_{k i}}{\partial x_{v}}=\frac{\partial \lambda_{v i}}{\partial x_{k}}+\frac{b}{\hbar} P_{v} \frac{\partial J_{i}}{\partial x_{k}}+\frac{b}{\hbar} J_{i} \frac{\partial P_{v}}{\partial x_{k}}-\frac{b}{\hbar} P_{k} \frac{\partial J_{i}}{\partial x_{v}}-\frac{b}{\hbar} J_{i} \frac{\partial P_{k}}{\partial x_{v}} \\
& \frac{\partial \lambda_{k i}}{\partial x_{v}}=\frac{\partial \lambda_{v i}}{\partial x_{k}}+\frac{b}{\hbar} P_{v} \frac{\partial J_{i}}{\partial x_{k}}-\frac{b}{\hbar} P_{k} \frac{\partial J_{i}}{\partial x_{v}}+\frac{b}{\hbar} J_{i}\left(\frac{\partial P_{v}}{\partial x_{k}}-\frac{\partial P_{k}}{\partial x_{v}}\right)
\end{aligned}
$$

and with equation (2.14) we get
$\frac{\partial \lambda_{k i}}{\partial x_{v}}=\frac{\partial \lambda_{v i}}{\partial x_{k}}+\frac{b}{\hbar} P_{v} \frac{\partial J_{i}}{\partial x_{k}}-\frac{b}{\hbar} P_{k} \frac{\partial J_{i}}{\partial x_{v}}$
and with equation (2.10) we get

$$
\frac{\partial \lambda_{k i}}{\partial x_{v}}=\frac{\partial \lambda_{v i}}{\partial x_{k}}+\frac{b}{\hbar} P_{v}\left(\frac{b}{\hbar} P_{k} J_{i}+\lambda_{k i}\right)-\frac{b}{\hbar} P_{k}\left(\frac{b}{\hbar} P_{v} J_{i}+\lambda_{v i}\right)
$$

and we finally have
$\frac{\partial \lambda_{k i}}{\partial x_{v}}=\frac{\partial \lambda_{v i}}{\partial x_{k}}+\frac{b}{\hbar} P_{v} \lambda_{k i}-\frac{b}{\hbar} P_{k} \lambda_{v i}$
which is equation (2.15).

3. Physical quantities $\lambda_{k i}, \mathbf{k}, \mathbf{i}=\mathbf{0 , 1 , 2 , 3}$ and the conservation principles of energy and momentum

The physical quantities $\lambda_{k i}, k, i=0,1,2,3$ are related to the conservation of energy and momentum of the generalized particle. This investigation we will present in this section. We prove the following theorem:
Theorem 3.1 'If the generalized particle conserves its momentum along the axes
$x_{i}, i=0,1,2,3$, that is
$J_{i}+P_{i}=c_{i}=$ constant.
then the following equation holds

$$
\begin{equation*}
\lambda_{k i}-\lambda_{i k}=\frac{b}{\hbar}\left(J_{k} P_{i}-J_{i} P_{k}\right)=\frac{b}{\hbar}\left(c_{i} J_{k}-c_{k} J_{i}\right)=\frac{b}{\hbar}\left(c_{k} P_{i}-c_{i} P_{k}\right) \tag{3.2}
\end{equation*}
$$

for every $k, i=0,1,2,3, k \neq i$.

Proof. Combining equations (2.14) and (3.1) we obtain

$$
\begin{aligned}
& \frac{\partial}{\partial x_{k}}\left(c_{i}-J_{i}\right)=\frac{\partial}{\partial x_{i}}\left(c_{k}-J_{k}\right) \\
& \frac{\partial J_{i}}{\partial x_{k}}=\frac{\partial J_{k}}{\partial x_{i}}
\end{aligned}
$$

and with equation (2.10) we get
$\frac{b}{\hbar} P_{k} J_{i}+\lambda_{k i}=\frac{b}{\hbar} P_{i} J_{k}+\lambda_{i k}$
$\lambda_{k i}-\lambda_{i k}=\frac{b}{\hbar}\left(J_{k} P_{i}-J_{i} P_{k}\right)$
which is equation (3.2). The rest of equations (3.2) are derived taking into account equation (3.1). Equation (3.2) holds for $k \neq i, k, i=0,1,2,3$, since equation (2.14), from which equation (3.2) results is an identity for $k=i$ and gives no information in this case.

We now prove the following theorem:

Theorem 3.2. TSV theorem for the symmetry of indices:

'If the generalized particle conserves its momentum along the axes x_{i} and x_{k} with $k \neq i$, the following equivalences hold

1. $\lambda_{i k}=\lambda_{k i} \Leftrightarrow J_{k} P_{i}=J_{i} P_{k} \Leftrightarrow c_{i} J_{k}=c_{k} J_{i} \Leftrightarrow c_{k} P_{i}=c_{i} P_{k}$.
2. $\lambda_{i k}=-\lambda_{k i} \Leftrightarrow \lambda_{k i}=\frac{b}{2 \hbar}\left(J_{k} P_{i}-J_{i} P_{k}\right)=\frac{b}{2 \hbar}\left(c_{i} J_{k}-c_{k} J_{i}\right)=\frac{b}{2 \hbar}\left(c_{k} P_{i}-c_{i} P_{k}\right)$.
$k, i=0,1,2,3, k \neq i . "$
Proof. The theorem is an immediate consequence of equation 3.2.
We now consider the four-vector C, as given by equation
$C=J+P=\left[\begin{array}{l}c_{0} \\ c_{1} \\ c_{2} \\ c_{3}\end{array}\right]$.
When the generalized particle conserves its momentum along every axis, then the four-vector C is constant. Also, we denote M_{0} the total rest mass of the generalized particle, as given by equation

$$
\begin{equation*}
C^{T} C=c_{0}^{2}+c_{1}^{2}+c_{2}^{2}+c_{3}^{2}=-M_{0}^{2} \mathrm{c}^{2} \tag{3.6}
\end{equation*}
$$

where C^{T} is the transposed of the column vector C.
For reasons that will become apparent later in our study, we give the following definitions: We name the symmetry $\lambda_{i k}=\lambda_{k i}, k \neq i, k, i=0,1,2,3$ internal symmetry, and the symmetry $\lambda_{i k}=-\lambda_{k i}, k \neq i, k, i=0,1,2,3$ external symmetry. We now prove the following theorem:

Theorem 3.3. Internal Symmetry Theorem:

" If the generalized particle conserves its momentum in every axis, the following hold:

1. $\lambda_{i k}=\lambda_{k i}$ for every $k, i=0,1,2,3 \Leftrightarrow J, P$ and C are parallel

$$
\begin{equation*}
\Leftrightarrow P=\Phi J \text { where } \Phi \in \mathbb{C}, \Phi \neq 0 . \tag{3.7}
\end{equation*}
$$

2. For $\Phi=-1$ the following equation holds:

$$
\begin{equation*}
E_{0}= \pm m_{0} c^{2} \tag{3.8}
\end{equation*}
$$

3. For $\Phi \neq-1$ the following equations hold:

$$
\begin{align*}
& \Phi=K \exp \left[-\frac{b}{\hbar}\left(c_{0} x_{0}+c_{1} x_{1}+c_{2} x_{2}+c_{3} x_{3}\right)\right] \tag{3.9}\\
& m_{0}= \pm \frac{M_{0}}{1+\Phi} \tag{3.10}\\
& E_{0}= \pm \frac{\Phi M_{0} c^{2}}{1+\Phi} \tag{3.11}\\
& J_{i}=\frac{c_{i}}{1+\Phi}, i=0,1,2,3 \tag{3.12}
\end{align*}
$$

$$
\begin{equation*}
P_{i}=\frac{\Phi c_{i}}{1+\Phi}, \mathrm{i}=0,1,2,3 \tag{3.13}
\end{equation*}
$$

where K is a dimensionless constant physical quantity.
4. We have $\lambda_{i k}=\lambda_{k i}$ for every $k, i=0,1,2,3$

$$
\begin{equation*}
\Leftrightarrow \tag{3.14}
\end{equation*}
$$

$\lambda_{k i}=0$ for every $k, i=0,1,2,3 . "$
Proof. Equivalence (3.7) results immediately from equivalence (3.3). For $\Phi=0$ from the last of equivalence (3.7) we obtain $P=0$, which is impossible, since in this case the Selfvariations of the rest mass $m_{0} \neq 0$, do not exist, as seen from equation (2.6). Therefore, $\Phi \neq 0$. For $\Phi=-1$ from the last of equivalence (3.7) we obtain $P=-J$ and from equations (2.7) and (2.8) we obtain
$E_{0}^{2}=m_{0}^{2} c^{4}$
which is equation (3.8).
For $\Phi \neq-1$ from the last of equivalence (3.7) we obtain $P_{i}=\Phi J_{i}$ for every $i=0,1,2,3$ and with equation (3.1) $J_{i}+P_{i}=c_{i}$ we initially obtain equations (3.12) and (3.13). Then, combining equations (2.7) and (3.12) we get
$m_{0}^{2} c^{2}+\frac{1}{(\Phi+1)^{2}}\left(c_{0}^{2}+c_{1}^{2}+c_{2}^{2}+c_{3}^{2}\right)=0$
and with equation (3.6) we obtain equation
$m_{0}^{2} c^{2}-\frac{M_{0}^{2} c^{2}}{(\Phi+1)^{2}}=0$
and we finally have
$m_{0}= \pm \frac{M_{0}}{1+\Phi}$
which is equation (3.10). Similarly, combining equations (2.8) and (3.13) we obtain equation (3.11). We now prove that function Φ is given by equation (3.9).

Differentiating equation (3.15) with respect to $x_{v}, v=0,1,2,3$ and considering equation (2.6) we obtain
$\frac{2 b}{\hbar} P_{v} m_{0}^{2} c^{2}+\frac{2 M_{0}^{2} c^{2}}{(\Phi+1)^{3}} \frac{\partial \Phi}{\partial x_{v}}=0$
and with equation (3.15) we have
$\frac{b}{\hbar} P_{v} \frac{M_{0}^{2} c^{2}}{(\Phi+1)^{2}}+\frac{M_{0}^{2} c^{2}}{(\Phi+1)^{3}} \frac{\partial \Phi}{\partial x_{v}}=0$
$\frac{\partial \Phi}{\partial x_{v}}=-\frac{b}{\hbar} P_{v}(\Phi+1)$
and with equation (3.13) for $i=v$ we arrive at equation

$$
\begin{equation*}
\frac{\partial \Phi}{\partial x_{v}}=-\frac{b}{\hbar} c_{v} \Phi, v=0,1,2,3 . \tag{3.16}
\end{equation*}
$$

By integration of equation (3.16) we obtain
$\Phi=K \exp \left[-\frac{b}{\hbar}\left(c_{0} x_{0}+c_{1} x_{1}+c_{2} x_{2}+c_{3} x_{3}\right)\right]$
where K is the integration constant, which is equation (3.9).
Combining equations (2.10), (3.12) and (3.13) for $k=0,1,2,3$ we obtain

$$
\lambda_{k i}=\frac{\partial J_{i}}{\partial x_{k}}-\frac{b}{\hbar} P_{k} J_{i}
$$

$$
\lambda_{k i}=\frac{\partial}{\partial x_{k}}\left(\frac{c_{i}}{1+\Phi}\right)-\frac{b}{\hbar} \frac{\Phi c_{k}}{1+\Phi} \frac{c_{i}}{1+\Phi}
$$

$$
\lambda_{k i}=-\frac{c_{i}}{(1+\Phi)^{2}} \frac{\partial \Phi}{x_{k}}-\frac{b}{\hbar} \frac{\Phi c_{k} c_{i}}{(1+\Phi)^{2}}
$$

and with equation (3.16) for $v=k$ we obtain

$$
\begin{aligned}
& \lambda_{k i}=\frac{c_{i}}{(1+\Phi)^{2}} \frac{b}{\hbar} c_{k} \Phi-\frac{b}{\hbar} \frac{\Phi c_{k} c_{i}}{(1+\Phi)^{2}} \\
& \lambda_{k i}=0 . \square
\end{aligned}
$$

According to the previous theorem, internal symmetry is equivalent to the parallelism of the four-vectors J, P. Starting from this conclusion we can determine the physical content of the internal symmetry.

In an isotropic space the spontaneous emission of STEM by the material particle is isotropic. Due to the linearity of the Lorentz-Einstein transformations, this isotropic emission has as a consequence the parallelism of the four-vectors J, P ([5] par. 5.3). Thus, the theorem of internal symmetry 3.3 holds for the spontaneous emission of STEM by the material particle due to Selfvariations .

In the following paragraphs, we will make clear that the internal symmetry refers to a spontaneous internal increase of the rest mass and the electrical charge of the material particles, independent of any external causes. The consequences of this increase is the cosmological data, as we'll see in Paragraph 11. Also, the internal symmetry is associated with Heisenberg's uncertainty principle.

We start the investigation of the external symmetry with the proof of the following theorem:

Theorem 3.4. First theorem of the TSV for the external symmetry: "If the generalized particle conserves its momentum along every axis, and the symmetry $\lambda_{i k}=-\lambda_{k i}$ holds for every $\mathrm{k} \neq \mathrm{i}, k, i=0,1,2,3$, then:

$$
\text { 1. } \begin{array}{ll}
c_{i} \lambda_{v k}+c_{k} \lambda_{i v}+c_{v} \lambda_{k i}=0 \\
c_{i} J_{v k}+c_{k} J_{i v}+c_{v} J_{k i}=0 \tag{3.17}\\
& c_{i} P_{v k}+c_{k} P_{i v}+c_{v} P_{k i}=0
\end{array}
$$

for every $i \neq v, v \neq k, k \neq i, k, i, v=0,1,2,3$.

$$
\begin{equation*}
\text { 2. } \frac{\partial \lambda_{k i}}{\partial x_{v}}=\frac{b}{\hbar} P_{v} \lambda_{k i}-\frac{b c_{v}}{2 \hbar} \lambda_{k i}=-\frac{b}{\hbar} J_{v} \lambda_{k i}+\frac{b c_{v}}{2 \hbar} \lambda_{k i} \tag{3.18}
\end{equation*}
$$

for every $k \neq i, k, i, v=0,1,2,3$.
3. $\lambda_{01} \lambda_{32}+\lambda_{02} \lambda_{13}+\lambda_{03} \lambda_{21}=0 .{ }^{\prime \prime}$

Proof. From equivalence (3.4) we obtain

$$
\begin{equation*}
\lambda_{k i}=\frac{b}{2 \hbar}\left(c_{i} J_{k}-c_{k} J_{i}\right), k \neq i, k, i=0,1,2,3 \tag{3.20}
\end{equation*}
$$

Considering equation (3.20) we get

$$
c_{i} \lambda_{v k}+c_{k} \lambda_{i v}+c_{v} \lambda_{k i}=\frac{b}{2 \hbar}\left[c_{i}\left(c_{k} J_{v}-c_{v} J_{k}\right)+c_{k}\left(c_{v} J_{i}-c_{i} J_{v}\right)+c_{v}\left(c_{i} J_{k}-c_{k} J_{i}\right)\right]=0 .
$$

Thus, we get the first of equations (3.17). Similarly, from the other two equalities of equivalence (3.4) we obtain the second and the third equation of (3.17). Since $k \neq i$ in equivalence (3.4), the physical quantities $\lambda_{v k}, \lambda_{i v}, \lambda_{k i}$ in equations (3.17) are defined for $v \neq k, i \neq v, k \neq i, k, i, v=0,1,2,3$.

Differentiating equation (3.20) with respect to $x_{v}, v=0,1,2,3$ we obtain

$$
\frac{\partial \lambda_{k i}}{\partial x_{v}}=\frac{b}{2 \hbar}\left(c_{i} \frac{\partial J_{k}}{\partial x_{v}}-c_{k} \frac{\partial J_{i}}{\partial x_{v}}\right)
$$

and with equation (2.10) we get

$$
\begin{aligned}
& \frac{\partial \lambda_{k i}}{\partial x_{v}}=\frac{b}{2 \hbar}\left[c_{i}\left(\frac{b}{\hbar} P_{v} J_{k}+\lambda_{v k}\right)-c_{k}\left(\frac{b}{\hbar} P_{v} J_{i}+\lambda_{v i}\right)\right] \\
& \frac{\partial \lambda_{k i}}{\partial x_{v}}=\frac{b}{2 \hbar}\left[\frac{b}{\hbar} P_{v}\left(c_{i} J_{k}-c_{k} J_{i}\right)+c_{i} \lambda_{v k}-c_{k} \lambda_{v i}\right] \\
& \frac{\partial \lambda_{k i}}{\partial x_{v}}=\frac{b}{\hbar} P_{v} \frac{b}{2 \hbar}\left(c_{i} J_{k}-c_{k} J_{i}\right)+\frac{b}{2 \hbar}\left(c_{i} \lambda_{v k}-c_{k} \lambda_{v i}\right)
\end{aligned}
$$

and with equation (3.20) we obtain

$$
\frac{\partial \lambda_{k i}}{\partial x_{v}}=\frac{b}{\hbar} P_{v} \lambda_{k i}+\frac{b}{2 \hbar}\left(c_{i} \lambda_{v k}-c_{k} \lambda_{v i}\right)
$$

and with the first of equations (3.17) we obtain
$c_{i} \lambda_{v k}-c_{k} \lambda_{v i}=-c_{v} \lambda_{k i}$
we get
$\frac{\partial \lambda_{k i}}{\partial x_{v}}=\frac{b}{\hbar} P_{v} \lambda_{k i}-\frac{b c_{v}}{2 \hbar} \lambda_{k i}$
which is equation (3.18). The second equality in equation (3.18) emerges from the substitution

$$
P_{v}=c_{v}-J_{v}, v=0,1,2,3
$$

according to equation (3.5).
Taking into account equation (3.20) we obtain

$$
\begin{aligned}
& \lambda_{01} \lambda_{32}+\lambda_{02} \lambda_{13}+\lambda_{03} \lambda_{21}= \\
& \frac{b^{2}}{4 \hbar^{2}}\left[\left(c_{1} J_{0}-c_{0} J_{1}\right)\left(c_{2} J_{3}-c_{3} J_{2}\right)+\left(c_{2} J_{0}-c_{0} J_{2}\right)\left(c_{3} J_{1}-c_{1} J_{3}\right)+\left(c_{3} J_{0}-c_{0} J_{3}\right)\left(c_{1} J_{2}-c_{2} J_{1}\right)\right]=0
\end{aligned}
$$

after the calculations.
In the next paragraphs we investigate the external symmetry.

4. The Unified Selfvariations Interaction (USVI)

According to the law of selfvariations every material particle interacts both with the STEM emitted by itself due to the selfvariations, and with the STEM originating from other material particles. In the second case, an indirect interaction emerges between material particles through the STEM. STEM emitted by one material particle interact with another material particle. Through this mechanism the TSV predicts a unified interaction between material particles. The individual interactions only emerge from the different, for each particular case, physical quantity Q which selfvariates, resulting in the emission of the corresponding STEM.In this paragraph we study the basic characteristics of the USVI. We suppose that for the generalized particle the conservation of energy-momentum holds, hence the equations of the preceding paragraph also hold. For the rate of change of the four-vector $\frac{1}{m_{0}} J$ we get
$\frac{\partial}{\partial x_{k}}\left(\frac{J_{i}}{m_{0}}\right)=-\frac{J_{i}}{m_{0}^{2}} \frac{\partial m_{0}}{\partial x_{k}}+\frac{1}{m_{0}} \frac{\partial J_{i}}{\partial x_{k}}$
and with equations (2.6) and (2.10) we get

$$
\frac{\partial}{\partial x_{k}}\left(\frac{J_{i}}{m_{0}}\right)=-\frac{J_{i}}{m_{0}^{2}} \frac{b}{\hbar} P_{k} m_{0}+\frac{1}{m_{0}}\left(\frac{b}{\hbar} P_{k} J_{i}+\lambda_{k i}\right)
$$

and we finally obtain

$$
\begin{equation*}
\frac{\partial}{\partial x_{k}}\left(\frac{J_{i}}{m_{0}}\right)=\frac{\lambda_{k i}}{m_{0}}, k, i=0,1,2,3 . \tag{4.1}
\end{equation*}
$$

According to equation (4.1), when $\lambda_{k i} \neq 0$ for at least two indices $k, i, k, i=0,1,2,3$, the kinetic state of the material particle is disturbed. According to equivalence (3.14) in the
internal symmetry it is $\lambda_{k i}=0$ for every $k, i=0,1,2,3$. Therefore, in the internal symmetry the material particle maintains its kinetic state. In an isotropic space we expect that the spontaneous emission of STEM by the material particle cannot disturb its kinetic state. Consequently, the internal symmetry concerns the spontaneous emission of STEM by the material particle in an isotropic space.

In contrast, in the case of the external symmetry it can be $\lambda_{k i} \neq 0$ for some indices $k, i, k, i=0,1,2,3$. Therefore, the external symmetry must be due to STEM with which the material particle interacts, and which originate from other material particles. The distribution of STEM depends on the position in space of the material particle relative to other material particles. This leads to the destruction of the isotropy of space for the material particle. The external symmetry factor will emerge in the study that follows.

The initial study of the Selfvariations concerned the rest mass and the electric charge. The study we have presented up to this point allows us to study the Selfvariations in their most general expression.

We consider a physical quantity Q which we shall call selfvariating "charge Q ", or simply charge Q, unaffected by every change of reference frame, therefore Lorentz-Einstein invariant, and obeys the law of Selfvariations, that is equation

$$
\begin{equation*}
\frac{\partial Q}{\partial x_{k}}=\frac{b}{\hbar} P_{k} Q, k=0,1,2,3 . \tag{4.2}
\end{equation*}
$$

In equation (4.2) the momentum $P_{k}, \mathrm{k}=0,1,2,3$, i.e. the four-vector P, depends on the selfvariating charge Q. Two material particles carrying a selfvariating charge of the same nature interact with each other when the STEM emitted by the charge Q_{1} of one of them interacts with the charge Q of the other. In this particular case, we denote with Q the charge of the material particle we are studying.

The rest mass m_{0} is defined as a quantity of mass or energy divided by c^{2}, which is invariant according to the Lorentz-Einstein transformations. The 4-vector of the momentum J of the material particle is related to the rest mass m_{0} through equation (2.7). The charge Q contributes to the energy content of the material particle and, therefore, also contributes to its rest mass. Furthermore, the charge Q modifies the 4 -vector of momentum J of the material particle and, therefore, contributes to the variation of the rest mass m_{0} of the material particle. Consequently, for the change of the four-vector J of the material particle
due to the charge Q, the four-vector P of equation (2.10) enters into equation (4.2). The consequences of this conclusion become evident when we calculate the rate of change of the four-vector $\frac{1}{Q} J$.

Theorem 4.1 Second theorem of the TSV for the external symmetry:

" 1 . The rate of change of the four-vector $\frac{1}{Q} J$ due to the Selfvariations of the charge Q is given by equation
$\frac{\partial}{\partial x_{k}}\left(\frac{J_{i}}{Q}\right)=\frac{\lambda_{k i}}{Q}, k, i=0,1,2,3$.
2. For $k \neq i$ the physical quantities $\frac{\lambda_{k i}}{Q}$ are given by
$\frac{\lambda_{k i}}{Q}=z a_{k i}, \mathrm{k} \neq \mathrm{i}, \mathrm{k}, \mathrm{i}=0,1,2,3$
where z is the function
$z=\exp \left[-\frac{b}{2 \hbar}\left(c_{0} x_{0}+c_{1} x_{1}+c_{2} x_{2}+c_{3} x_{3}\right)\right]$.
3. For the constants $a_{k i}$ the following equations hold

$$
\begin{align*}
& c_{i} a_{v k}+c_{k} a_{i v}+c_{v} a_{k i}=0 \\
& J_{i} a_{v k}+J_{k} a_{i v}+J_{v} a_{k i}=0 \tag{4.6}\\
& P_{i} a_{v k}+P_{k} a_{i v}+P_{v} a_{k i}=0
\end{align*}
$$

for every $i \neq v, v \neq k, k \neq i, i, k, v=0,1,2,3$.

$$
\begin{equation*}
\text { 4. } \alpha_{i k}=-\alpha_{k i}, k \neq i, k, i=0,1,2,3 \tag{4.7}
\end{equation*}
$$

5. $\alpha_{01} \alpha_{32}+\alpha_{02} \alpha_{13}+\alpha_{03} \alpha_{21}=0 .{ }^{\prime \prime}$

Proof. In order to prove the theorem, we take
$\frac{\partial}{\partial x_{k}}\left(\frac{J_{i}}{Q}\right)=-\frac{J_{i}}{Q^{2}} \frac{\partial Q}{\partial x_{k}}+\frac{1}{Q} \frac{\partial J_{i}}{\partial x_{k}}$
and with equations (4.2) and (2.10) we get
$\frac{\partial}{\partial x_{k}}\left(\frac{J_{i}}{Q}\right)=-\frac{J_{i}}{Q^{2}} \frac{b}{\hbar} P_{k} Q+\frac{1}{Q}\left(\frac{b}{\hbar} P_{k} J_{i}+\lambda_{k i}\right)$
$\frac{\partial}{\partial x_{k}}\left(\frac{J_{i}}{Q}\right)=\frac{\lambda_{k i}}{Q}$
which is equation (4.3). Equations (4.2) and (2.10) hold for every $k, \mathrm{i}=0,1,2,3$. Therefore, equation (4.3) also holds for every $k, i=0,1,2,3$.

For $k \neq i, k, i=0,1,2,3$ and $v=0,1,2,3$ equation (3.18) holds and, since $Q \neq 0$, we obtain
$Q \frac{\partial \lambda_{k i}}{\partial x_{v}}=\frac{b}{\hbar} P_{v} Q \lambda_{k i}-\frac{b c_{v}}{2 \hbar} Q \lambda_{k i}$
and with equation (4.2) we get
$Q \frac{\partial \lambda_{k i}}{\partial x_{v}}=\lambda_{k i} \frac{\partial Q}{\partial x_{v}}-\frac{b c_{v}}{2 \hbar} Q \lambda_{k i}$
$\frac{1}{Q^{2}}\left(Q \frac{\partial \lambda_{k i}}{\partial x_{v}}-\lambda_{k i} \frac{\partial Q}{\partial x_{v}}\right)=-\frac{b c_{v}}{2 \hbar} \frac{\lambda_{k i}}{Q}$
$\frac{\partial}{\partial x_{v}}\left(\frac{\lambda_{k i}}{Q}\right)=-\frac{b c_{v}}{2 \hbar} \frac{\lambda_{k i}}{Q}$
and integrating we obtain
$\frac{\lambda_{k i}}{Q}=a_{k i} \exp \left[-\frac{b}{2 \hbar}\left(c_{0} x_{0}+c_{1} x_{1}+c_{2} x_{2}+c_{3} x_{3}\right)\right]$
where $a_{k i}, k \neq i, k, i=0,1,2,3$ are the integration constants, and with (4.5) we get equation (4.4). Equations (4.6) are derived from the combination of equations (3.17) and (4.4), taking into account that $z Q \neq 0$. Equation (4.7) is derived from the combination of equation $\lambda_{i k}=-\lambda_{k i}, k \neq i, k, i=0,1,2,3$ with equation (4.4). Simirarly, equation (4.8) is derived from the combination of equations (3.19) and (4.4).

We will also use equation

$$
\begin{equation*}
\frac{\partial z}{\partial x_{k}}=-\frac{b c_{k}}{2 \hbar} z, k=0,1,2,3 \tag{4.9}
\end{equation*}
$$

which results immediately from equation (4.5).

For $k=i, k, i=0,1,2,3$ equation (4.4) does not hold. So we define the physical quantities T_{k} as given by equation
$T_{k}=\alpha_{k k}=\frac{\lambda_{k k}}{z Q}, k=0,1,2,3$.
Taking into account the notation of equation (4.10) the main diagonal of matrix T of equation (2.12) is given from matrix Λ
$\Lambda=\frac{1}{z Q}\left[\begin{array}{cccc}\lambda_{00} & 0 & 0 & 0 \\ 0 & \lambda_{11} & 0 & 0 \\ 0 & 0 & \lambda_{22} & 0 \\ 0 & 0 & 0 & \lambda_{33}\end{array}\right]=\left[\begin{array}{cccc}T_{0} & 0 & 0 & 0 \\ 0 & T_{1} & 0 & 0 \\ 0 & 0 & T_{2} & 0 \\ 0 & 0 & 0 & T_{3}\end{array}\right]$
We now define the three-vectors $\boldsymbol{\alpha}$ and $\boldsymbol{\beta}$, as given by equations (4.12) and (4.13) respectively
$\boldsymbol{\alpha}=\left(\begin{array}{l}\alpha_{1} \\ \alpha_{2} \\ \alpha_{3}\end{array}\right)=\left(\begin{array}{l}\alpha_{x} \\ \alpha_{y} \\ \alpha_{z}\end{array}\right)=\frac{1}{Q}\left(\begin{array}{l}i c \lambda_{01} \\ i c \lambda_{02} \\ i c \lambda_{03}\end{array}\right)$
$\boldsymbol{\beta}=\left(\begin{array}{l}\beta_{1} \\ \beta_{2} \\ \beta_{3}\end{array}\right)=\left(\begin{array}{l}\beta_{x} \\ \beta_{y} \\ \beta_{z}\end{array}\right)=\frac{1}{Q}\left(\begin{array}{l}\lambda_{32} \\ \lambda_{13} \\ \lambda_{21}\end{array}\right)$.
Vectors $\boldsymbol{\alpha}$ and $\boldsymbol{\beta}$ contain all of the physical quantities $\lambda_{k i}$ for $k \neq i, k, i=0,1,2,3$ since $\lambda_{i k}=-\lambda_{k i}$.

Combining equations (4.12) and (4.13) with equation (4.4), the vectors $\boldsymbol{\alpha}$ and $\boldsymbol{\beta}$ are written in the form of equations (4.14) and (4.15), respectively

$$
\begin{align*}
& \boldsymbol{\alpha}=\left(\begin{array}{l}
\alpha_{1} \\
\alpha_{2} \\
\alpha_{3}
\end{array}\right)=\left(\begin{array}{l}
\alpha_{x} \\
\alpha_{y} \\
\alpha_{z}
\end{array}\right)=i c z\left(\begin{array}{l}
\alpha_{01} \\
\alpha_{02} \\
\alpha_{03}
\end{array}\right) \tag{4.14}\\
& \boldsymbol{\beta}=\left(\begin{array}{l}
\beta_{1} \\
\beta_{2} \\
\beta_{3}
\end{array}\right)=\left(\begin{array}{l}
\beta_{x} \\
\beta_{y} \\
\beta_{z}
\end{array}\right)=z\left(\begin{array}{l}
\alpha_{32} \\
\alpha_{13} \\
\alpha_{21}
\end{array}\right) . \tag{4.15}
\end{align*}
$$

We write equation (2.10) in the form
$\frac{\partial J_{i}}{\partial x_{k}}=\frac{b}{\hbar} P_{k} J_{i}+\lambda_{k i}, \mathrm{k}, \mathrm{i}=0,1,2,3$.

The rate of change of the momentum of the material particle equals the sum of the two terms in the right part of equation (4.16). For $k=0$, and since $x_{0}=i c t$, equation (83) gives the rate of change of the particle momentum with respect to time t, i.e. the physical quantity we call "force". By using the concept of force, as defined by Newton, we also have to use the concept of velocity. For this reason we symbolize \mathbf{u} the velocity of the material particle, as given by equation

$$
\mathbf{u}=\left(\begin{array}{l}
u_{1} \tag{4.17}\\
u_{2} \\
u_{3}
\end{array}\right)=\left(\begin{array}{l}
u_{x} \\
u_{y} \\
u_{z}
\end{array}\right) .
$$

Also, we define the 4 -vector of the four-vector u, as given by equation

$$
u=\left[\begin{array}{l}
u_{0} \tag{4.18}\\
u_{1} \\
u_{2} \\
u_{3}
\end{array}\right]=\left[\begin{array}{l}
i c \\
u_{x} \\
u_{y} \\
u_{z}
\end{array}\right] .
$$

We now prove the following theorem:
Theorem 4.2." The rates of change with respect to time $t\left(x_{0}=i c t\right)$ of the four-vectors J and P of the momentum of the generalized particle carrying charge Q are given by equations

$$
\begin{align*}
& \frac{d J}{d x_{0}}=\frac{d Q}{Q d x_{0}} J-\frac{i}{c} z Q \Lambda u-\frac{i}{c} Q\left[\begin{array}{l}
\frac{i}{c} \mathbf{u} \cdot \boldsymbol{\alpha} \\
\boldsymbol{\alpha}+\mathbf{u} \times \boldsymbol{\beta}
\end{array}\right] \tag{4.19}\\
& \frac{d P}{d x_{0}}=-\frac{d Q}{Q d x_{0}} J+\frac{i}{c} z Q \Lambda u+\frac{i}{c} Q\left[\begin{array}{l}
\frac{i}{c} \mathbf{u} \cdot \boldsymbol{\alpha} \\
\boldsymbol{\alpha}+\mathbf{u} \times \boldsymbol{\beta}
\end{array}\right] . . \tag{4.20}
\end{align*}
$$

Proof. The matrix Λ is given in equation (4.11). By $\mathbf{u} \times \boldsymbol{\beta}$ we denote the outer product of vectors \mathbf{u} and $\boldsymbol{\beta}$.

We now prove the first of equations (4.19):
$\frac{d}{d t}\left(\frac{J_{0}}{Q}\right)=\frac{\partial}{\partial t}\left(\frac{J_{0}}{Q}\right)+u_{1} \frac{\partial}{\partial x}\left(\frac{J_{0}}{Q}\right)+u_{2} \frac{\partial}{\partial y}\left(\frac{J_{0}}{Q}\right)+u_{3} \frac{\partial}{\partial z}\left(\frac{J_{0}}{Q}\right)$
and using the notation of equation (2.3) we get
$\frac{i c d}{d x_{0}}\left(\frac{J_{0}}{Q}\right)=i c \frac{\partial}{\partial x_{0}}\left(\frac{J_{0}}{Q}\right)+u_{1} \frac{\partial}{\partial x_{1}}\left(\frac{J_{0}}{Q}\right)+u_{2} \frac{\partial}{\partial x_{2}}\left(\frac{J_{0}}{Q}\right)+u_{3} \frac{\partial}{\partial x_{3}}\left(\frac{J_{0}}{Q}\right)$
and with equation (4.3) we get

$$
\begin{aligned}
& \frac{i c d}{d x_{0}}\left(\frac{J_{0}}{Q}\right)=i c \frac{\lambda_{00}}{Q}+u_{1} \frac{\lambda_{10}}{Q}+u_{2} \frac{\lambda_{20}}{Q}+u_{3} \frac{\lambda_{30}}{Q} \\
& \frac{d}{d x_{0}}\left(\frac{J_{0}}{Q}\right)=\frac{\lambda_{00}}{Q}-\frac{i}{c}\left(u_{1} \frac{\lambda_{10}}{Q}+u_{2} \frac{\lambda_{20}}{Q}+u_{3} \frac{\lambda_{30}}{Q}\right) \\
& \frac{d}{d x_{0}}\left(\frac{J_{0}}{Q}\right)=\frac{\lambda_{00}}{Q}+\frac{i}{c}\left(u_{1} \frac{\lambda_{01}}{Q}+u_{2} \frac{\lambda_{02}}{Q}+u_{3} \frac{\lambda_{03}}{Q}\right) \\
& \frac{1}{Q} \frac{d J_{0}}{d x_{0}}-\frac{J_{0}}{Q^{2}} \frac{d Q}{d x_{0}}=\frac{\lambda_{00}}{Q}+\frac{i}{c}\left(u_{1} \frac{\lambda_{01}}{Q}+u_{2} \frac{\lambda_{02}}{Q}+u_{3} \frac{\lambda_{03}}{Q}\right) \\
& \frac{d J_{0}}{d x_{0}}=\frac{d Q}{Q d x_{0}} J_{0}+\lambda_{00}+\frac{i}{c}\left(u_{1} \lambda_{01}+u_{2} \lambda_{02}+u_{3} \lambda_{03}\right)
\end{aligned}
$$

and with equations (4.10) and (4.12) we have

$$
\frac{d J_{0}}{d x_{0}}=\frac{d Q}{Q d x_{0}} J_{0}+z Q T_{0}-\frac{i}{c} Q\left(\frac{i}{c} u_{1} \alpha_{1}+\frac{i}{c} u_{2} \alpha_{2}+\frac{i}{c} u_{3} \alpha_{3}\right)
$$

which is the first of equations (4.19) since

$$
-\frac{i}{c} z Q T_{0} u_{0}=-\frac{i}{c} z Q T_{0} i c=z Q T_{0} .
$$

We prove the second of equations (4.19) and we can similarly prove the third and the fourth:

$$
\frac{d}{d t}\left(\frac{J_{x}}{Q}\right)=\frac{\partial}{\partial t}\left(\frac{J_{x}}{Q}\right)+u_{1} \frac{\partial}{\partial x}\left(\frac{J_{x}}{Q}\right)+u_{2} \frac{\partial}{\partial y}\left(\frac{J_{x}}{Q}\right)+u_{3} \frac{\partial}{\partial z}\left(\frac{J_{x}}{Q}\right)
$$

and using the notation of equations (2.3) and (2.4) we obtain
$\frac{i c d}{d x_{0}}\left(\frac{J_{1}}{Q}\right)=\frac{i c \partial}{\partial x_{0}}\left(\frac{J_{1}}{Q}\right)+u_{1} \frac{\partial}{\partial x_{1}}\left(\frac{J_{1}}{Q}\right)+u_{2} \frac{\partial}{\partial x_{2}}\left(\frac{J_{1}}{Q}\right)+u_{3} \frac{\partial}{\partial x_{3}}\left(\frac{J_{1}}{Q}\right)$
and with equation (4.3) we get
$\frac{i c d}{d x_{0}}\left(\frac{J_{1}}{Q}\right)=i c \frac{\lambda_{01}}{Q}+u_{1} \frac{\lambda_{11}}{Q}+u_{2} \frac{\lambda_{21}}{Q}+u_{3} \frac{\lambda_{31}}{Q}$
$\frac{d}{d x_{0}}\left(\frac{J_{1}}{Q}\right)=-\frac{i u_{1}}{c} \frac{\lambda_{11}}{Q}+\frac{\lambda_{01}}{Q}-\frac{i u_{2}}{c} \frac{\lambda_{21}}{Q}+\frac{i u_{3}}{c} \frac{\lambda_{13}}{Q}$
$\frac{1}{Q} \frac{d J_{1}}{d x_{0}}-\frac{J_{1}}{Q^{2}} \frac{d Q}{d x_{0}}=-\frac{i u_{1}}{c} \frac{\lambda_{11}}{Q}+\frac{\lambda_{01}}{Q}-\frac{i u_{2}}{c} \frac{\lambda_{21}}{Q}+\frac{i u_{3}}{c} \frac{\lambda_{13}}{Q}$
$\frac{d J_{1}}{d x_{0}}=\frac{d Q}{Q d x_{0}} J_{1}-\frac{i u_{1}}{c} \lambda_{11}+\lambda_{01}-\frac{i u_{2}}{c} \lambda_{21}+\frac{i u_{3}}{c} \lambda_{13}$
and with equations (4.10), (4.12) and (4.13), we obtain
$\frac{d J_{1}}{d x_{0}}=\frac{d Q}{Q d x_{0}} J_{1}-\frac{i}{c} z Q T_{1}-\frac{i}{c} Q \alpha_{1}-\frac{i}{c} Q\left(u_{2} \beta_{3}-u_{3} \beta_{2}\right)$
which is the second of equations (4.19). Equation (4.20) results from the combination of equations (4.19) and (3.5). ם

Using the symbol \mathbf{J} for the momentum vector of the material particle
$\mathbf{J}=\left(\begin{array}{l}J_{1} \\ J_{2} \\ J_{3}\end{array}\right)=\left(\begin{array}{l}J_{x} \\ J_{y} \\ J_{z}\end{array}\right)$
and taking into account equations (2.3) and (2.4) and (4.11) the set of equations (4.19) can be written in the form
$\frac{d W}{d t}=\frac{d Q}{Q d t} W+z Q c^{2} T_{0}+Q \mathbf{u} \cdot \boldsymbol{\alpha}$
$\frac{d \mathbf{J}}{d t}=\frac{d Q}{Q d t} \mathbf{J}+z Q\left(\begin{array}{l}T_{1} u_{1} \\ T_{2} u_{2} \\ T_{3} u_{3}\end{array}\right)+Q(\boldsymbol{\alpha}+\mathbf{u} \times \boldsymbol{\beta})$.

Equations (4.21) are a simpler form of equation (4.19) with which they are equivalent.
The rate of change of the four-vector J of the momentum of the material particle is given by the sum of the three terms in the right part of equation (86). The USVI and its consequences for the material particle depend on which of these terms is the strongest and which is the weakest.

The first term expresses a force parallel to four-vector J which is always different than zero due to the Selfvariations. As we will see next, the second term is related to the curvature of spacetime. The third term on the right of equation (4.19) is known as the Lorentz force, in the case of electromagnetic fields. In many cases a term or some of the terms on the right of equation (4.19) are zero, with the exception of the first term which is always different than zero.

From equation (4.19) we conclude that the pair of vectors ($\boldsymbol{\alpha}, \boldsymbol{\beta}$) expresses the intensity of the field of the USVI according to the paradigm of the classical definition of the field potential. From equation (2.10) we derive that the physical quantities $\lambda_{k i}, k, i=0,1,2,3$ have units (dimensions) of $\mathrm{kg} \cdot \mathrm{s}^{-1}$. Thus, from equation (4.12) we derive that if Q is the rest mass, the intensity $\boldsymbol{\alpha}$ has unit of $m \cdot s^{-2}$. If Q is the electric charge, the intensity $\boldsymbol{\alpha}$ has unit of $N \cdot C^{-1}$. Now we will prove that for field $(\boldsymbol{\alpha}, \boldsymbol{\beta})$ the following equations (4.22) hold:

Theorem 4.3. " For the vector pair $(\boldsymbol{\alpha}, \boldsymbol{\beta})$ the following equations hold:

$$
\begin{equation*}
\nabla \cdot \boldsymbol{\alpha}=-\frac{i c b z}{2 \hbar}\left(c_{1} \alpha_{01}+c_{2} \alpha_{02}+c_{3} \alpha_{03}\right) \tag{a}
\end{equation*}
$$

$\nabla \cdot \boldsymbol{\beta}=0$
$\nabla \times \boldsymbol{\alpha}=-\frac{\partial \boldsymbol{\beta}}{\partial t}$
(c)
$\nabla \times \boldsymbol{\beta}=-\frac{b z}{2 \hbar}\left(\begin{array}{l}c_{0} \alpha_{01}+c_{2} \alpha_{21}+c_{3} \alpha_{31} \\ c_{0} \alpha_{02}+c_{2} \alpha_{12}+c_{3} \alpha_{32} \\ c_{0} \alpha_{03}+c_{2} \alpha_{13}+c_{3} \alpha_{23}\end{array}\right)+\frac{\partial \boldsymbol{\alpha}}{c^{2} \partial t} .$.
Proof. Differentiating equations (4.14) and (4.15) with respect to $x_{k}, k=0,1,2,3$ and considering equation (4.9), we obtain equations

$$
\begin{align*}
& \frac{\partial \boldsymbol{\alpha}}{\partial x_{k}}=-\frac{b c_{k}}{2 \hbar} \boldsymbol{\alpha} \tag{4.23}\\
& \frac{\partial \boldsymbol{\beta}}{\partial x_{k}}=-\frac{b c_{k}}{2 \hbar} \boldsymbol{\beta} . \tag{4.24}
\end{align*}
$$

From equations (4.23) and (4.24) we can easily derive equations (4.22). Indicatively, we prove equation (4.22b). From equation (4.15) we obtain

$$
\nabla \cdot \boldsymbol{\beta}=\alpha_{32} \frac{\partial z}{\partial x_{1}}+\alpha_{13} \frac{\partial z}{\partial x_{2}}+\alpha_{21} \frac{\partial z}{\partial x_{3}}
$$

and with equation (4.9) we get

$$
\nabla \cdot \boldsymbol{\beta}=-\frac{b z}{2 \hbar}\left(c_{1} \alpha_{32}+c_{2} \alpha_{13}+c_{3} \alpha_{21}\right)
$$

and with the first of equations (4.6) for $(i, v, k)=(1,3,2)$ we get

$$
\nabla \cdot \boldsymbol{\beta}=0
$$

The first of equations (4.6) should be taken into account for the proof of the rests of equations of (4.22).

Considering equations (4.22) we define the scalar quantity ρ and the vector quantity \mathbf{j}, as given by equations

$$
\begin{align*}
& \rho=\sigma \nabla \cdot \boldsymbol{\alpha}=-\sigma \frac{i c b z}{2 \hbar}\left(c_{1} a_{01}+c_{2} a_{02}+c_{3} a_{03}\right) \\
& \mathbf{j}=\sigma \frac{c^{2} b z}{2 \hbar}\left(\begin{array}{l}
-c_{0} a_{01}-c_{2} a_{21}+c_{3} a_{13} \\
-c_{0} a_{02}+c_{1} a_{21}-c_{3} a_{32} \\
-c_{0} a_{03}-c_{1} a_{13}+c_{2} a_{32}
\end{array}\right) \tag{4.25}
\end{align*}
$$

where $\sigma \neq 0$ is a constant. We now prove that for the physical quantities ρ and \mathbf{j} the following continuity equation holds:

$$
\begin{equation*}
\frac{\partial \rho}{\partial t}+\nabla \cdot \mathbf{j}=0 \tag{4.26}
\end{equation*}
$$

Proof. : From the first of equations (4.25) we obtain

$$
\begin{aligned}
& \rho=\sigma \nabla \cdot \boldsymbol{\alpha} \\
& \frac{\partial \rho}{\partial t}=\sigma \frac{\partial}{\partial t}(\nabla \cdot \boldsymbol{\alpha}) \\
& \frac{\partial \rho}{\partial t}=\nabla \cdot\left(\sigma \frac{\partial \boldsymbol{\alpha}}{\partial t}\right)
\end{aligned}
$$

and with the second of equations (4.25) and equation (4.22d) we get

$$
\begin{aligned}
& \frac{\partial \rho}{\partial t}=\nabla \cdot\left(\sigma c^{2} \nabla \times \boldsymbol{\beta}-\mathbf{j}\right) \\
& \frac{\partial \rho}{\partial t}=-\nabla \cdot \mathbf{j}
\end{aligned}
$$

which is equation (4.26).
According to equation (4.26), the physical quantity ρ is the density of a conserved physical quantity q with current density \mathbf{j}. The conserved physical quantity q is related to field $(\boldsymbol{\alpha}, \boldsymbol{\beta})$ through equations (4.22).We will revert to the issue of sustainable physical quantities in the next paragraphs.

The density ρ and the current density \mathbf{j} have a rigidly defined internal structure as derived from equations (4.25). We now consider the four-vector of the current density j of the conserved physical quantity q, as given by equation

$$
j=\left[\begin{array}{l}
j_{0} \tag{4.27}\\
j_{1} \\
j_{2} \\
j_{3}
\end{array}\right]=\left[\begin{array}{l}
i \rho c \\
j_{x} \\
j_{y} \\
j_{z}
\end{array}\right]
$$

and the 4×4 matrices M

$$
M=\left[\begin{array}{cccc}
0 & \alpha_{01} & \alpha_{02} & \alpha_{03} \tag{4.28}\\
-\alpha_{01} & 0 & -\alpha_{21} & \alpha_{13} \\
-\alpha_{02} & \alpha_{21} & 0 & -\alpha_{32} \\
-\alpha_{03} & -\alpha_{13} & \alpha_{32} & 0
\end{array}\right] .
$$

Using matrix M equations (4.25) can be written in the form of equation $j=\frac{\sigma c^{2} b z}{2 \hbar} M C$.

From equations (4.22b,c) we conclude that the potential is always defined in the $(\boldsymbol{\alpha}, \boldsymbol{\beta})$ - field of the USVI. That is, the scalar potential
$V=V(t, x, y, z)=V\left(x_{0}, x_{1}, x_{2}, x_{3}\right)$
and the vector potential \mathbf{A}
$\mathbf{A}=\mathbf{A}(t, x, y, z)=\mathbf{A}\left(x_{0}, x_{1}, x_{2}, x_{3}\right)=\left(\begin{array}{c}A_{1} \\ A_{2} \\ A_{3}\end{array}\right)=\left(\begin{array}{c}A_{x} \\ A_{y} \\ A_{z}\end{array}\right)$
are defined through the equations

$$
\begin{aligned}
& \boldsymbol{\beta}=\nabla \times \mathbf{A} \\
& \boldsymbol{\alpha}=-\nabla V-\frac{\partial \mathbf{A}}{\partial t}=-\nabla V-\frac{i c \partial \mathbf{A}}{\partial x_{0}} .
\end{aligned}
$$

We can introduce in the above equations the gauge function f. That is, we can add to the scalar potential V the term
$-\frac{\partial f}{\partial t}=-\frac{i c \partial f}{\partial x_{0}}$
and to the vector potential A the term

$$
\nabla f
$$

for an arbitrary function f

$$
f=f(t, x, y, z)=f\left(x_{0}, x_{1}, x_{2}, x_{3}\right)
$$

without changing the intensity $(\boldsymbol{\alpha}, \boldsymbol{\beta})$ of the field. The proof of the above equations is known and trivial and we will not repeat it here. For the field potential of the USVI the following theorem holds:

Theorem 4.4.

"1. In the $(\boldsymbol{\alpha}, \boldsymbol{\beta})$-field of USVI the pair of scalar-vector potentials (V, \mathbf{A}) is always defined through equations

$$
\begin{align*}
& \boldsymbol{\beta}=\nabla \times \mathbf{A} \\
& \boldsymbol{\alpha}=-\nabla V-\frac{\partial \mathbf{A}}{\partial t}=i c \nabla A_{0}-\frac{i c \partial \mathbf{A}}{\partial x_{0}} . \tag{4.30}
\end{align*}
$$

2. The four-vector A of the potential

$$
A=\left[\begin{array}{l}
A_{0} \tag{4.31}\\
A_{1} \\
A_{2} \\
A_{3}
\end{array}\right]=\left[\begin{array}{c}
\frac{i V}{c} \\
A_{x} \\
A_{y} \\
A_{z}
\end{array}\right]
$$

is given by equation

$$
A_{i}=\left\{\begin{array}{l}
\frac{2 \hbar}{b} \frac{\alpha_{k i}}{c_{k}} z+\frac{\partial f_{k}}{\partial x_{i}}, \text { for } i \neq k \tag{4.32}\\
\frac{\partial f_{k}}{\partial x_{i}}, \text { for } i=k
\end{array}\right.
$$

where $c_{k} \neq 0, k \in\{0,1,2,3\}, i=0,1,2,3$ and f_{k} is the gauge function.
3. For $c_{k} c_{i} \neq 0, k \neq i, k, i \in\{0,1,2,3\}$ equation (4.33) holds

$$
\begin{equation*}
f_{k}=f_{i}+\frac{4 \hbar^{2} z}{b^{2}} \frac{\alpha_{k i}}{c_{k} c_{i}}, c_{k} c_{i} \neq 0, k \neq i, k, i=0,1,2,3 . \quad \prime \tag{4.33}
\end{equation*}
$$

Proof. Equations (4.30) are equivalent to equations (4.22b, c) as we have already mentioned. The proof of equation (4.32) can be performed through the first of equations (4.6). The mathematical calculations do not contribute anything useful to our study, thus we omit them. You can verify that the potential of equation (4.32) gives equations (4.14) and (4.15) through equations (4.30) taking also into account the first of equations (4.6).

From equation (4.32) the following four sets of the potentials follow:

$$
\begin{align*}
& c_{0} \neq 0 \\
& A_{0}=\frac{\partial f_{0}}{\partial x_{0}} \\
& A_{1}=\frac{2 \hbar z}{b} \frac{\alpha_{01}}{c_{0}}+\frac{\partial f_{0}}{\partial x_{1}} \tag{4.34}\\
& A_{2}=\frac{2 \hbar z}{b} \frac{\alpha_{02}}{c_{0}}+\frac{\partial f_{0}}{\partial x_{2}} \\
& A_{3}=\frac{2 \hbar z}{b} \frac{\alpha_{03}}{c_{0}}+\frac{\partial f_{0}}{\partial x_{3}} \\
& c_{1} \neq 0 \\
& A_{0}=\frac{2 \hbar z}{b} \frac{\alpha_{10}}{c_{1}}+\frac{\partial f_{1}}{\partial x_{0}} \\
& A_{1}=\frac{\partial f_{1}}{\partial x_{1}} \tag{4.35}\\
& A_{2}=\frac{2 \hbar z}{b} \frac{\alpha_{12}}{c_{1}}+\frac{\partial f_{1}}{\partial x_{2}} \\
& A_{3}=\frac{2 \hbar z}{b} \frac{\alpha_{13}}{c_{1}}+\frac{\partial f_{1}}{\partial x_{3}} \\
& c_{2} \neq 0 \\
& A_{0}=\frac{2 \hbar z}{b} \frac{\alpha_{20}}{c_{2}}+\frac{\partial f_{2}}{\partial x_{0}} \\
& A_{1}=\frac{2 \hbar z}{b} \frac{\alpha_{21}}{c_{2}}+\frac{\partial f_{2}}{\partial x_{1}} \tag{4.36}\\
& A_{2}=\frac{\partial f_{2}}{\partial x_{2}} \\
& A_{3}=\frac{2 \hbar z}{b} \frac{\alpha_{23}}{c_{2}}+\frac{\partial f_{2}}{\partial x_{3}}
\end{align*}
$$

$c_{3} \neq 0$
$A_{0}=\frac{2 \hbar z}{b} \frac{\alpha_{30}}{c_{3}}+\frac{\partial f_{3}}{\partial x_{0}}$
$A_{1}=\frac{2 \hbar z}{b} \frac{\alpha_{31}}{c_{3}}+\frac{\partial f_{3}}{\partial x_{1}}$.
$A_{2}=\frac{2 \hbar z}{b} \frac{\alpha_{32}}{c_{3}}+\frac{\partial f_{3}}{\partial x_{2}}$
$A_{3}=\frac{\partial f_{3}}{\partial x_{3}}$
Indicatively, we calculate the components α_{1} and β_{1} of the intensity $(\boldsymbol{\alpha}, \boldsymbol{\beta})$ of the USVI field from the potentials (4.34). From the second of equations (4.30) we obtain $\alpha_{1}=i c\left(\frac{\partial A_{0}}{\partial x_{1}}-\frac{\partial A_{1}}{\partial x_{0}}\right)$
and with equations (4.34) we get
$\alpha_{1}=i c\left[\frac{\partial}{\partial x_{1}}\left(\frac{\partial f_{0}}{\partial x_{0}}\right)-\frac{\partial}{\partial x_{0}}\left(\frac{2 \hbar z}{b} \frac{\alpha_{01}}{c_{0}}+\frac{\partial f_{0}}{\partial x_{1}}\right)\right]$
$\alpha_{1}=-i c \frac{2 \hbar}{b} \frac{\alpha_{01}}{c_{0}} \frac{\partial z}{\partial x_{0}}$
and with equation (4.9) we get
$\alpha_{1}=i c z \alpha_{01}$
that is we get the intensity α_{1} of the field, as given by equation (4.14).
From the first of equations (4.30) we have
$\beta_{1}=\frac{\partial A_{3}}{\partial x_{2}}-\frac{\partial A_{2}}{\partial x_{3}}$
and with equations (4.34) we get
$\beta_{1}=\frac{\partial}{\partial x_{2}}\left(\frac{2 h z}{b} \frac{\alpha_{03}}{c_{0}}+\frac{\partial f_{0}}{\partial x_{3}}\right)-\frac{\partial}{\partial x_{3}}\left(\frac{2 h z}{b} \frac{\alpha_{02}}{c_{0}}+\frac{\partial f_{0}}{\partial x_{2}}\right)$
$\beta_{1}=\frac{2 \hbar}{b} \frac{\alpha_{03}}{c_{0}} \frac{\partial z}{\partial x_{2}}-\frac{2 \hbar}{b} \frac{\alpha_{02}}{c_{0}} \frac{\partial z}{\partial x_{2}}$
and with equation (4.9) we get
$\beta_{1}=-\frac{c_{2} \alpha_{03}}{c_{0}} z+\frac{c_{3} \alpha_{02}}{c_{0}} z$
and considering that $\alpha_{02}=-\alpha_{20}$, we get

$$
\begin{equation*}
\beta_{1}=-\frac{z}{c_{0}}\left(c_{2} \alpha_{03}+c_{3} \alpha_{20}\right) . \tag{4.38}
\end{equation*}
$$

From the first of equations (4.6) for $(i, v, k)=(2,0,3)$ we obtain

$$
\begin{aligned}
& c_{2} a_{03}+c_{3} a_{20}+c_{0} a_{32}=0 \\
& c_{2} a_{03}+c_{3} a_{20}=-c_{0} a_{32}
\end{aligned}
$$

and substituting into equation (4.38), we see that

$$
\beta_{1}=z \alpha_{32}
$$

that is, we get the intensity β_{1} of the field, as given by equation (4.15).
The gauge functions $f_{k}, \mathrm{k}=0,1,2,3$ in equations (4.34)-(4.37) are not independent of each other. For $c_{k} \neq 0$ and $c_{i} \neq 0$ for $k \neq i, k, i=0,1,2,3$ equation (4.39) holds

$$
\begin{equation*}
f_{k}=f_{i}+\frac{4 \hbar^{2} z}{b^{2}} \frac{\alpha_{k i}}{c_{k} c_{i}}, c_{k} c_{i} \neq 0, k \neq i, k, i=0,1,2,3 . \tag{4.39}
\end{equation*}
$$

The proof of equation (4.39) is through the first of equations (4.6). The proof is lengthy and we omit it. Indicatively, we will prove the third of equations (4.34) from the third of equations (4.35) for $k=1$ and $i=0$ in equation (4.39).

For $c_{0} \neq 0$ and $c_{1} \neq 0$ both equations (4.34) and equations (4.35) hold. From equation (4.39) for $k=1$ and $i=0$ we get equation

$$
\begin{equation*}
f_{1}=f_{0}+\frac{4 \hbar^{2} z}{b^{2}} \frac{\alpha_{10}}{c_{1} c_{0}} . \tag{4.40}
\end{equation*}
$$

From the third of equations (4.35) and equation (4.40) we get

$$
\begin{aligned}
& A_{2}=\frac{2 \hbar z}{b} \frac{\alpha_{12}}{c_{1}}+\frac{\partial}{\partial x_{2}}\left(f_{0}+\frac{4 \hbar^{2} z}{b^{2}} \frac{\alpha_{10}}{c_{0} c_{1}}\right) \\
& A_{2}=\frac{2 \hbar z}{b} \frac{\alpha_{12}}{c_{1}}+\frac{\partial f_{0}}{\partial x_{2}}+\frac{4 \hbar^{2}}{b^{2}} \frac{\alpha_{10}}{c_{0} c_{1}} \frac{\partial z}{\partial x_{2}}
\end{aligned}
$$

and with equation (4.9) we obtain

$$
A_{2}=\frac{2 \hbar z}{b} \frac{\alpha_{12}}{c_{1}}+\frac{\partial f_{0}}{\partial x_{2}}-\frac{2 \hbar z}{b} \frac{c_{2} \alpha_{10}}{c_{0} c_{1}}
$$

$$
A_{2}=\frac{2 \hbar z}{b c_{0} c_{1}}\left(c_{0} \alpha_{12}-c_{2} \alpha_{10}\right)+\frac{\partial f_{0}}{\partial x_{2}}
$$

and since $\alpha_{10}=-\alpha_{01}$, we get equation

$$
\begin{equation*}
A_{2}=\frac{2 \hbar z}{b c_{0} c_{1}}\left(c_{0} \alpha_{12}+c_{2} \alpha_{01}\right)+\frac{\partial f_{0}}{\partial x_{2}} . \tag{4.41}
\end{equation*}
$$

From the first of equations (4.6) for $(i, v, k)=(0,1,2)$ we obtain

$$
\begin{aligned}
& c_{0} a_{12}+c_{2} a_{01}+c_{1} a_{20}=0 \\
& c_{0} a_{12}+c_{2} a_{01}=-c_{1} a_{20} \\
& c_{0} a_{12}+c_{2} a_{01}=c_{1} a_{02}
\end{aligned}
$$

and substituting into equation (4.41) we obtain equation

$$
\begin{equation*}
A_{2}=\frac{2 \hbar z}{b} \frac{\alpha_{02}}{c_{0}}+\frac{\partial f_{0}}{\partial x_{2}} . \tag{4.42}
\end{equation*}
$$

Equation (4.42) is the third of equations (4.34).
According to equation (4.39), if $c_{k} \neq 0$ for more than one of the constants $c_{k}, k=0,1,2,3$, the sets of equations of potential resulting from equation (4.32) have in the end a gauge function. In the application we presented assuming $c_{0} \neq 0$ and $c_{1} \neq 0$ for a specific gauge function f_{0} in equations (4.34), the gauge function f_{1} in equations (4.35) is given by equation (4.40).

We conclude the investigation of the potential of the field $(\boldsymbol{\alpha}, \boldsymbol{\beta})$ of USVI by proving the following corollary:

Corollary 4.1. 'In the external symmetry, the 4-vector C of the total energy content of the generalized particle cannot vanish:

$$
C=\left[\begin{array}{l}
c_{0} \tag{4.43}\\
c_{1} \\
c_{2} \\
c_{3}
\end{array}\right] \neq\left[\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right] . \prime
$$

Proof. Indeed, for $C=0$ we obtain $J=-P$ from equation (3.5). Therefore, the four-vectors J and P are parallel. According to equivalence (3.7) the parallelism of the four-vectors J and P is equivalent to the internal symmetry. Therefore, in the external symmetry it is $C \neq 0$.

A direct consequence of these findings is that the potential of the field $(\boldsymbol{\alpha}, \boldsymbol{\beta})$ of USVI is always defined, as given from equation (4.43). This conclusion is derived from the fact that at least one of the constants $c_{k}, k \in\{0,1,2,3\}$ is always different than zero.

5. The conserved physical quantities of the generalized particle and the wave equation of the TSV

The generalized particle has a set of conserved physical quantities q which we determine in this paragraph. At first, we generalize the notion of the field, as it is derived from the equations of theTSV. We prove the following theorem:

Theorem 5.1.

"1. For the field $(\xi, \boldsymbol{\omega})$ of the pair of vectors
$\xi=i c \Psi\left(\begin{array}{l}a_{01} \\ a_{02} \\ a_{03}\end{array}\right)$
$\boldsymbol{\omega}=\Psi\left(\begin{array}{l}a_{32} \\ a_{13} \\ a_{21}\end{array}\right)$
where $\Psi=\Psi\left(x_{0}, x_{1}, x_{2}, x_{3}\right)$ is a function satisfying equation
$\frac{\partial \Psi}{\partial x_{k}}=\frac{b}{\hbar}\left(\lambda J_{k}+\mu P_{k}\right) \Psi$
$k=0,1,2,3, \quad(\lambda, \mu) \neq(0,0), \quad \lambda, \mu \in \mathbb{C}$ are functions of $x_{0}, x_{1}, x_{2}, x_{3}$, the following equations holds
$\nabla \cdot \boldsymbol{\omega}=0$
$\nabla \times \boldsymbol{\xi}=-\frac{\partial \boldsymbol{\omega}}{\partial t}$.
2. The generalized particle has a set of conserved physical quantities q with density ρ and current density \mathbf{j}

$$
\begin{align*}
& \rho=\sigma \nabla \cdot \boldsymbol{\xi} \\
& \mathbf{j}=\sigma c^{2}\left(\nabla \times \boldsymbol{\omega}-\frac{\partial \boldsymbol{\xi}}{c^{2} \partial t}\right) \tag{5.5}
\end{align*}
$$

where $\sigma \neq 0$ are constants, for which conserved physical quantities the following continuity equation holds

$$
\begin{equation*}
\frac{\partial \rho}{\partial t}+\nabla \cdot \mathbf{j}=0 \tag{5.6}
\end{equation*}
$$

3. The four-vectors of the current density j are given by equation

$$
\begin{equation*}
j=-\frac{\sigma c^{2} b}{\hbar} \Psi M(\lambda J+\mu P) . \tag{5.7}
\end{equation*}
$$

Proof. Matrix M in equation (5.7) is given by equation (4.28). We denote \mathbf{J} and \mathbf{P} the threedimensional momentums as given by equations

$$
\begin{align*}
& \mathbf{J}=\left(\begin{array}{l}
J_{1} \\
J_{2} \\
J_{3}
\end{array}\right) \tag{5.8}\\
& \mathbf{P}=\left(\begin{array}{l}
P_{1} \\
P_{2} \\
P_{3}
\end{array}\right) . \tag{5.9}
\end{align*}
$$

For the proof of the theorem we first demonstrate the following auxiliary equations (5.10)(5.15)

$$
\mathbf{J} \cdot\left(\begin{array}{l}
a_{32} \tag{5.10}\\
a_{13} \\
a_{21}
\end{array}\right)=0
$$

$\mathbf{P} \cdot\left(\begin{array}{l}a_{32} \\ a_{13} \\ a_{21}\end{array}\right)=0$
$\mathbf{J} \times\left(\begin{array}{l}a_{01} \\ a_{02} \\ a_{03}\end{array}\right)=-J_{0}\left(\begin{array}{l}a_{32} \\ a_{13} \\ a_{21}\end{array}\right)$
$\mathbf{P} \times\left(\begin{array}{l}a_{01} \\ a_{02} \\ a_{03}\end{array}\right)=-P_{0}\left(\begin{array}{l}a_{32} \\ a_{13} \\ a_{21}\end{array}\right)$

$$
\begin{align*}
& \mathbf{J} \times\left(\begin{array}{l}
a_{32} \\
a_{13} \\
a_{21}
\end{array}\right)=\left(\begin{array}{l}
J_{2} a_{21}-J_{3} a_{13} \\
J_{3} a_{32}-J_{1} a_{21} \\
J_{1} a_{13}-J_{2} a_{32}
\end{array}\right) . \tag{5.14}\\
& \mathbf{P} \times\left(\begin{array}{l}
a_{32} \\
a_{13} \\
a_{21}
\end{array}\right)=\left(\begin{array}{l}
P_{2} a_{21}-P_{3} a_{13} \\
P_{3} a_{32}-P_{1} a_{21} \\
P_{1} a_{13}-P_{2} a_{32}
\end{array}\right) . \tag{5.15}
\end{align*}
$$

In order to prove equation (5.10) we get

$$
\mathbf{J} \cdot\left(\begin{array}{l}
a_{32} \\
a_{13} \\
a_{21}
\end{array}\right)=J_{1} a_{32}+J_{2} a_{13}+J_{3} a_{21}
$$

and with the second of equations (4.6) for $(i, v, k)=(1,3,2)$, we have

$$
\mathbf{J} \cdot\left(\begin{array}{l}
a_{32} \\
a_{13} \\
a_{21}
\end{array}\right)=0
$$

Similarly, from the third of equations (4.6) we obtain equation (5.11). We now get
$\mathbf{J} \times\left(\begin{array}{l}a_{01} \\ a_{02} \\ a_{03}\end{array}\right)=\left(\begin{array}{l}J_{2} a_{03}-J_{3} a_{02} \\ J_{3} a_{01}-J_{1} a_{03} \\ J_{1} a_{02}-J_{2} a_{01}\end{array}\right)=\left(\begin{array}{l}J_{2} a_{03}+J_{3} a_{20} \\ J_{3} a_{01}+J_{1} a_{30} \\ J_{1} a_{02}+J_{2} a_{10}\end{array}\right)$
and with the second of equations (4.6) we obtain

$$
\mathbf{J} \times\left(\begin{array}{l}
a_{01} \\
a_{02} \\
a_{03}
\end{array}\right)=\left(\begin{array}{l}
-J_{0} a_{32} \\
-J_{0} a_{13} \\
-J_{0} a_{21}
\end{array}\right)
$$

which is equation (5.12). Similarly, by considering the third of equations (4.6) we derive equation (5.13). Equations (5.14) and (5.15) are derived by taking into account equations (5.8) and (5.9).

Equations (5.4) are proven with the use of equations (5.10)-(5.15). We prove the first as an example. From equation (5.2) we obtain
$\nabla \cdot \boldsymbol{\omega}=\nabla \Psi \cdot\left(\begin{array}{l}a_{32} \\ a_{13} \\ a_{21}\end{array}\right)$
and with equation (5.3) we get
$\nabla \cdot \boldsymbol{\omega}=\frac{b}{\hbar} \lambda \Psi \mathbf{J} \cdot\left(\begin{array}{l}a_{32} \\ a_{13} \\ a_{21}\end{array}\right)+\frac{b}{\hbar} \mu \Psi \mathbf{P} \cdot\left(\begin{array}{l}a_{32} \\ a_{13} \\ a_{21}\end{array}\right)$
and with equations (5.10) and (5.11) we obtain
$\nabla \cdot \boldsymbol{\omega}=0$.
From equations (5.4) and (5.5), the continuity equation (5.6) results. The proof is similar to the one for equation (4.26). The proof of equation (5.7) is done with the use of equations (5.10)-(5.15), and equation (4.28).

Field $(\boldsymbol{\alpha}, \boldsymbol{\beta})$ presented in the previous paragraph is a special case of the field $(\xi, \boldsymbol{\omega})$ for $\lambda=\mu=-\frac{1}{2}$. For these values of the parameteres λ, μ we obtain from equations (5.3)
$\frac{\partial \Psi}{\partial x_{k}}=\frac{b}{\hbar}\left(-\frac{1}{2} J_{k}-\frac{1}{2} P_{k}\right) \Psi$
$\frac{\partial \Psi}{\partial x_{k}}=-\frac{b}{2 \hbar}\left(J_{k}+P_{k}\right) \Psi$
and with equation (3.5) we obtain

$$
\frac{\partial \Psi}{\partial x_{k}}=-\frac{b c_{k}}{2 \hbar} \Psi
$$

and finally we obtain

$$
\Psi=z=\exp \left[-\frac{b}{2 \hbar}\left(c_{0} x_{0}+c_{1} x_{1}+c_{2} x_{2}+c_{3} x_{3}\right)\right]
$$

and from equations (5.1),(5.2) and (4.14),(4.15) we obtain $\boldsymbol{\xi}=\boldsymbol{\alpha}$ and $\boldsymbol{\omega}=\boldsymbol{\beta}$.
From equation (2.10) it emerges that the dimensions of the physical quantities $\lambda_{k i}, k, i=0,1,2,3$ are

$$
\left[\lambda_{k i}\right]=k g s^{-1}, k, i=0,1,2,3 .
$$

Thus, from equations (4.12), (4.13) and (4.14), (4.15) we obtain the dimensions of the physical quantities $Q \alpha_{k i}, k, i=0,1,2,3$. Furthermore, from equation (4.11) we obtain the dimensions of the physical quantities $T_{k}, k=0,1,2,3$. Thus, we get the following relationships

$$
\begin{align*}
& {\left[Q \alpha_{k i}\right]=k g s^{-1}, k \neq i, k, i=0,1,2,3,} \tag{5.16}\\
& {\left[Q T_{k}\right]=k g s^{-1}, k=0,1,2,3 .}
\end{align*}
$$

Using the first of equations (5.16) we can determine the units of measurement of the (ξ, ω)-field for every selfvariating charge Q. When Q is the electric charge, we can verify that the field units are $\left(V \cdot m^{-1}, \mathrm{~T}\right)$. When Q is the rest mass, the field units are $\left(m \cdot s^{-2}, s^{-1}\right)$. The dimensions of the field depend solely on the units of measurement of the selfvariating charge Q.

From equation (5.7) and taking into account that $\lambda, \mu \in \mathbb{C}$ we can define the dimensions of the physical quantities q through the first of equations (5.16). When Q is the electric charge, and for $\sigma=\varepsilon_{0}$, where ε_{0} is the electric permittivity of the vacuum, q is a conserved physical quantity of electric charge. For $\sigma=\frac{\hbar \varepsilon_{0}}{e}$, where e the constant value we measure in the lab for the electric charge of the electron, q is a conserved physical quantity of angular momentum. For $\sigma=\frac{\varepsilon_{0}}{e}, q$ is a dimensionless conserved physical quantity, that $q \in \mathbb{C}$. When Q is the rest mass, and for $\sigma=\frac{1}{4 \pi G}$, where G is the gravitational constant, q is a conserved physical quantity of mass. Theorem 5.1 reveals the conserved physical quantities of the generalized particle.

One of the most important corollaries of the theorem 5.1 is the prediction that the generalized particle has wave-like behavior. We prove the following corollary:

Corollary 5.1. 'For function Ψ the following equation holds
$\sigma c^{2} \alpha_{k i}\left(\nabla^{2} \Psi+\frac{\partial^{2} \Psi}{\partial x_{0}^{2}}\right)=\frac{\partial j_{i}}{\partial x_{k}}-\frac{\partial j_{k}}{\partial x_{i}}$
$\sigma c^{2} \alpha_{k i}\left(\nabla^{2} \Psi-\frac{\partial^{2} \Psi}{c^{2} \partial t^{2}}\right)=\frac{\partial j_{i}}{\partial x_{k}}-\frac{\partial j_{k}}{\partial x_{i}}$
$k \neq i, \quad k, i=0,1,2,3 .{ }^{\prime \prime}$
Proof. To prove the corollary, considering that $x_{0}=i c t$, we write equations (5.4) and (5.5) in the form

$$
\begin{align*}
& \nabla \cdot \boldsymbol{\xi}=-\frac{i}{\sigma c} j_{0} \\
& \nabla \cdot \boldsymbol{\omega}=0 \\
& \nabla \times \boldsymbol{\xi}=-\frac{i c \partial \boldsymbol{\omega}}{\partial x_{0}} \tag{5.18}\\
& \nabla \times \boldsymbol{\omega}=\frac{1}{\sigma c^{2}} \mathbf{j}+\frac{i \partial \boldsymbol{\xi}}{c \partial x_{0}}
\end{align*}
$$

We will also use the identity (5.19) which is valid for every vector $\boldsymbol{\alpha}$

$$
\begin{equation*}
\nabla \times \nabla \times \boldsymbol{\alpha}=\nabla(\nabla \cdot \boldsymbol{\alpha})-\nabla^{2} \boldsymbol{\alpha} . \tag{5.19}
\end{equation*}
$$

From the third of equations (5.18) we obtain

$$
\begin{aligned}
& \nabla \times \nabla \times \boldsymbol{\xi}=-\nabla \times\left(\frac{i c \partial \boldsymbol{\omega}}{\partial x_{0}}\right) \\
& \nabla \times \nabla \times \boldsymbol{\xi}=-\frac{i c \partial}{\partial x_{0}}(\nabla \times \boldsymbol{\omega})
\end{aligned}
$$

and using the identity (5.19) we get

$$
\nabla(\nabla \cdot \xi)-\nabla^{2} \xi=-\frac{i c \partial}{\partial x_{0}}(\nabla \times \boldsymbol{\omega})
$$

and with the first and fourth of equations (5.18) we get

$$
\nabla\left(-\frac{i}{\sigma c} j_{0}\right)-\nabla^{2} \boldsymbol{\xi}=\frac{\partial^{2} \xi}{\partial x_{0}^{2}}-\frac{i}{\sigma c} \frac{\partial \mathbf{j}}{\partial x_{0}}
$$

and we finally get

$$
\begin{equation*}
\nabla^{2} \boldsymbol{\xi}+\frac{\partial^{2} \boldsymbol{\xi}}{\partial x_{0}^{2}}=\frac{i}{\sigma c}\left(\frac{\partial \mathbf{j}}{\partial x_{0}}-\nabla j_{0}\right) \tag{5.20}
\end{equation*}
$$

Working similarly from equation (5.18) we obtain

$$
\begin{equation*}
\nabla^{2} \boldsymbol{\omega}+\frac{\partial^{2} \boldsymbol{\omega}}{\partial x_{0}^{2}}=-\frac{1}{\sigma c^{2}} \nabla \times \mathbf{j} . \tag{5.21}
\end{equation*}
$$

Combining equations (5.20) and (5.21) with equations (5.1) and (5.2), we get

$$
\alpha_{k i}\left(\nabla^{2} \Psi+\frac{\partial^{2} \Psi}{\partial x_{0}^{2}}\right)=\frac{i}{\sigma c^{2}}\left(\frac{\partial j_{i}}{\partial x_{k}}-\frac{\partial j_{k}}{\partial x_{i}}\right), k \neq i, \quad k, i=0,1,2,3
$$

which is equation (5.17).
Equation (5.17) can be characterized as "the wave equation of the TSV". The basic characteristics of equation (5.17) depend on whether the physical quantity

$$
\begin{equation*}
F=\nabla^{2} \Psi+\frac{\partial^{2} \Psi}{\partial^{2} x_{0}^{2}}=\nabla^{2} \Psi-\frac{\partial^{2} \Psi}{c^{2} \partial t^{2}} \tag{5.22}
\end{equation*}
$$

is zero or not.

This conclusion is drawn through the following theorem:
Theorem 5.2. 'For the generalized particle the following equivalences hold

$$
\begin{equation*}
\nabla^{2} \Psi-\frac{\partial^{2} \Psi}{c^{2} \partial t^{2}}=0 \tag{5.23}
\end{equation*}
$$

if and only if for each $k \neq i, k, i=0,1,2,3$ it is

$$
\begin{equation*}
\frac{\partial j_{i}}{\partial x_{k}}=\frac{\partial j_{k}}{\partial x_{i}} \tag{5.24}
\end{equation*}
$$

if and only if

$$
\begin{align*}
& \nabla^{2} \boldsymbol{\xi}-\frac{\partial^{2} \boldsymbol{\xi}}{c^{2} \partial t^{2}}=0 \tag{5.25}\\
& \nabla^{2} \boldsymbol{\omega}-\frac{\partial^{2} \boldsymbol{\omega}}{c^{2} \partial t^{2}}=0
\end{align*}
$$

Proof. In the external symmetry there exists at least one pair of indices $(k, i), k \neq i, k, i \in\{0,1,2,3\}$, for which $\alpha_{k i} \neq 0$. Therefore, when equation (5.24) holds, then equation (5.23) follows from equation (5.17), and vice versa. Thus, equations (5.23) and (5.24) are equivalent. When equation (5.24) holds, then the right hand sides of equations (5.24) and (5.25) vanish, that is, equations (5.25) hold. The converse also holds, thus equations (5.24) and (5.25) are equivalent. Therefore, equations (5.23), (5.24), and (5.25) are equivalent.

In case that $F=0$, that is in case that equivalences (5.23), (5.24) and (5.25) hold, we shall refer to the state of the generalized particle as the "generalized photon". According to equations (5.25), for the generalized photon the (ξ, ω)-field is propagating with velocity c in the form of a wave. For the generalized photon, the following corollary holds:

Corollary 5.2: " For the generalized photon, the four-vector j of the current density of the conserved physical quantities q, varies according to the equations

$$
\begin{equation*}
\nabla^{2} j_{k}-\frac{\partial^{2} j_{k}}{c^{2} \partial t^{2}}=0, k=0,1,2,3 . \tag{5.26}
\end{equation*}
$$

Proof. We prove equation (5.26) for $k=0$, and we can similarly prove it for $k=1,2,3$.
Considering equation (4.27), we write equation (5.6) in the form

$$
\begin{equation*}
\frac{\partial j_{0}}{\partial x_{0}}+\frac{\partial j_{1}}{\partial x_{1}}+\frac{\partial j_{2}}{\partial x_{2}}+\frac{\partial j_{3}}{\partial x_{3}}=0 \tag{5.27}
\end{equation*}
$$

Differentiating equation (5.27) with respect to x_{0} we get

$$
\begin{aligned}
& \frac{\partial^{2} j_{0}}{\partial x_{0}^{2}}+\frac{\partial}{\partial x_{0}}\left(\frac{\partial j_{1}}{\partial x_{1}}\right)+\frac{\partial}{\partial x_{0}}\left(\frac{\partial j_{2}}{\partial x_{2}}\right)+\frac{\partial}{\partial x_{0}}\left(\frac{\partial j_{3}}{\partial x_{3}}\right)=0 \\
& \frac{\partial^{2} j_{0}}{\partial x_{0}^{2}}+\frac{\partial}{\partial x_{1}}\left(\frac{\partial j_{1}}{\partial x_{0}}\right)+\frac{\partial}{\partial x_{2}}\left(\frac{\partial j_{2}}{\partial x_{0}}\right)+\frac{\partial}{\partial x_{3}}\left(\frac{\partial j_{3}}{\partial x_{0}}\right)=0
\end{aligned}
$$

and with equation (5.24) we get
$\frac{\partial^{2} j_{0}}{\partial x_{0}^{2}}+\frac{\partial}{\partial x_{1}}\left(\frac{\partial j_{0}}{\partial x_{1}}\right)+\frac{\partial}{\partial x_{2}}\left(\frac{\partial j_{0}}{\partial x_{2}}\right)+\frac{\partial}{\partial x_{3}}\left(\frac{\partial j_{0}}{\partial x_{3}}\right)=0$
$\frac{\partial^{2} j_{0}}{\partial x_{0}^{2}}+\nabla^{2} j_{0}=0$
which is equation (5.26) for $k=0$, since $x_{0}=i c t . \square$

The way in which equations (5.25) emerge in the TSV is completely different from the way in which the electromagnetic waves emerge in Maxwell's electromagnetic theory [610]. Maxwell's equation predict the eqs. (5.25) for $j=0$. The TSV predicts $(\boldsymbol{\alpha}, \boldsymbol{\beta})$ waves for $j \neq 0$, when eq. (5.24) is valid. Moreover the current density j in this case varies according to eq. (5.26).

We now prove the following corollary of theorem 5.1:
Corollary 5.3. 'For the 4 -vector
$\left[\frac{\partial \Psi}{\partial x}\right]=\left[\begin{array}{l}\frac{\partial \Psi}{\partial x_{0}} \\ \frac{\partial \Psi}{\partial x_{1}} \\ \frac{\partial \Psi}{\partial x_{2}} \\ \frac{\partial \Psi}{\partial x_{3}}\end{array}\right]$
it is
$M\left[\frac{\partial \Psi}{\partial x}\right]=-\frac{1}{\sigma c^{2}} j$
where
$M=\left[\begin{array}{cccc}0 & \alpha_{01} & \alpha_{02} & \alpha_{03} \\ -\alpha_{01} & 0 & -\alpha_{21} & \alpha_{13} \\ -\alpha_{02} & \alpha_{21} & 0 & -\alpha_{32} \\ -\alpha_{03} & -\alpha_{13} & \alpha_{32} & 0\end{array}\right]$
and j the 4 -vector of the current density of the conserved physical quantities of the generalized particle."

Proof. From eq. (5.3) and with the notation of eq. (5.28) we have
$\left[\frac{\partial \Psi}{\partial x}\right]=\frac{b}{\hbar} \Psi(\lambda J+\mu P)$
and multiplying from the left with the matrix M we get
$M\left[\frac{\partial \Psi}{\partial x}\right]=\frac{b}{\hbar} \Psi M(\lambda J+\mu P)$
and with eq. (5.7) we have
$M\left[\frac{\partial \Psi}{\partial x}\right]=-\frac{1}{\sigma c^{2}} j$
which is eq. (5.29).
The eqs. (5.3), (5.7) and (5.29) give the relation of the wave function Ψ with the physical quantities J, P and j of the generalized particle.

One of the most important conclusions of the theorem 5.1 is that it gives the degrees of freedom of the equations of the TSV. In equation (5.7) the parameters $\lambda, \mu \in \mathbb{C},(\lambda, \mu) \neq(0,0)$ can have arbitrary values or can be arbitrary functions of $x_{0}, x_{1}, x_{2}, x_{3}$. The TSV has two degrees of freedom. Therefore, the investigation of the TSV takes place through the parameters λ and μ of equation (5.7).

If we set $(\lambda, \mu, b)=(1,0, i)$ or $(\lambda, \mu)=\left(\frac{i}{b}, 0\right)$ in equation (5.7), we get equations
$\frac{\partial \Psi}{\partial x_{0}}=\frac{i}{\hbar} J_{0} \Psi$
$\nabla \Psi=\frac{i}{\hbar} \mathbf{J} \Psi$
For $(\lambda, \mu, b)=(0,1, i)$ or $(\lambda, \mu)=\left(0, \frac{i}{b}\right)$ we have
$\frac{\partial \Psi}{\partial x_{0}}=\frac{i}{\hbar} P_{0} \Psi$
$\nabla \Psi=\frac{i}{\hbar} \mathbf{P} \Psi$
For $\lambda=\mu$ we have
$\frac{\partial \Psi}{\partial x_{k}}=\frac{b}{\hbar} \mu \Psi\left(J_{k}+P_{k}\right), k=0,1,2,3$
and with eq. (3.5) we have
$\frac{\partial \Psi}{\partial x_{k}}=\frac{b c_{k}}{\hbar} \mu \Psi, k=0,1,2,3$
and equivalently we have
$\frac{\partial \Psi}{\partial x_{0}}=\frac{b c_{0}}{\hbar} \mu \Psi$
$\nabla \Psi=\frac{b}{\hbar} \mu \Psi \mathbf{C}$
Taking into account that $x_{0}=i c t$ and $J_{0}=\frac{i W}{c}$, we recognize in equations (5.30) the Schrödinger operators. Using the macroscopic mathematical expressions of the momentum J and energy W of the material particle, we get the Schrödinger equation [11-15]. The Schrödinger equation is a special case of the wave equation of the TSV. The designation of the degrees of freedom λ and μ determines in a large extend the form of eq. (5.7).

6. The Lorentz-Einstein-Selfvariations Symmetry

In this paragraph we calculate the Lorentz-Einstein transformations of the physical quantities $\lambda_{k i}, k, i=0,1,2,3$. The part of spacetime occupied by the generalized particle can be flat or curved. TheLorentz-Einstein transformations give us information about this subject.

We consider an inertial frame of reference $O^{\prime}\left(t^{\prime}, \mathrm{x}^{\prime}, \mathrm{y}^{\prime}, \mathrm{z}^{\prime}\right)$ moving with velocity $(u, 0,0)$ with respect to another inertial frame of reference $O(t, \mathrm{x}, \mathrm{y}, \mathrm{z})$, with their origins O^{\prime} and O coinciding at $t^{\prime}=t=0$. We will calculate the Lorentz-Einsteintransformations for the physical quantities $\lambda_{k i}, k, i=0,1,2,3$. We begin with transformations (6.1) and (6.2)

$$
\begin{align*}
& \frac{\partial}{\partial t^{\prime}}=\gamma\left(\frac{\partial}{\partial t}+u \frac{\partial}{\partial x}\right) \\
& \frac{\partial}{\partial x^{\prime}}=\gamma\left(\frac{\partial}{\partial x}+\frac{u}{c^{2}} \frac{\partial}{\partial t}\right) \tag{6.1}\\
& \frac{\partial}{\partial y^{\prime}}=\frac{\partial}{\partial y} \\
& \frac{\partial}{\partial z^{\prime}}=\frac{\partial}{\partial z}
\end{align*}
$$

$$
W^{\prime}=\gamma\left(W-u J_{x}\right) \quad E^{\prime}=\gamma\left(E-u P_{x}\right)
$$

$$
\begin{equation*}
J_{x}^{\prime}=\gamma\left(J_{x}-\frac{u}{c^{2}} W\right) \quad P_{x}^{\prime}=\gamma\left(P_{x}-\frac{u}{c^{2}} E\right) \tag{6.2}
\end{equation*}
$$

$$
J_{y}^{\prime}=J_{y} \quad P_{y}^{\prime}=P_{y}
$$

$$
J_{z}^{\prime}=J_{z} \quad P_{z}^{\prime}=P_{z}
$$

where $\gamma=\left(1-\frac{u^{2}}{c^{2}}\right)^{-\frac{1}{2}}$.
We then use the notation (2.3), (2.4), (2.5) and obtain the transformations (6.3) and (6.4)

$$
\begin{array}{ll}
\frac{\partial}{\partial x_{0}{ }^{\prime}}=\gamma\left(\frac{\partial}{\partial x_{0}}-i \frac{u}{c} \frac{\partial}{\partial x_{1}}\right) \\
\frac{\partial}{\partial x_{1}^{\prime}}=\gamma\left(\frac{\partial}{\partial x_{1}}+i \frac{u}{c} \frac{\partial}{\partial x_{0}}\right) \\
\frac{\partial}{\partial x_{2}^{\prime}}=\frac{\partial}{\partial x_{2}} & \\
\frac{\partial}{\partial x_{3}^{\prime}}=\frac{\partial}{\partial x_{3}} & \\
J_{0}^{\prime}=\gamma\left(J_{0}-i \frac{u}{c} J_{1}\right) & P_{0}^{\prime}=\gamma\left(P_{0}-i \frac{u}{c} P_{1}\right) \\
J_{1}^{\prime}=\gamma\left(J_{1}+i \frac{u}{c} J_{0}\right) & P_{1}^{\prime}=\gamma\left(P_{1}+i \frac{u}{c} P_{0}\right) . \tag{6.4}\\
J_{2}^{\prime}=J_{2} & P_{2}^{\prime}=P_{2} \\
J_{3}^{\prime}=J_{3} & P_{3}^{\prime}=P_{3}
\end{array}
$$

We now derive the transformation of the physical quantity λ_{00}. From equation (2.10) for $k=i=0$ we get for the inertial reference frame $O^{\prime}\left(t^{\prime}, \mathrm{x}^{\prime}, \mathrm{y}^{\prime}, \mathrm{z}^{\prime}\right)$

$$
\lambda_{00}^{\prime}=\frac{\partial J_{0}^{\prime}}{\partial x_{0}^{\prime}}-\frac{b}{\hbar} P_{0}^{\prime} J_{0}^{\prime}
$$

and with transformations (6.3) and (6.4) we obtain

$$
\begin{aligned}
& \lambda_{00}^{\prime}=\gamma^{2}\left(\frac{\partial}{\partial x_{0}}-i \frac{u}{c} \frac{\partial}{\partial x_{1}}\right)\left(J_{0}-i \frac{u}{c} J_{1}\right)-\frac{b}{\hbar} \gamma^{2}\left(P_{0}-i \frac{u}{c} P_{1}\right)\left(J_{0}-i \frac{u}{c} J_{1}\right) \\
& \lambda_{00}^{\prime}=\gamma^{2}\left(\frac{\partial J_{0}}{\partial x_{0}}-i \frac{u}{c} \frac{\partial J_{1}}{\partial x_{0}}-i \frac{u}{c} \frac{\partial J_{0}}{\partial x_{1}}-\frac{u^{2}}{c^{2}} \frac{\partial J_{1}}{\partial x_{1}}-\frac{b}{\hbar} P_{0} J_{0}+i \frac{u}{c} \frac{b}{\hbar} P_{0} J_{1}+i \frac{u}{c} \frac{b}{\hbar} P_{1} J_{0}+\frac{u^{2}}{c^{2}} \frac{b}{\hbar} P_{1} J_{1}\right)
\end{aligned}
$$

and replacing physical quantities

$$
\frac{\partial J_{0}}{\partial x_{0}}, \frac{\partial J_{1}}{\partial x_{0}}, \frac{\partial J_{0}}{\partial x_{1}}, \frac{\partial J_{1}}{\partial x_{1}}
$$

from equation (2.10) we get

$$
\begin{gathered}
\lambda_{00}^{\prime}=\gamma^{2}\left(\frac{b}{\hbar} P_{0} J_{0}+\lambda_{00}-i \frac{u}{c} \frac{b}{\hbar} P_{0} J_{1}-i \frac{u}{c} \lambda_{01}-i \frac{u}{c} \frac{b}{\hbar} P_{1} J_{0}-i \frac{u}{c} \lambda_{10}-\frac{u^{2}}{c^{2}} \frac{b}{\hbar} P_{1} J_{1}\right. \\
\left.-\frac{u^{2}}{c^{2}} \lambda_{11}-\frac{b}{\hbar} P_{0} J_{0}+i \frac{u}{c} \frac{b}{\hbar} P_{0} J_{1}+i \frac{u}{c} \frac{b}{\hbar} P_{1} J_{0}+\frac{u^{2}}{c^{2}} \frac{b}{\hbar} P_{1} J_{1}\right)
\end{gathered}
$$

and we finally obtain equation

$$
\lambda_{00}^{\prime}=\gamma^{2}\left(\lambda_{00}-i \frac{u}{c} \lambda_{01}-i \frac{u}{c} \lambda_{10}-\frac{u^{2}}{c^{2}} \lambda_{11}\right) .
$$

Following the same procedure for $k, \mathrm{i}=0,1,2,3$ we obtain the following 16 equations (27) for the Lorentz-Einstein transformations of the physical quantities $\lambda_{k i}$:
$\lambda_{00}{ }^{\prime}=\gamma^{2}\left(\lambda_{00}-i \frac{u}{c} \lambda_{01}-i \frac{u}{c} \lambda_{10}-\frac{u^{2}}{c^{2}} \lambda_{11}\right)$
$\lambda_{01}{ }^{\prime}=\gamma^{2}\left(\lambda_{01}+i \frac{u}{c} \lambda_{00}-i \frac{u}{c} \lambda_{11}+\frac{u^{2}}{c^{2}} \lambda_{10}\right)$
$\lambda_{02}{ }^{\prime}=\gamma\left(\lambda_{02}-i \frac{u}{c} \lambda_{12}\right)$
$\lambda_{03}{ }^{\prime}=\gamma\left(\lambda_{03}-i \frac{u}{c} \lambda_{13}\right)$

$$
\begin{align*}
& \lambda_{10}^{\prime}=\gamma^{2}\left(\lambda_{10}-i \frac{u}{c} \lambda_{11}+i \frac{u}{c} \lambda_{00}+\frac{u^{2}}{c^{2}} \lambda_{01}\right) \\
& \lambda_{11}^{\prime}=\gamma^{2}\left(\lambda_{11}+i \frac{u}{c} \lambda_{10}+i \frac{u}{c} \lambda_{01}-\frac{u^{2}}{c^{2}} \lambda_{00}\right) \tag{6.5}\\
& \lambda_{12}^{\prime}=\gamma\left(\lambda_{12}+i \frac{u}{c} \lambda_{02}\right) \\
& \lambda_{13}^{\prime}=\gamma\left(\lambda_{13}+i \frac{u}{c} \lambda_{03}\right) \\
& \lambda_{20}^{\prime}=\gamma\left(\lambda_{20}-i \frac{u}{c} \lambda_{21}\right) \\
& \lambda_{21}^{\prime}=\gamma\left(\lambda_{21}+i \frac{u}{c} \lambda_{20}\right) \\
& \lambda_{22}^{\prime}=\lambda_{22} \\
& \lambda_{23}^{\prime}=\lambda_{23}
\end{align*}
$$

The first two of equations (6.5) is self-consistent when equation

$$
\begin{equation*}
\lambda_{00}=\lambda_{11} \tag{6.6}
\end{equation*}
$$

Then by the second of equations (6.5) we obtain

$$
\lambda_{01}^{\prime}=\lambda_{01} .
$$

According to equivalence (3.14) these transformations relate to the external symmetry, in which it holds that $\lambda_{i k}=-\lambda_{k i}$ for $i \neq k, i, k=0,1,2,3$. Thus, we obtain the following transformations for the physical quantities $\lambda_{k i}, k, i=0,1,2,3$

$$
\begin{array}{ll}
& \lambda_{01}^{\prime}=\lambda_{01} \\
\lambda_{02}^{\prime} & =\gamma\left(\lambda_{02}+i \frac{u}{c} \lambda_{21}\right) \\
\lambda_{00}{ }^{\prime}=\lambda_{00} & \lambda_{03}^{\prime}=\gamma\left(\lambda_{03}-i \frac{u}{c} \lambda_{13}\right) \tag{6.7}\\
\lambda_{11}{ }^{\prime}=\lambda_{11} & \lambda_{32}{ }^{\prime}=\lambda_{32} \\
\lambda_{22}{ }^{\prime}=\lambda_{22} & \lambda_{13}{ }^{\prime}=\gamma\left(\lambda_{13}+i \frac{u}{c} \lambda_{03}\right) \\
\lambda_{33}{ }^{\prime}=\lambda_{33} & \lambda_{21}^{\prime}=\gamma\left(\lambda_{21}-i \frac{u}{c} \lambda_{02}\right)
\end{array}
$$

Taking into account equations (4.4), (4.10) and that the physical quantity $z Q$ is invariant under the Lorentz-Einstein transformations, we obtain the following transformations for the constants $\alpha_{k i}, k \neq i, k, i=0,1,2,3$ and the physical quantities $T_{k}, k=0,1,2,3$

$$
\begin{align*}
& \alpha_{01}^{\prime}=\alpha_{01} \\
& \alpha_{02}^{\prime}=\gamma\left(\alpha_{02}+i \frac{u}{c} \alpha_{21}\right) \\
& \alpha_{03}^{\prime}=\gamma\left(\alpha_{03}-i \frac{u}{c} \alpha_{13}\right) \tag{6.8}\\
& \alpha_{32}^{\prime}=\alpha_{32} \\
& \alpha_{13}^{\prime}=\gamma\left(\alpha_{13}+i \frac{u}{c} \alpha_{03}\right) \\
& \alpha_{21}^{\prime}=\gamma\left(\alpha_{21}-i \frac{u}{c} \alpha_{02}\right)
\end{align*}
$$

Equation (6.6) correlates the physical quantities λ_{00} and λ_{11} in the same inertial frame of reference. Taking into account equation (4.10) we obtain $T_{0}=T_{1}$. Thus, when transformations (6.8) hold, $T_{0}=T_{1}$ also holds. The reference frame $\mathrm{O}^{\prime}\left(t^{\prime}, x^{\prime}, y^{\prime}, z^{\prime}\right)$ moves with respect to the reference frame $\mathrm{O}(t, x, y, z)$ with constant velocity along the x.-axis. If we assume that the motion is along the y - or z-axis, the generalization of equation $T_{0}=T_{1}$ follows; the Lorentz-Einstein transformations lead to the following equation $T_{0}=T_{1}=T_{2}=T_{3}=0$. Thus, we derive the following two corollaries.

Corollary 6.1. " When the portion of spacetime occupied by the generalized particle is flat, it is
$T_{0}=T_{1}=T_{2}=T_{3}=0$.
Corollary 6.2.' When
$T_{k} \neq 0$
for at least one $k \in\{0,1,2,3\}$ the portion of spacetime occupied by the generalized particle is curver and not flat.'"

Notice that from the way of proof of corollary 6.1 it follows that the converse is not true. For external symmetries which have $T_{0}=T_{1}=T_{2}=T_{3}=0$, spacetime may be either flat or curved. In paragraph 9 we have shown how to check if spacetime is flat or curved for external symmetries with $T_{0}=T_{1}=T_{2}=T_{3}=0$.

In the external symmetry it is $\alpha_{k i} \neq 0$ for at least on pair of indices $k, i \in\{0,1,2,3\}$. Thus, in external symmetry it is $\alpha_{k i}=0$ only for some pairs of indices $k, i \in\{0,1,2,3\}$. The Lorentz-Einstein transformations reveal that in flat spacetime this cannot be arbitrary. Let's assume that it is
$\alpha_{02}=0$
for every inertial frame of reference. Then, we obtain
$\alpha_{02}{ }^{\prime}=0$
and with transformations (6.8) we obtain
$\gamma\left(\alpha_{02}+i \frac{u}{c} \alpha_{21}\right)=0$
and since it is $\alpha_{02}=0$ we obtain that it also holds
$\alpha_{21}=0$.

Working similarly with all of the transformations (6.8) we end up with the following four sets of equations of external symmetry in the flat spacetime:

$$
\begin{align*}
& \alpha_{01} \neq 0 \vee \alpha_{01}=0 \\
& \alpha_{02} \neq 0 \\
& \alpha_{03} \neq 0 \\
& \alpha_{32} \neq 0 \tag{6.11}\\
& \alpha_{13} \neq 0 \\
& \alpha_{21} \neq 0
\end{align*}
$$

$$
\begin{align*}
& \alpha_{01} \neq 0 \vee \alpha_{01}=0 \\
& \alpha_{02}=0 \\
& \alpha_{03}=0 \tag{6.12}\\
& \alpha_{32} \neq 0 \vee \alpha_{32}=0 \\
& \alpha_{13}=0 \\
& \alpha_{21}=0 \\
& \\
& \alpha_{01} \neq 0 \vee \alpha_{01}=0 \\
& \alpha_{02} \neq 0 \vee \alpha_{02}=0 \tag{6.13}\\
& \alpha_{03}=0 \\
& \alpha_{32} \neq 0 \vee \alpha_{32}=0 \\
& \alpha_{13}=0 \\
& \alpha_{21} \neq 0 \vee \alpha_{21}=0 \\
& \alpha_{01} \neq 0 \vee \alpha_{01}=0 \\
& \alpha_{02}=0 \tag{6.14}\\
& \alpha_{03} \neq 0 \vee \alpha_{03}=0 \\
& \alpha_{32} \neq 0 \vee \alpha_{32}=0 \\
& \alpha_{13} \neq 0 \vee \alpha_{13}=0 \\
& \alpha_{21}=0
\end{align*}
$$

The symmetry that equations (6.11)-(6.14) express will be referred to as the symmetry of the Lorentz-Einstein-Selfvarlations. These symmetries hold only in case that the part of spacetime occupied by the generalized particle is flat.

7. The Fundamental Study for The Corpuscular Structure of Matter in external symmetry. The П-Plane.

The material particles are in a constant interaction between them (via the USVI) because of STEM. This interaction has consequences in the internal structure of the generalized particle, including the distribution of its total energy and momentum between the material particle and the surrounding spacetime.

The internal structure of the generalized particle is determined by the relations among the elements of the matrix T. The same holds for the rest mass m_{0} of the material particle, the
rest energy E_{0} of STEM, with which the material particle interacts, and the total rest mass M_{0} of the generalized particle. In this paragraph, we study this relation among the elements of the matrix T. We now prove the following theorem:

Theorem 7.1. " For the elements of the T matrix it holds that:

$$
\begin{equation*}
T_{0} T_{1} T_{2} T_{3}+T_{0} T_{1} \alpha_{32}^{2}+T_{0} T_{2} \alpha_{13}^{2}+T_{0} T_{3} \alpha_{21}^{2}+T_{1} T_{2} \alpha_{03}^{2}+T_{1} T_{3} \alpha_{02}^{2}+T_{2} T_{3} \alpha_{01}^{2}=0 . .^{\prime \prime} \tag{7.1}
\end{equation*}
$$

Proof. We develop equation (2.13), obtaining the set of equations

$$
\begin{aligned}
& J_{0} \lambda_{00}+J_{1} \lambda_{01}+J_{2} \lambda_{02}+J_{3} \lambda_{03}=0 \\
& -J_{0} \lambda_{01}+J_{1} \lambda_{11}-J_{2} \lambda_{21}+J_{3} \lambda_{13}=0 \\
& -J_{0} \lambda_{02}+J_{1} \lambda_{21}+J_{2} \lambda_{22}-J_{3} \lambda_{32}=0 \\
& -J_{0} \lambda_{03}-J_{1} \lambda_{13}+J_{2} \lambda_{32}+J_{3} \lambda_{33}=0
\end{aligned}
$$

and from equations (4.4) and (4.10) we have

$$
\begin{aligned}
& J_{0} z Q T_{0}+J_{1} z Q \alpha_{01}+J_{2} z Q \alpha_{02}+J_{3} z Q \alpha_{03}=0 \\
& -J_{0} z Q \alpha_{01}+J_{1} z Q T_{1}-J_{2} z Q \alpha_{21}+J_{3} z Q \alpha_{13}=0 \\
& -J_{0} z Q a_{02}+J_{1} z Q a_{21}+J_{2} z Q T_{2}-J_{3} z Q a_{32}=0 \\
& -J_{0} z Q \alpha_{03}-J_{1} z Q \alpha_{13}+J_{2} z Q \alpha_{32}+J_{3} z Q T_{3}=0
\end{aligned}
$$

and since it holds that $z Q \neq 0$, we take the set of equations

$$
\begin{align*}
& J_{0} T_{0}+J_{1} \alpha_{01}+J_{2} \alpha_{02}+J_{3} \alpha_{03}=0 \\
& -J_{0} \alpha_{01}+J_{1} T_{1}-J_{2} \alpha_{21}+J_{3} \alpha_{13}=0 \\
& -J_{0} \alpha_{02}+J_{1} \alpha_{21}+J_{2} T_{2}-J_{3} \alpha_{32}=0 \tag{7.2}\\
& -J_{0} \alpha_{03}-J_{1} \alpha_{13}+J_{2} \alpha_{32}+J_{3} T_{3}=0
\end{align*}
$$

The set of equations given in (7.2) comprise a 4×4 homogeneous linear system of equations with unknowns the momenta $J_{0}, J_{1}, J_{2}, J_{3}$. In order for the material particle to exist, the system of equations (7.2) must obtain non-vanishing solutions. Therefore, its determinant must vanish. Thus, we obtain equation

$$
\begin{aligned}
& T_{0} T_{1} T_{2} T_{3}+T_{0} T_{1} \alpha_{32}+T_{0} T_{2} \alpha_{13}+T_{0} T_{3} \alpha_{21}+T_{1} T_{2} \alpha_{03}+T_{1} T_{3} \alpha_{02}+T_{2} T_{3} \alpha_{01} \\
& +\left(\alpha_{01} \alpha_{32}+\alpha_{02} \alpha_{13}+\alpha_{03} \alpha_{21}\right)^{2}=0
\end{aligned}
$$

and with equation (4.8) we arrive at equation (7.1).
We consider the $4 \times 4 N$ matrix, given as:

$$
N=\left[\begin{array}{cccc}
0 & \alpha_{32} & \alpha_{13} & \alpha_{21} \tag{7.3}\\
-\alpha_{32} & 0 & -\alpha_{03} & \alpha_{02} \\
-\alpha_{13} & \alpha_{03} & 0 & -\alpha_{01} \\
-\alpha_{21} & -\alpha_{02} & \alpha_{01} & 0
\end{array}\right] .
$$

Using the matrix N, we now write equation (4.6) in the form of

$$
\begin{align*}
& N C=0 \\
& N J=0 . \tag{7.4}\\
& N P=0
\end{align*}
$$

We now prove Lemma 7.1:
Lemma 7.1. ' The four-vectors C, J, P satisfy the set of equations

$$
\begin{align*}
& N^{2} C=0 \\
& N^{2} J=0 . \tag{7.5}\\
& N^{2} P=0
\end{align*}
$$

Proof. We multiply the set of equations (7.4) from the left with the matrix N, and equations (7.5) follow.

Using lemma 7.1 we prove theorem 7.2 :
Theorem 7.2. ' 'For $M \neq 0$ it holds that:

1. $M N=N M=0$.
2. $M^{2}+N^{2}=-\alpha^{2} I$

$$
\begin{equation*}
\alpha^{2}=\alpha_{01}^{2}+\alpha_{02}^{2}+\alpha_{03}^{2}+\alpha_{32}^{2}+\alpha_{13}^{2}+\alpha_{21}^{2} . \tag{7.7}
\end{equation*}
$$

Here, I is the 4×4 identity matrix.
3. For $\alpha \neq 0$ the matrix M has two eigenvalues τ_{1} and τ_{2}, with corresponding eigenvectors v_{1} and v_{2}, given by:

$$
\begin{align*}
& \tau_{1}=i \alpha \\
& v_{1}=\frac{1}{\alpha}\left[\begin{array}{l}
0 \\
\alpha_{01} \\
\alpha_{02} \\
\alpha_{03}
\end{array}\right]-\frac{i}{\alpha^{2}}\left[\begin{array}{l}
\alpha_{01}^{2}+\alpha_{02}^{2}+\alpha_{03}^{2} \\
\alpha_{03} \alpha_{13}-\alpha_{02} \alpha_{21} \\
\alpha_{01} \alpha_{21}-\alpha_{03} \alpha_{32} \\
\alpha_{02} \alpha_{32}-\alpha_{01} \alpha_{13}
\end{array}\right] \tag{7.9}
\end{align*}
$$

$$
\begin{align*}
& \tau_{2}=-i \alpha \\
& v_{2}=\frac{1}{\alpha}\left[\begin{array}{l}
0 \\
\alpha_{01} \\
\alpha_{02} \\
\alpha_{03}
\end{array}\right]+\frac{i}{\alpha^{2}}\left[\begin{array}{c}
\alpha_{01}^{2}+\alpha_{02}^{2}+\alpha_{03}^{2} \\
\alpha_{03} \alpha_{13}-\alpha_{02} \alpha_{21} \\
\alpha_{01} \alpha_{21}-\alpha_{03} \alpha_{32} \\
\alpha_{02} \alpha_{32}-\alpha_{01} \alpha_{13}
\end{array}\right] . \tag{7.10}
\end{align*}
$$

4. For $\alpha \neq 0$ the matrix N has the same eigenvalues with the matrix M, and two corresponding eigenvectors n_{1} and n_{2}, given by:

$$
\tau_{1}=i \alpha
$$

$$
n_{1}=\frac{1}{\alpha}\left[\begin{array}{l}
0 \tag{7.11}\\
\alpha_{32} \\
\alpha_{13} \\
\alpha_{21}
\end{array}\right]-\frac{i}{\alpha^{2}}\left[\begin{array}{c}
\alpha_{32}^{2}+\alpha_{13}^{2}+\alpha_{21}^{2} \\
\alpha_{02} \alpha_{21}-\alpha_{03} \alpha_{13} \\
\alpha_{03} \alpha_{32}-\alpha_{01} \alpha_{21} \\
\alpha_{01} \alpha_{13}-\alpha_{02} \alpha_{32}
\end{array}\right]
$$

$$
\begin{align*}
& \tau_{2}=-i \alpha \\
& n_{2}=\frac{1}{\alpha}\left[\begin{array}{l}
0 \\
\alpha_{32} \\
\alpha_{13} \\
\alpha_{21}
\end{array}\right]+\frac{i}{\alpha^{2}}\left[\begin{array}{l}
\alpha_{32}^{2}+\alpha_{13}^{2}+\alpha_{21}^{2} \\
\alpha_{02} \alpha_{21}-\alpha_{03} \alpha_{13} \\
\alpha_{03} \alpha_{32}-\alpha_{01} \alpha_{21} \\
\alpha_{01} \alpha_{13}-\alpha_{02} \alpha_{32}
\end{array}\right] . \tag{7.12}
\end{align*}
$$

5. $\alpha^{2}=\alpha_{01}^{2}+\alpha_{02}^{2}+\alpha_{03}^{2}+\alpha_{32}^{2}+\alpha_{13}^{2}+\alpha_{21}^{2}=0$

$$
M^{2} C=0
$$

6. $M^{2} J=0$.'

$$
\begin{equation*}
M^{2} P=0 \tag{7.14}
\end{equation*}
$$

Proof. The matrices M and N are given by equations (4.28) and (7.3). The proof of equations (7.6), (7.7), (7.9), (7.10), (7.11) and (7.12) can be performed by the appropriate mathematical calculations and the use of equation (4.8).

We multiply equation (7.7) from the right with the column matrices C, J, P, and obtain

$$
\begin{aligned}
& M^{2} C+N^{2} C=-\alpha^{2} C \\
& M^{2} J+N^{2} J=-\alpha^{2} J \\
& M^{2} P+N^{2} P=-\alpha^{2} P
\end{aligned}
$$

and from equations (7.5) we obtain

$$
\begin{align*}
& M^{2} C=-\alpha^{2} C \\
& M^{2} J=-\alpha^{2} J . \tag{7.15}\\
& M^{2} P=-\alpha^{2} P
\end{align*}
$$

According to the set of equations (7.15), and for $\alpha \neq 0$, the matrix $M^{2} \neq 0$ has as eigenvalue $\alpha^{2} \neq 0$ with corresponding eigenvector $v \neq 0$. From equations (7.15) it is evident that the four-vectors C, J, P are parallel to the four-vector v, hence they are also parallel to each other. This is imposssible in the case of the external symmetry, according to Theorem 3.3. Therefore, $\alpha^{2}=0$, so that the matrix $M^{2} \neq 0$ does not have the four-vector v as an eigenvector. If the case it is $M^{2}=0$ from equations (7.15) we get

$$
\begin{aligned}
\alpha^{2} C & =0 \\
\alpha^{2} J & =0 \\
\alpha^{2} P & =0
\end{aligned}
$$

and because is $J \neq 0$ we again have $\alpha^{2}=0$. Thus, we arrive at equation (7.13). Then, from equations (7.15) we arrive at equations (7.14), since it holds that $\alpha^{2}=0$. .

The matrix M^{2}, for $M^{2} \neq 0$, is a 4×4 symmetric matrix. Furthermore, according to theorem 7.2 , it holds that $\operatorname{tr}\left(M^{2}\right)=2 \alpha^{2}=0$. An immediate consequence of theorem 7.2 is corollary 7.1.

Corollary 7.1. 'For the matrix T of external symmerty, it is not possible that exactly one of the physical quantities $\alpha_{k i}, k \neq i, k, i \in\{0,1,2,3\}$ is nonzero."

Proof. Let us suppose that the matrix T has exactly one nonzero element physical quantity $\alpha_{k i} \neq 0, k \neq i, k, i \in\{0,1,2,3\}$. From equation (4.28) we see that $M \neq 0$, and from equation (7.8) we obtain $\alpha^{2}=\alpha_{k i}^{2} \neq 0$. This cannot hold, according to equation (7.13). .

From theorem 7.2 it follows:

Corollary 7.2. 'For the four-vector j of the conserved physical quantities q it holds that:
$M j=0$
$N j=0 .{ }^{\prime \prime}$
Proof. We multiply equation (5.7) by matrix M from the left and obtain
$M j=-\frac{\sigma c^{2} b}{\hbar} \Psi\left(\lambda M^{2} J+\mu M^{2} P\right)$
and with the second and the third of equations (7.14) we have
$M j=0$.

We multiply the terms of equation (5.7) from the left with the matrix N, and obtain
$N j=-\frac{\sigma c^{2} b}{\hbar} \Psi N M(\lambda J+\mu P)$
and with equation (7.6) we take
$N j=0 . \quad$.

In the equations of the TSV there appear sums of squares that vanish, like the ones appearing in equations (3.6) and (7.13). Writing these equations in a suitable manner, we can introduce into the equations of the TSV complex numbers. From equation (3.6) , and for $M_{0} \neq 0$, we obtain
$\left(\frac{c_{0}}{M_{0} c}\right)^{2}+\left(\frac{c_{1}}{M_{0} c}\right)^{2}+\left(\frac{c_{2}}{M_{0} c}\right)^{2}+\left(\frac{c_{3}}{M_{0} c}\right)^{2}+1=0$.
Therefore, the physical quantities
$\frac{c_{0}}{M_{0} c}, \frac{c_{1}}{M_{0} c}, \frac{c_{2}}{M_{0} c}, \frac{c_{3}}{M_{0} c}$
belong in general to the set of complex numbers \mathbb{C}. This transformation of the equations of the TSV is not necessary. It suffices to remember that within the equations of the TSV there are sums of squares that vanish. We now prove theorem 7.3, which also intercorrelates the elements of the matrix T :

Theorem 7.3. ''In the external symmetry and for the elements of the matrix T it holds that:
$T_{i} a_{v k}=0$
$i \neq v, v \neq k, k \neq i, i, v, k=0,1,2,3$.

Proof. We differentiate the second equation of the set of equations (4.6)
$J_{i} \alpha_{\nu k}+J_{k} \alpha_{i v}+J_{v} \alpha_{k i}=0$
$i \neq v, v \neq k, k \neq i, i, v, k=0,1,2,3$
with respect to $x_{j}, j=0,1,2,3$. Considering equations (2.10) and (4.4), we have
$\alpha_{v k}\left(\frac{b}{\hbar} P_{j} J_{i}+z Q \alpha_{j i}\right)+\alpha_{i v}\left(\frac{b}{\hbar} P_{j} J_{k}+z Q \alpha_{j k}\right)+\alpha_{k i}\left(\frac{b}{\hbar} P_{j} J_{v}+z Q \alpha_{j v}\right)=0$
$\frac{b}{\hbar} P_{j}\left(J_{i} \alpha_{v k}+J_{k} \alpha_{i v}+J_{v} \alpha_{k i}\right)+z Q\left(\alpha_{v k} \alpha_{j i}+\alpha_{i v} \alpha_{j k}+\alpha_{k i} \alpha_{j v}\right)=0$
and with the second equation of the set of equations (4.6), and taking into account that $z Q \neq 0$, we obtain
$\alpha_{\nu k} \alpha_{j i}+\alpha_{i v} \alpha_{j k}+\alpha_{k i} \alpha_{j v}=0$
$i \neq v, v \neq k, k \neq i, i, v, k, j=0,1,2,3$.

Inserting into equation (7.19) successively $(i, v, k)=(0,1,2),(0,1,3),(0,2,3),(1,2,3)$ and $j=0,1,2,3$, we arrive at the set of equations

$$
\begin{align*}
& T_{0} \alpha_{32}=0 \\
& T_{0} \alpha_{13}=0 \\
& T_{0} \alpha_{21}=0 \\
& T_{1} \alpha_{02}=0 \\
& T_{1} \alpha_{03}=0 \\
& T_{1} \alpha_{32}=0 \tag{7.20}\\
& T_{2} \alpha_{01}=0 \\
& T_{2} \alpha_{03}=0 \\
& T_{2} \alpha_{13}=0 \\
& T_{3} \alpha_{01}=0 \\
& T_{3} \alpha_{02}=0 \\
& T_{3} \alpha_{21}=0
\end{align*}
$$

The set of equations (7.20) is equivalent to equation (7.18).

Theorem 7.3 is one of the most powerful tools for investigating the external symmetry. This results from corollary 7.3 :

Corollary 7.3. ' For the elements of the matrix T of the external symmetry the following hold:

1. For every $k \neq i, v \neq k, v \neq i, k, i, v \in\{0,1,2,3\}$ it holds that

$$
\left.\begin{array}{l}
\alpha_{k i} \neq 0 \tag{7.21}\\
k \neq i \\
v \neq k, i
\end{array}\right\} \Rightarrow \mathrm{T}_{v}=0
$$

2.

$$
\begin{align*}
& T_{0} \neq 0 \Rightarrow \alpha_{32}=\alpha_{13}=\alpha_{21}=0 \\
& T_{1} \neq 0 \Rightarrow \alpha_{02}=\alpha_{03}=\alpha_{32}=0 \\
& T_{2} \neq 0 \Rightarrow \alpha_{01}=\alpha_{03}=\alpha_{13}=0 \tag{7.22}\\
& T_{3} \neq 0 \Rightarrow \alpha_{01}=\alpha_{02}=\alpha_{21}=0
\end{align*} .
$$

Proof. Corollary 7.3 is an immediate consequence of theorem 7.3. -
From theorem 7.3 the following corollary follows, regarding the elements of the main diagonal of the matrices of the external symmetry:

Corollary 7.4. 'At least one of the elements of the main diagonal of the matrix T is equal to zero."

Proof. If $T_{v} \neq 0$ for every $v \in\{0,1,2,3\}$, from equations (7.20) we obtain $\alpha_{k i}=0$ for every set of indices $k \neq i, k, i=0,1,2,3$, and from equation (7.1) we have
$T_{0} T_{1} T_{2} T_{3}=0$.

This cannot hold, since we assumed that $T_{v} \neq 0$ for every $v=0,1,2,3$. Therefore, at least one element of the main diagonal of the matrix T is equal to zero.

We present a second way for proving this result. In the case of $T_{v} \neq 0$ for every $v \in\{0,1,2,3\}$, we obtain from equations (7.20) that $\alpha_{k i}=0$, for every $k \neq i, k, i=0,1,2,3$. Thus, the matrix T takes the form
$T=z Q\left[\begin{array}{cccc}T_{0} & 0 & 0 & 0 \\ 0 & T_{1} & 0 & 0 \\ 0 & 0 & T_{2} & 0 \\ 0 & 0 & 0 & T_{3}\end{array}\right]$.

From equation (2.13) we take
$T_{0} J_{0}=T_{1} J_{1}=T_{2} J_{2}=T_{3} J_{3}=0$
Since we assumed that
$T_{0} T_{1} T_{2} T_{3} \neq 0$
we obtain
$J_{0}=J_{1}=J_{2}=J_{3}=0$.
Thus, the material particle does not exist.ם
We consider now the three-dimensional vectors

$$
\begin{gather*}
\boldsymbol{\tau}=\left(\begin{array}{l}
\tau_{1} \\
\tau_{2} \\
\tau_{3}
\end{array}\right)=\left(\begin{array}{l}
\alpha_{32} \\
\alpha_{13} \\
\alpha_{21}
\end{array}\right) \tag{7.23}\\
\mathbf{n}=\left(\begin{array}{l}
n_{1} \\
n_{2} \\
n_{3}
\end{array}\right)=\left(\begin{array}{l}
\alpha_{01} \\
\alpha_{02} \\
\alpha_{03}
\end{array}\right) . \tag{7.24}
\end{gather*}
$$

In the case of the T matrices with $\boldsymbol{\tau} \neq \mathbf{0}$ and $\mathbf{n} \neq \mathbf{0}$, we define the vector $\boldsymbol{\mu} \neq \mathbf{0}$ from equation

$$
\boldsymbol{\mu}=\left(\begin{array}{c}
\mu_{1} \tag{7.25}\\
\mu_{2} \\
\mu_{3}
\end{array}\right)=\left(\begin{array}{c}
\alpha_{02} \alpha_{21}-\alpha_{03} \alpha_{13} \\
\alpha_{03} \alpha_{32}-\alpha_{01} \alpha_{21} \\
\alpha_{01} \alpha_{13}-\alpha_{02} \alpha_{32}
\end{array}\right) .
$$

Combining equations (5.1), (5.2) with equations (7.23) and (7.24) we obtain

$$
\begin{align*}
& \boldsymbol{\xi}=i c \Psi \mathbf{n} \tag{7.26}\\
& \boldsymbol{\omega}=\Psi \boldsymbol{\tau} . \tag{7.27}
\end{align*}
$$

The field ξ is parallel to the vector \mathbf{n} and the field $\boldsymbol{\omega}$ is parallel to the vector $\boldsymbol{\tau}$. Moreover the only variable quantity of the field (ξ, ω) is the function $\Psi=\Psi\left(x_{0}, x_{1}, x_{2}, x_{3}\right)$.

For every vector
$\boldsymbol{\alpha}=\left(\begin{array}{l}\alpha_{1} \\ \alpha_{2} \\ \alpha_{3}\end{array}\right)$
which is determined by the physical quantities of the TSV, we define the physical quantity $\|\boldsymbol{\alpha}\|=\left(\boldsymbol{\alpha}^{T} \boldsymbol{\alpha}\right)^{\frac{1}{2}}=\left(\alpha_{1}^{2}+\alpha_{2}^{2}+\alpha_{3}^{2}\right)^{\frac{1}{2}}$.

Here, the matrix $\boldsymbol{\alpha}^{T}$ is the transposed matrix of the column matrix $\boldsymbol{\alpha}$.
From equations (7.23) and (7.24) we obtain
$\boldsymbol{\tau} \cdot \mathbf{n}=\alpha_{01} \alpha_{32}+\alpha_{02} \alpha_{13}+\alpha_{03} \alpha_{21}$.
Also, from equation (4.8) we have
$\boldsymbol{\tau} \cdot \mathbf{n}=0$.
Therefore, the vectors τ and \mathbf{n} are perpendicular to each other. Considering also equation (7.25), we see that the triple of the vectors $\{\boldsymbol{\mu}, \mathbf{n}, \boldsymbol{\tau}\}$ forms a right-handed vector basis.

From equation (7.13) we have
$\alpha_{01}^{2}+\alpha_{02}^{2}+\alpha_{03}^{2}=-\left(\alpha_{32}^{2}+\alpha_{13}^{2}+\alpha_{21}^{2}\right)$
and with equations (7.23), (7.24), and using the notation of equation (7.28), we obtain
$\|\mathbf{n}\|^{2}=-\|\boldsymbol{\tau}\|^{2}$
and finally we obtain
$\|\mathbf{n}\|= \pm i\|\boldsymbol{\tau}\|$.

From equation (7.25) we have
$\boldsymbol{\mu}^{2}=(\mathbf{n} \times \boldsymbol{\tau})^{2}$
and since the vectors τ and \mathbf{n} are perpendicular to each other, we obtain from equation (7.29) that
$\boldsymbol{\mu}^{2}=\mathbf{n}^{2} \boldsymbol{\tau}^{2}$
and using the notation of equation (7.28) we have
$\|\boldsymbol{\mu}\|^{2}=\|\mathbf{n}\|^{2}\|\boldsymbol{\tau}\|^{2}$
$\|\boldsymbol{\mu}\|= \pm\|\mathbf{n}| | \mid \boldsymbol{\tau}\|$
and from equation (7.30) we take
$\|\boldsymbol{\mu}\|= \pm i\|\mathbf{n}\|^{2}=\mp\|\boldsymbol{\tau}\|^{2}$.
In the case of the T matrices, where $\|\mathbf{n}\| \neq \mathbf{0}$, and from equation (7.31), it follows that $\|\boldsymbol{\tau}\| \neq 0,\|\boldsymbol{\mu}\| \neq 0$. In these cases we can define the set of unit vectors $\left\{\boldsymbol{\varepsilon}_{1}, \boldsymbol{\varepsilon}_{2}, \boldsymbol{\varepsilon}_{3}\right\}$, given by
$\boldsymbol{\varepsilon}_{1}=\frac{\boldsymbol{\mu}}{\|\boldsymbol{\mu}\|}$
$\boldsymbol{\varepsilon}_{2}=\frac{\mathbf{n}}{\|\mathbf{n}\|}$.
$\varepsilon_{3}=\frac{\tau}{\|\tau\|}$
$\|\mathbf{n}\| \neq 0$

The triple of vectors $\left\{\boldsymbol{\varepsilon}_{1}, \boldsymbol{\varepsilon}_{2}, \boldsymbol{\varepsilon}_{3}\right\}$ forms a right-handed orthonormal vector basis.

In the cases of the T matrices with $\boldsymbol{\tau} \neq \mathbf{0}$, we define with Π the plane perpendicular to the vector $\boldsymbol{\tau} \neq \mathbf{0}$. In the cases where moreover $\mathbf{n} \neq \mathbf{0}$, we obtain from equation (7.25) that $\boldsymbol{\mu} \neq \boldsymbol{0}$. In these cases the vectors \mathbf{n} and $\boldsymbol{\mu}$ are perpendicular to the vector $\boldsymbol{\tau}$, as implied by equations (7.25) and (7.29). Therefore, the vectors \mathbf{n} and $\boldsymbol{\mu}$ belong to the plane Π, and they also form an orthogonal basis of this plane. We note that the vectors of the TSV, which may belong to the plane Π, are given as a linear combination of the vectors \mathbf{n} and μ. Therefore, the condition for $\boldsymbol{\tau} \neq \mathbf{0}$ is not sufficient, in order for the plane Π to acquire a physical meaning. Also, we note that because of equation (7.13), the plane Π, when it is defined, is not a vector subspace of \mathbb{R}^{3}.

We now prove theorem 7.4:

Theorem 7.4. 'In the case of the T matrices with $\boldsymbol{\tau} \neq \mathbf{0}$ and $\mathbf{n} \neq \mathbf{0}$ and $\boldsymbol{\tau} \neq \pm \mathbf{n} \neq \mathbf{0}$, the vectors
$\mathbf{J}, \mathbf{P}, \mathbf{C}, \mathbf{j}, \nabla \Psi$ belong to the same plane $\Pi .{ }^{\prime \prime}$

Proof. From equations (4.6), for $(i, v, k)=(1,3,2)$, we obtain
$c_{1} \alpha_{32}+c_{2} \alpha_{13}+c_{3} \alpha_{21}=0$
$J_{1} \alpha_{32}+J_{2} \alpha_{13}+J_{3} \alpha_{21}=0$
$P_{1} \alpha_{32}+P_{2} \alpha_{13}+P_{3} \alpha_{21}=0$
and from equations (5.8),(5.9) and (7.23) we get
$\boldsymbol{\tau} \cdot \mathbf{C}=0$
$\boldsymbol{\tau} \cdot \mathbf{J}=0$
$\boldsymbol{\tau} \cdot \mathbf{P}=0$
where
$\mathbf{C}=\mathbf{J}+\mathbf{P}$
as implied by equation (3.5). From equation (7.33) we conclude that the vectors $\mathbf{C}, \mathbf{J}, \mathbf{P}$, being perpendicular to vector τ, belong to the plane Π. From equation (5.3) and equations (5.8) and (5.9) we obtain
$\nabla \Psi=\frac{b}{\hbar} \Psi(\lambda \mathbf{J}+\mu \mathbf{P})$.

Therefore, the vector $\nabla \Psi$, as a linear combination of the vectors \mathbf{J}, \mathbf{P}, belongs to the plane Π. By developing the terms of equation (7.17), the first obtained equation is
$\alpha_{32} j_{1}+\alpha_{13} j_{2}+\alpha_{21} j_{3}=0$
and using equation (7.23) we have

$$
\begin{equation*}
\boldsymbol{\tau} \cdot \mathbf{j}=0 . \tag{7.35}
\end{equation*}
$$

Therefore, the vector \mathbf{j}, being perpendicular to the vector $\boldsymbol{\tau}$, belongs to the plane Π. The vectors $\mathbf{J}, \mathbf{P}, \mathbf{C}, \mathbf{j}, \nabla \Psi$ vary according to the equations of the TSV, while staying on the plane П.ם

From this study we can obtain a method about the determination of the four-vectors $\mathbf{J}, \mathbf{P}, \mathbf{C}$, as well as for the rest masses $m_{0}, \frac{E_{0}}{c^{2}}, M_{0}$. This method is applied in the case the matrix M does not vanish, that is $M \neq 0$. We shall refer to this method as the $S V-M$ method.

The steps of the $S V-M$ method:

Step 1. We choose external symmetry matrix T we want to study.
Step 2. We apply Theorem 7.3.
Step 3. We use equation (7.13).
Step 4. We use equation (2.13), or the equivalent equations (7.2).
Step 5. We use the second of the set of equations (4.6).
Step 6. We use the first of the set of equations (7.14).
Step 7. We use the first of the set of equations (4.6).

Step 8. We use equation (3.5).
Step 6 simplifies the execution of operations in some matrices. It is not necessary though since it's overlapped by step 7 .

As an example, we apply this method on the matrix T :
$T=z Q\left[\begin{array}{cccc}T_{0} & \alpha_{01} & 0 & 0 \\ -\alpha_{01} & T_{1} & -\alpha_{21} & 0 \\ 0 & \alpha_{21} & T_{2} & 0 \\ 0 & 0 & 0 & T_{3}\end{array}\right]$
where, $\alpha_{01} \alpha_{21} \neq 0$.

From equations (7.20), and since $\alpha_{01} \neq 0$ and $\alpha_{21} \neq 0$, we have $T_{0}=T_{2}=T_{3}=0$, and the matrix (7.36) becomes

$$
T=z Q\left[\begin{array}{cccc}
0 & \alpha_{01} & 0 & 0 \tag{7.37}\\
-\alpha_{01} & T_{1} & -\alpha_{21} & 0 \\
0 & \alpha_{21} & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right] .
$$

For $T_{1} \neq 0$, according to corollary 6.2 the portion of spacetime occupied by the generalized particle is curved. Furthermore, the second term of the second part of the second equation in the set of equations (4.21) is nonzero.

In the case the portion of spactime occupied by the generalized particle is flat, we obtain from corollary 6.1 that $T_{1}=0$. Therefore, $T_{0}=T_{1}=T_{2}=T_{3}=0$. In this case, and from equation (4.11), we obtain $\Lambda=0$, and the second term of the second part of equation (4.19) vanishes.

From equation (7.13) we take

$$
\begin{align*}
& \alpha^{2}=\alpha_{01}^{2}+\alpha_{21}^{2}=0 \\
& \alpha_{21}= \pm i \alpha_{01} . \tag{7.38}
\end{align*}
$$

From equations (7.2) we obtain

$$
\begin{aligned}
& J_{1} \alpha_{01}=0 \\
& -J_{0} \alpha_{01}+J_{1} T_{1}-J_{2} \alpha_{21}=0 \\
& J_{1} \alpha_{21}=0
\end{aligned}
$$

and since $\alpha_{01} \alpha_{21} \neq 0$, we have that

$$
\begin{align*}
& J_{1}=0 \\
& J_{2}=-\frac{\alpha_{01}}{\alpha_{21}} J_{0} \tag{7.39}
\end{align*}
$$

From the second of equations (4.6), for $(i, v, k)=(3,0,1)$ we have
$J_{3} \alpha_{01}+J_{1} \alpha_{30}+J_{0} \alpha_{13}=0$
and since
$\alpha_{01} \neq 0, \alpha_{30}=-\alpha_{03}=0, \alpha_{13}=0$
we obtain
$J_{3}=0$.

From equations (7.39) and (7.40), and from equation (2.4), we get the four-vector J
$J=J_{0}\left[\begin{array}{c}1 \\ 0 \\ -\frac{\alpha_{01}}{\alpha_{21}} \\ 0\end{array}\right]=J_{0}\left[\begin{array}{c}1 \\ 0 \\ \pm i \\ 0\end{array}\right]=\frac{W}{c}\left[\begin{array}{c}i \\ 0 \\ \mp 1 \\ 0\end{array}\right]$.
For the second equality in equation (7.41) we applied the second equation of equations (7.38).

From equations (4.29) and (7.37) we have
$M=\left[\begin{array}{cccc}0 & \alpha_{01} & 0 & 0 \\ -\alpha_{01} & 0 & -\alpha_{21} & 0 \\ 0 & \alpha_{21} & 0 & 0 \\ 0 & 0 & 0 & 0\end{array}\right]$
$M^{2}=\left[\begin{array}{cccc}-\alpha_{01}^{2} & 0 & -\alpha_{01} \alpha_{21} & 0 \\ 0 & 0 & 0 & 0 \\ -\alpha_{01} \alpha_{21} & 0 & -\alpha_{21}^{2} & 0 \\ 0 & 0 & 0 & 0\end{array}\right]$.
From the first of equations (7.14) we see that
$M^{2} C=0$
and with equations (3.5) and (7.43) we obtain
$-a_{01}^{2} c_{0}-a_{01} a_{21} c_{2}=0$
$-a_{01} a_{21} c_{0}-a_{21}^{2} c_{2}=0$
and taking into account that $\alpha_{01} \alpha_{21} \neq 0$, we obtain
$c_{2}=-\frac{\alpha_{01}}{\alpha_{21}} c_{0}$.

From the first of the equations (4.6), for $(i, v, k)=(0,1,2),(0,1,3),(0,2,3),(1,2,3)$ we have
$c_{0} \alpha_{12}+c_{2} \alpha_{01}+c_{1} \alpha_{20}=0$
$c_{0} \alpha_{13}+c_{3} \alpha_{01}+c_{1} \alpha_{30}=0$
$c_{0} \alpha_{23}+c_{3} \alpha_{02}+c_{2} \alpha_{30}=0$
$c_{1} \alpha_{23}+c_{3} \alpha_{12}+c_{2} \alpha_{31}=0$
and taking into account the zero elements of the matrix T we have
$-c_{0} \alpha_{21}+c_{2} \alpha_{01}=0$
$c_{3} \alpha_{01}=0$
$c_{3} \alpha_{12}=0$
and since $\alpha_{01} \alpha_{21} \neq 0$ we obtain
$c_{2}=\frac{\alpha_{21}}{\alpha_{01}} c_{0}$.
$c_{3}=0$
The first of equations (7.45) is equation (7.44), because of equation (7.38). From equations (3.5) and (7.38), (7.45) we obtain the four-vector C

$$
C=\left[\begin{array}{c}
c_{0} \tag{7.46}\\
c_{1} \\
\frac{\alpha_{21}}{\alpha_{01}} c_{0} \\
0
\end{array}\right]=\left[\begin{array}{c}
c_{0} \\
c_{1} \\
\pm i c_{0} \\
0
\end{array}\right] .
$$

Combining equation (3.5)
$P=C-J$
with equations (7.41) and (7.46) we obtain the four-vector P
$P=\left[\begin{array}{c}c_{0}-J_{0} \\ c_{1} \\ \mp i\left(c_{0}-J_{0}\right) \\ 0\end{array}\right]$.
After having determined the four-vectors J, P, C, we can calculate the rest masses $m_{0}, \frac{E_{0}}{c^{2}}, M_{0}$. From equations (2.7) and (7.41) we get
$m_{0}=0$.
From equations (2.8) and (7.47) we have

$$
\begin{equation*}
E_{0}= \pm i c c_{1} . \tag{7.49}
\end{equation*}
$$

From equations (3.6) and (7.46) we also have
$c_{1}= \pm i M_{0} c$.

The calculation of the four-vector j of the current density of the conserved physical quantities q is done from corollary 7.2. This method is applied for $M \neq 0$, and is performed in two steps. We shall refer to this method as the $S V_{q}$-method.

The steps of the $S V_{q}$ - method:

Step 1. We use equation (7.17), or the equivalent equation:

$$
\begin{align*}
& j_{i} \alpha_{\nu k}+j_{k} \alpha_{i v}+j_{v} \alpha_{k i}=0 \tag{7.51}\\
& i \neq v, v \neq k, k \neq i, i, v, \mathrm{k}=0,1,2,3
\end{align*}
$$

Step 2. We use equation (5.7).
We apply the $S V_{q}$-method on the matrix T given by equation (7.37). From equation (7.51), for $(i, v, k)=(0,1,2),(0,1,3),(0,2,3),(1,2,3)$ we have
$j_{0} \alpha_{12}+j_{2} \alpha_{01}+j_{1} \alpha_{20}=0$
$j_{0} \alpha_{13}+j_{3} \alpha_{01}+j_{1} \alpha_{30}=0$
$j_{0} \alpha_{23}+j_{3} \alpha_{02}+j_{2} \alpha_{30}=0$
$j_{1} \alpha_{23}+j_{3} \alpha_{12}+j_{2} \alpha_{31}=0$
and taking into account the elements of the matrix T we have
$j_{0} \alpha_{12}+j_{2} \alpha_{01}=0$
$j_{3} \alpha_{01}=0$
$j_{3} \alpha_{12}=0$
and since $\alpha_{01} \neq 0, \alpha_{12}=-\alpha_{21} \neq 0$, we get
$j_{2}=\frac{\alpha_{21}}{\alpha_{01}} j_{0}$.
$j_{3}=0$
The matrix M is given by equation (7.42). Thus, from equations (4.27) and (7.16) we have
$j_{1} \alpha_{01}=0$
$-j_{0} \alpha_{01}-j_{2} \alpha_{21}=0$
$j_{1} \alpha_{21}=0$
and since $\alpha_{01} \neq 0$ and $\alpha_{21} \neq 0$, we have
$j_{1}=0$
$j_{2}=-\frac{\alpha_{01}}{\alpha_{21}} j_{0}$.
The first of the equations (7.52) and the second of the equations (7.53) are identical due to equations (7.38). From equations (7.52) and (7.53) we obtain the four-vector j
$j=j_{0}\left[\begin{array}{c}1 \\ 0 \\ \frac{\alpha_{21}}{\alpha_{01}} \\ 0\end{array}\right]=j_{0}\left[\begin{array}{c}1 \\ 0 \\ \pm i \\ 0\end{array}\right]=\rho c\left[\begin{array}{c}i \\ 0 \\ \mp 1 \\ 0\end{array}\right]$.
We now summarize the obtained information for the generalized particle of the matrix T of equation (7.36):

$$
\begin{align*}
& J=J_{0}\left[\begin{array}{c}
1 \\
0 \\
\pm i \\
0
\end{array}\right] \quad P=\left[\begin{array}{c}
c_{0}-J_{0} \\
c_{1} \\
\mp i\left(c_{0}-J_{0}\right) \\
0
\end{array}\right] \quad C=\left[\begin{array}{c}
c_{0} \\
c_{1} \\
\pm i c_{0} \\
0
\end{array}\right] \quad j=j_{0}\left[\begin{array}{c}
1 \\
0 \\
\mp i \\
0
\end{array}\right] \tag{7.55}\\
& m_{0}=0, c_{1}= \pm i M_{0} c, E_{0}= \pm i c c_{1}= \pm M_{0} c^{2} .
\end{align*}
$$

$T_{1} \neq 0 \Rightarrow$ curved spacetime
flat spacetime $\Rightarrow T_{1}=0$.
From equations (5.7) and (7.41), (7.47), (7.54) we have
$j_{0}=-\frac{\sigma c^{2} b}{\hbar} \Psi \mu c_{1} \alpha_{01}= \pm \frac{i \sigma c^{2} b}{\hbar} \Psi \mu c_{1} \alpha_{21}$
and with equation (7.54) we obtain
$j=-\frac{\sigma c^{2} b c_{1}}{\hbar} \mu \Psi\left[\begin{array}{c}\alpha_{01} \\ 0 \\ \alpha_{21} \\ 0\end{array}\right]$
for the matrix T of our study. Also, from equations (5.17) and (7.54) we obtain

$$
\begin{align*}
& \frac{\partial j_{0}}{\partial x_{1}}=-\sigma c^{2} F \alpha_{01}= \pm i \sigma c^{2} F \alpha_{21} \\
& \frac{\partial j_{0}}{\partial x_{2}}= \pm i \frac{\partial j_{0}}{\partial x_{0}} \tag{7.58}\\
& \frac{\partial j_{0}}{\partial x_{3}}=0 \\
& F=\nabla^{2} \Psi+\frac{\partial^{2} \Psi}{\partial x_{0}^{2}}
\end{align*}
$$

Equations (7.57) and (7.58) correlate the function Ψ with the four-vector j of the current density of the conserved physical quantities q. These equations hold for the matrix T of equation (7.37).

The presented method about the study of the generalized particle is possibly the simplest, but surely not the only one. The TSV stems from one equation which nonetheless generates an extremely complex network of equations. We present one method, which serves as a test for the self-consistency of the TSV. With the same method we can check for calculational errors of the obtained equations, as we proceed from one set of equations of the TSV into another set. We shall refer to this method as the $S V-T$-method (Selfvariations Test).

The internal structure of every generalized particle depends on the corresponding matrix T. The $S V-T$ method consists of the following steps:

The $S V-T$ - Method:

We choose an equation $\left(E_{1}\right)$, which holds for the matrix T, and for which there exist at least two different components of the four-vector J, or one component and the rest mass m_{0}. By differentiating equation $\left(E_{1}\right)$ with respect to $x_{k}, k=0,1,2,3$ we obtain a second equation $\left(E_{2}\right)$.

With the help of equation (2.10)

$$
\begin{aligned}
& \frac{\partial J_{i}}{\partial x_{k}}=\frac{b}{\hbar} P_{k} J_{i}+\lambda_{k i}=\frac{b}{\hbar} P_{k} J_{i}+z Q \alpha_{k i} \\
& k, i=0,1,2,3
\end{aligned}
$$

the constants $\alpha_{k i}, k, i=0,1,2,3$ are introduced into equation $\left(E_{2}\right)$. Equation $\left(E_{2}\right)$ has to be compatible with the elements of the matrix T. In the case equation $\left(E_{1}\right)$ contains the rest mass m_{0} we apply equation (2.6)
$\frac{\partial m_{0}}{\partial x_{k}}=\frac{b}{\hbar} P_{k} J_{i} m_{0}, k=0,1,2,3$.
We apply the method for the matrix T of equation (7.37). From equation (7.41) we obtain

$$
\begin{equation*}
J_{2}= \pm i J_{0} . \tag{7.59}
\end{equation*}
$$

This equation contains the components J_{0}, J_{2} of the four-vector J. We differentiate equation (7.59) with respect to $x_{k}, k=0,1,2,3$, to obtain
$\frac{b}{\hbar} P_{k} J_{2}+z Q \alpha_{k 2}= \pm i\left(\frac{b}{\hbar} P_{k} J_{0}+z Q \alpha_{k 0}\right)$
and using equation (7.59) we have
$z Q \alpha_{k 2}= \pm i z Q \alpha_{k 0}$
and since $z Q \neq 0$ we get
$\alpha_{k 2}= \pm i \alpha_{k 0}, k=0,1,2,3$.
In equation (7.60) we insert successively $k=0,1,2,3$

For $k=0$ we obtain
$\alpha_{02}= \pm i \alpha_{00}= \pm i T_{0}$
which holds, since $\alpha_{02}=0, T_{0}=0$.

For $k=1$ we get
$\alpha_{12}= \pm i \alpha_{10}$
and since $\alpha_{10}=-\alpha_{01}$, we get
$\alpha_{12}= \pm i \alpha_{01}$
$\alpha_{01}^{2}+\alpha_{21}^{2}=0$
which are equations (7.38).
For $k=2$ we obtain
$a_{22}= \pm i a_{20}$
$T_{2}= \pm i a_{20}$
which holds for the matrix T, since $a_{02}=0, T_{2}=0$.
For $k=3$ we have

$$
\begin{aligned}
& \alpha_{32}= \pm i \alpha_{30} \\
& \alpha_{32}=\mp i \alpha_{03}
\end{aligned}
$$

which holds for the matrix T, since $\alpha_{32}=0, \alpha_{03}=0$.
For the matrix we study it holds that $\boldsymbol{\tau} \neq \mathbf{0}$ and $\mathbf{n} \neq \mathbf{0}$ and $\boldsymbol{\tau} \neq \pm \mathbf{n} \neq \mathbf{0}$, and therefore plane Π is defined. From equations (7.32) we have
$\boldsymbol{\varepsilon}_{1}=\left(\begin{array}{l}0 \\ 1 \\ 0\end{array}\right)$
$\boldsymbol{\varepsilon}_{2}=\left(\begin{array}{l}i \\ 0 \\ 0\end{array}\right)$.
$\boldsymbol{\varepsilon}_{3}=\left(\begin{array}{l}0 \\ 0 \\ i\end{array}\right)$

From equations (7.46) and (7.61) we have
$\mathbf{C}=\left(\begin{array}{c}c_{1} \\ \pm i c_{0} \\ 0\end{array}\right)= \pm i c_{0} \boldsymbol{\varepsilon}_{1}+c_{1} \boldsymbol{\varepsilon}_{2}$.

Equations (7.62) contains the components $\left(\pm i c_{0}, c_{1}\right)$ of the vector \mathbf{C} with respect to the vector basis $\left(\boldsymbol{\varepsilon}_{1}, \boldsymbol{\varepsilon}_{2}\right)$ of the Π-plane. Considering that the vectors $\boldsymbol{\varepsilon}_{1}, \boldsymbol{\varepsilon}_{2}$ are perpendicular to each other, we obtain from equation (7.62)
$\boldsymbol{\varepsilon}_{1} \cdot \mathbf{C}= \pm i c_{0}$
$\boldsymbol{\varepsilon}_{2} \cdot \mathbf{C}=i c_{1}$
and from equations (7.49) and (7.50) we have

$$
\begin{align*}
& \boldsymbol{\varepsilon}_{1} \cdot \mathbf{C}= \pm i c_{0} \\
& \boldsymbol{\varepsilon}_{2} \cdot \mathbf{C}= \pm M_{0}= \pm \frac{E_{0}}{c^{2}}= \pm \frac{i c_{1}}{c} \tag{7.63}
\end{align*}
$$

The material particle exists for $J \neq 0$, hence from equation (7.41) we have $J_{0} \neq 0$.

From the equations (7.41) and (7.46) it follows that for $c_{1} \neq 0$ the 4 -vectors J and C are parallel, which is impossible in symmetry for the matrix T of our study. Therefore it is
$c_{1} \neq 0$
for the symmetry of equation (7.37).
From eq. (3.4) we have
$\lambda_{k i}=\frac{b}{2 \hbar}\left(c_{i} J_{k}-c_{k} J_{i}\right), k, i=0,1,2,3$
and with eq. (4.4) we have
$z Q \alpha_{k i}=\frac{b}{2 \hbar}\left(c_{i} J_{k}-c_{k} J_{i}\right), k, i=0,1,2,3$
For $k=0, i=1$ in eq. (7.66) we have
$z Q a_{01}=\frac{b}{2 \hbar}\left(c_{1} J_{0}-c_{0} J_{1}\right)$
and because of $J_{1}=0$ according to eq. (7.41) we have

$$
\begin{equation*}
J_{0}=\frac{2 \hbar}{b c_{1}} z Q \alpha_{01} . \tag{7.67}
\end{equation*}
$$

Similarly for $k=2, i=1$ in eq. (7.66) we have

$$
\begin{equation*}
J_{2}=\frac{2 \hbar}{b c_{1}} z Q \alpha_{21} . \tag{7.68}
\end{equation*}
$$

Considering that $J_{1}=J_{3}=0$ according to eq. (7.41), from eqs. (7.67) and (7.68) we have $J=\frac{2 \hbar}{b c_{1}} z Q\left[\begin{array}{c}\alpha_{01} \\ 0 \\ \alpha_{21} \\ 0\end{array}\right]$.

Eq. (7.69) expresses the contribution of the charge Q to the 4 -vector of momentum of the material particle.

From eqs. now (3.5), (7.46) and (7.69) we have

$$
P=\left[\begin{array}{c}
c_{0} \tag{7.70}\\
c_{1} \\
\pm i c_{0} \\
0
\end{array}\right]-\frac{2 \hbar}{b c_{1}} z Q\left[\begin{array}{c}
\alpha_{01} \\
0 \\
\alpha_{21} \\
0
\end{array}\right] .
$$

Eq. (7.70) expresses the contribution of the charge Q to the 4 -vector of momentum P for the symmetry of eq. (7.37) we have studied.

From eqs. (2.12) and (4.4),(4.10) we have
$T=z Q\left[\begin{array}{cccc}T_{0} & \alpha_{01} & \alpha_{02} & \alpha_{03} \\ -\alpha_{01} & T_{1} & -\alpha_{21} & \alpha_{13} \\ -\alpha_{02} & \alpha_{21} & T_{2} & -\alpha_{32} \\ -\alpha_{03} & -\alpha_{13} & \alpha_{32} & T_{3}\end{array}\right]$.
Eq. (7.71) gives the external symmetry matrices as a function of the constants $\alpha_{k i}, k \neq i, k, i=0,1,2,3$ and the physical quantities $z Q$ and $T_{k}=\alpha_{k k}, k=0,1,2,3$.

The physical quantities q appear in the part of spacetime where the USVI prevails, and as they are conserved they have the characteristics of a material particle. The mathematical expression of the 4 -vector of the current density of the conserved physical quantities q is an important issue for the TSV.

The $S V_{q}$ method gives a mathematical expression of the 4 -vector j, correlating the components of the 4 -vector. The expression for the matrix T of eq. (7.37) we have studied is given by eq. (7.54). Eq. (5.17) correlates the 4 -vector j with the wave function Ψ. The correlation for the matrix T of eq. (7.37) we have studied is given by eq. (7.57). We observe that eq. (7.57) does not contain the degree of freedom λ of eq. (5.17), but only the degree of freedom μ. This is not a random fact valid for the matrix we have studied, but is predicted by the next theorem:

Theorem 7.5

1. ''The 4 -vector j of the current density of the conserved physical quantities q of the generalized particle is given by the eq.
$j=-\frac{\sigma b c^{2}}{\hbar} \Psi((\mu-\lambda) \Lambda J+\mu M C)$
where λ and μ the two degrees of freedom of the TSV and
$\Lambda=\left[\begin{array}{cccc}T_{0} & 0 & 0 & 0 \\ 0 & T_{1} & 0 & 0 \\ 0 & 0 & T_{2} & 0 \\ 0 & 0 & 0 & T_{3}\end{array}\right]$
$M=\left[\begin{array}{cccc}0 & \alpha_{01} & \alpha_{02} & \alpha_{03} \\ -\alpha_{01} & 0 & -\alpha_{21} & \alpha_{13} \\ -\alpha_{02} & \alpha_{21} & 0 & -\alpha_{32} \\ -\alpha_{03} & -\alpha_{13} & \alpha_{32} & 0\end{array}\right]$
the fundamental matrices Λ and M of the TSV.
2. $\Lambda J=0 \Rightarrow j=-\frac{\sigma b c^{2}}{\hbar} \mu \Psi M C .$.

Proof. From eq. (3.5) we have
$P=C-J$
and replacing the momentum P in eq. (5.7) we have
$j=-\frac{\sigma c^{2} b}{\hbar} \Psi M(\lambda J+\mu(C-J))$
$j=-\frac{\sigma c^{2} b}{\hbar} \Psi M((\lambda-\mu) J+\mu C)$
$j=-\frac{\sigma c^{2} b}{\hbar} \Psi((\lambda-\mu) M J+\mu M C)$.
From eqs. (7.71) and (4.11), (4.28) we have
$T=z Q(M+\Lambda)$
and from eq. (2.13) we have
$z Q(M+\Lambda) J=0$
and since $z Q \neq 0$ we have
$(M+\Lambda) J=0$
$M J+\Lambda J=0$
and finally we get
$M J=-\Lambda J$

From eqs. (7.74) and (7.75) we get eq. (7.72). The eq. (7.73) follows from the eq. (7.72) for $\Lambda J=0$. ㅁ

As we shall see next the relation $\Lambda J=0$ is valid for a large number of external symmetry matrices. For these matrices Nr. 2. of theorem 7.5 is valid.

From eq. (7.37) we have

$$
\Lambda=\left[\begin{array}{cccc}
0 & 0 & 0 & 0 \\
0 & T_{1} & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

and with eq. (7.41) we have $\Lambda J=0$ for the symmetry we have studied. Next from eqs. (7.42) and (7.46), eq. (7.57) follows from the relation (7.73).

We now prove the following corollary of theorem 7.5:
Corollary 7.5. 'In flat spacetime the 4 -vector j of the current density of the conserved physical quantities q of the generalized particle is given by eq. $j=-\frac{\sigma b c^{2}}{\hbar} \mu \Psi M C .$.

Proof. From corollary 6.1 and eq. (4.11) it follows that in flat spacetime we have $\Lambda=0$ and therefore Nr. 2. of theorem 7.5 is true.

The next theorem 7.6 relates the four-vector J with the elements of the main diagonal of the external symmetry matrix T.

Theorem 7.6. ' 'For every external symmetry matrix T it holds that
$T_{0} J_{0}^{2}+T_{1} J_{1}^{2}+T_{2} J_{2}^{2}+T_{3} J_{3}^{2}=0 .^{\prime \prime}$
Proof. Since the material particle exists, at least one component of the four-vector J is nonzero. We prove the theorem for $J_{0} \neq 0$. The proof for $J_{i} \neq 0, i=1,2,3$ follows similar lines. For $J_{0} \neq 0$, we obtain from equations (7.2)
$J_{0} T_{0}+J_{1} \alpha_{01}+J_{2} \alpha_{02}+J_{3} \alpha_{03}=0$
$\alpha_{01}=\frac{1}{J_{0}}\left(J_{1} T_{1}-J_{2} \alpha_{21}+J_{3} \alpha_{13}\right)$
$\alpha_{02}=\frac{1}{J_{0}}\left(J_{1} \alpha_{21}+J_{2} T_{2}-J_{3} \alpha_{32}\right)$
$\alpha_{03}=\frac{1}{J_{0}}\left(-J_{1} \alpha_{13}+J_{2} \alpha_{32}+J_{3} T\right)$
and replacing the terms $\alpha_{01}, a_{02}, a_{03}$ in the first of equations (7.77) we obtain
$J_{0} T_{0}+\frac{J_{1}}{J_{0}}\left(J_{1} T_{1}-J_{2} \alpha_{21}+J_{3} \alpha_{13}\right)+\frac{J_{2}}{J_{0}}\left(J_{1} \alpha_{21}+J_{2} T_{2}-J_{3} \alpha_{32}\right)$
$+\frac{J_{3}}{J_{0}}\left(-J_{1} \alpha_{13}+J_{2} \alpha_{32}+J_{3} T_{3}\right)=0$
$J_{0}^{2} T_{0}+J_{1}^{2} T_{1}-J_{1} J_{2} \alpha_{21}+J_{1} J_{3} \alpha_{13}+J_{2} J_{1} \alpha_{21}+J_{2}^{2} T_{2}$
$-J_{2} J_{3} \alpha_{32}-J_{3} J_{1} \alpha_{13}+J_{3} J_{2} \alpha_{32}+J_{3}^{2} T_{3}=0$
$T_{0} J_{0}^{2}+T_{1} J_{1}^{2}+T_{2} J_{2}^{2}+T_{3} J_{3}^{2}=0$.
An immediate consequence of theorem 7.6 is corollary 7.6.
Corollary 7.6. 'For every matrix T of the external symmetry the following holds
$\left.\begin{array}{l}T_{0}=T_{1}=T_{2}=T_{3} \\ m_{0} \neq 0\end{array}\right\} \Rightarrow T_{0}=T_{1}=T_{2}=T_{3}=0 .{ }^{\prime \prime}$
Proof. For $T_{0}=T_{1}=T_{2}=T_{3}$ we obtain from equation (7.76)
$T_{0}\left(J_{0}^{2}+J_{1}^{2}+J_{2}^{2}+J_{3}^{2}\right)=0$
and with equation (2.7) we have
$T_{0} m_{0}^{2} c^{2}=0$.
Since $m_{0} \neq 0$, from equation (7.79) we have $T_{0}=0$. Since $T_{0}=T_{1}=T_{2}=T_{3}$, we obtain $T_{0}=T_{1}=T_{2}=T_{3}=0 . \square$

We calculate the number of the external symmetry matrices. This number is determined by theorem 7.3 and corollaries 7.1 and 7.4. Also notice that the external
symmetry matrices are non-zero. Applying simple combinatorial rules, we see that altogether there exist
$N_{1}=14$
external symmetry matrices with $\alpha_{k i}=0$ for every $k \neq i, k, i=0,1,2,3$. These matrices contain non-zero elements only on the main diagonal. The number N_{2}^{\prime} of matrices with two elements, $\alpha_{k i} \neq 0, k \neq i, k, i \in\{0,1,2,3\}$ is
$N_{2}^{\prime}=27$
with three elements it is
$N_{3}^{\prime}=20$
with four elements it is
$N_{4}^{\prime}=15$
with five elements it is
$N_{5}=6$
with six elements it is
$N_{6}=1$.

From equation (2.13) and the second of the equations (4.6) we can prove that some of these matrices give the four-vector $J=0$, thus are rejected. Therefore, we obtain
$N_{1}=14$
$N_{2}=N_{2}^{\prime}-4=24$
$N_{3}=N_{3}^{\prime}-9=11$
$N_{4}=N_{4}^{\prime}-12=3$
$N_{5}=6$
$N_{6}=1$

Thus the total number N_{T} of external symmetry matrices is
$N_{T}=N_{1}+N_{2}+N_{3}+N_{4}+N_{5}+N_{6}=59$.

The matrix $T=0$ is unique
$N_{o}=1$
and according to theorem 3.3 this matrix expresses the internal symmetry. Therefore, the total number of the matrices of the internal and external symmetry predicted by the Law of Selfvariations is
$N_{O T}=N_{O}+N_{T}=60$.
There exist
$N_{J}=N_{T}-16=43$
external symmetry matrices with different four-vectors J, P, C, j.
We now prove for example that the following matrix
$T=z Q\left[\begin{array}{cccc}T_{0} & \alpha_{01} & 0 & \alpha_{03} \\ -\alpha_{01} & T_{1} & -\alpha_{21} & \alpha_{13} \\ 0 & \alpha_{21} & T_{2} & 0 \\ -\alpha_{03} & -\alpha_{13} & 0 & T_{3}\end{array}\right]$
is not an external symmetry matrix. Applying theorem 7.3 for the above matrix we have

$$
T_{0}=T_{1}=T_{2}=T_{3}=0
$$

and therefore it takes the form
$T=z Q\left[\begin{array}{cccc}0 & \alpha_{01} & 0 & \alpha_{03} \\ -\alpha_{01} & 0 & -\alpha_{21} & \alpha_{13} \\ 0 & \alpha_{21} & 0 & 0 \\ -\alpha_{03} & -\alpha_{13} & 0 & 0\end{array}\right]$
and with equation (2.13) we obtain
$J_{1} \alpha_{01}+J_{3} \alpha_{03}=0$
$-J_{0} \alpha_{01}-J_{2} \alpha_{21}+J_{3} \alpha_{13}=0$
$J_{1} \alpha_{21}=0$
$-J_{0} \alpha_{03}-J_{1} \alpha_{13}=0$
and since
$\alpha_{01} \alpha_{03} \alpha_{13} \alpha_{21} \neq 0$
we have
$J_{0}=J_{1}=J_{2}=J_{3}=0$
which is impossible since there is no material particle in this case.
We present now a notation for the matrices of the external symmetry. In every matrix T we use an upper and a lower index. As lower indices we use the pairs $(k, i), k \neq i, k, i=0,1,2,3$ of the constants $\alpha_{k i} \neq 0$, which are nonzero. These indices, which appear always in pairs, are placed in the order of the following constants: $\alpha_{01}, \alpha_{02}, \alpha_{03}, \alpha_{32}, \alpha_{13}, \alpha_{21}$, which are nonzero. As upper indices we use the indices of the nonzero elements of the main diagonal, in the following order: $T_{0}, T_{1}, T_{2}, T_{3}$. For example, the matrix T given in equation (7.37) is denoted as T_{0121}^{1}.

With this notation, the $N_{T}=59$ external symmetry matrices are given from the following six sets Ω :
$\Omega_{1}=\left\{T^{0}, T^{1}, T^{2}, T^{3}, T^{01}, T^{02}, T^{03}, T^{12}, T^{13}, T^{23}, T^{012}, T^{013}, T^{023}, T^{123}\right\}$
$\Omega_{2}=\left\{T_{0102}^{0}, T_{0102}, T_{0103}^{0}, T_{0103}, T_{0203}^{0}, T_{0203}, T_{3213}^{3}, T_{3213}, T_{3221}^{2}, T_{3221}, T_{1321}^{1}, T_{1321}\right.$,
$\left.T_{0113}^{1}, T_{0113}, T_{0121}^{1}, T_{0121}, T_{0232}^{2}, T_{0232}, T_{0221}^{2}, T_{0221}, T_{0332}^{3}, T_{0332}, T_{0313}^{3}, T_{0313}\right\}$
$\Omega_{3}=\left\{T_{010203}^{0}, T_{010203}, T_{011321}^{1}, T_{01321}, T_{023221}^{2}, T_{023211}, T_{033213}^{3}, T_{033213}, T_{010221}, T_{010313}, T_{020332}\right\}$.
$\Omega_{4}=\left\{T_{01023213}, T_{01033221}, T_{02031321}\right\}$
$\Omega_{5}=\left\{T_{0102033221}, T_{0102032213}, T_{0102031321}, T_{0102321321}, T_{0103321321}, T_{0203321321}\right\}$
$\Omega_{6}=\left\{T_{010203321321}\right\}$

The internal symmetry expresses the spontaneous isotropic STEM emission from a material particle because of the selfvariations. The external symmetry emerges when the
material particle interacts via the USVI with other material particles and this is equivalent with the destruction of the spacetime isotropy. The rest mass of the material particle and of the STEM in the first case, as well as the rest mass which stems from the USVI in the second case, is given by the eqs. (2.7) and (2.8). The eqs. (7.69) and (7.70)

$$
\begin{align*}
& J=J(Q)=\frac{2 \hbar}{b c_{1}} z Q\left[\begin{array}{c}
\alpha_{01} \\
0 \\
\alpha_{21} \\
0
\end{array}\right] \\
& P=P(Q)=\left[\begin{array}{c}
c_{0} \\
c_{1} \\
\pm i c_{0} \\
0
\end{array}\right]-\frac{2 \hbar}{b c_{1}} z Q\left[\begin{array}{c}
\alpha_{01} \\
0 \\
\alpha_{21} \\
0
\end{array}\right] \tag{7.84}
\end{align*}
$$

give the 4 -vectors J and P of USVI, and via eqs. (2.7) and (2.8) we get eqs. (7.48), (7.49) and (7.50). The rest mass of the material particle which emerges as a consequence of the USVI is $m_{0}=0$, while we have $E_{0}= \pm M_{0} c^{2}= \pm i c c_{1} \neq 0$ for the symmetry T_{0121}^{1} we have studied.

In eqs. (7.84) we see the term

$$
J(Q)=\frac{2 \hbar}{b c_{1}} z Q\left[\begin{array}{c}
\alpha_{01} \\
0 \\
\alpha_{21} \\
0
\end{array}\right]
$$

which is responsible for the external symmetry. That is the momentum of the USVI that is added to the momentum of the internal symmetry destroying the parallel property of the 4vectors J, P and C. This term is zero if and only if, it is $Q=0$, i.e. in the case where the material particle does not curry some charge Q of the interaction. For $Q=0$ and from eq. (7.84) it follows that $J=0$ and $P=C$, i.e. internal symmetry arises according to theorem 3.3.

With the knowledge of the external symmetry term we can express the 4-vectors J and P of the particle-STEM system when the material particle is involved in an interaction . From eqs. (3.12), (3.13) and (7.46), (7.69) we get the 4 -vectors J and P as given by the eqs.
$J=\frac{1}{1+\Phi}\left[\begin{array}{c}c_{0} \\ c_{1} \\ \pm i c_{0} \\ 0\end{array}\right]+\frac{2 \hbar}{b c_{1}} z Q\left[\begin{array}{c}\alpha_{01} \\ 0 \\ \alpha_{21} \\ 0\end{array}\right]$
$P=\frac{\Phi}{1+\Phi}\left[\begin{array}{c}c_{0} \\ c_{1} \\ \pm i c_{0} \\ 0\end{array}\right]-\frac{2 \hbar}{b c_{1}} z Q\left[\begin{array}{c}\alpha_{01} \\ 0 \\ \alpha_{21} \\ 0\end{array}\right]$
for the symmetry T_{0121}^{1}.

It is easy to find out via eq. (3.4) that the eqs. (7.85), as well as the eqs. (7.84), correctly give the physical quantities $\lambda_{k i}, k \neq i, k, i=0,1,2,3$. This is expected since internal symmetry cannot affect the physical quantities $\lambda_{k i}, k \neq i, k, i=0,1,2,3$. Thus we can calculate the constants $\alpha_{k i}, k \neq i, k, i=0,1,2,3$ and the physical quantities $T_{k}, k=0,1,2,3$ either through eqs. (7.84) or through eqs. (7.85). The TSV equations are valid for eqs. (7.84) as well as for eqs. (7.85).

For $Q=0$ from eqs. (7.85) we have
$J=\frac{1}{1+\Phi}\left[\begin{array}{c}c_{0} \\ c_{1} \\ \pm i c_{0} \\ 0\end{array}\right]$
$P=\frac{\Phi}{1+\Phi}\left[\begin{array}{c}c_{0} \\ c_{1} \\ \pm i c_{0} \\ 0\end{array}\right]$
that is we get eqs. (3.12) and (3.13), for the symmetry T_{0121}^{1}. Therefore when the material particle does not interact with other material particles, internal symmetry arises in both cases. Also the eqs. (7.85) give the rest mass
$m_{0}= \pm \frac{M_{0}}{1+\Phi}$
of the material particle, as follows from eq. (2.7). The interaction (USVI) in which the material particle is involved does not affect its rest mass, as given by eq. (3.10).

Every external symmetry has its own 4-vector C and its own term $J(Q)$. In every external symmetry there exist equations corresponding to eqs. (7.84)

$$
P(Q)=C-J(Q)
$$

for the USVI particle and to eqs. (7.85)
$J=\frac{1}{1+\Phi} C+J(Q)$
$P=\frac{\Phi}{1+\Phi} C-J(Q)$
for the material particle.
From eqs. (2.7) and (2.8) another important conclusion follows. In internal symmetry the material particle and STEM exchange roles if mutually exchanged

$$
\begin{equation*}
\left(J_{0}, J_{1}, J_{2}, J_{3}, m_{0}, \frac{\partial m_{0}}{\partial x_{k}}=\frac{b}{h} P_{k} m_{0}\right) \longleftrightarrow\left(P_{0}, P_{1}, P_{2}, P_{3}, \frac{E_{0}}{c^{2}}, \frac{\partial E_{0}}{\partial x_{k}}=\frac{b}{h} J_{k} E_{0}\right), k=0,1,2,3 . \tag{7.86}
\end{equation*}
$$

According to theorem 3.3 in internal symmetry the 4 -vectors J and P are parallel which implies that they have the same form. Hence the mutual exchange (7.86) has no consequences in internal symmetry. If we assume that one of the 4 -vectors J and P corresponds to the material particle, then the other corresponds to STEM. This fact can also be seen from eqs. (3.9)-(3.13) of the theorem 3.3, which can be written in an equivalent form.

$$
\begin{align*}
& \Phi^{*}=\frac{1}{\Phi}=\frac{1}{K} \exp \left(\frac{b}{\hbar}\left(c_{0} x_{0}+c_{1} x_{1}+c_{2} x_{2}+c_{3} x_{3}\right)\right)=K^{*} \exp \left(\frac{b}{\hbar}\left(c_{0} x_{0}+c_{1} x_{1}+c_{2} x_{2}+c_{3} x_{3}\right)\right) \\
& m_{0}= \pm \frac{\Phi^{*} M_{0}}{1+\Phi^{*}} \\
& E_{0}= \pm \frac{M_{0}}{1+\Phi^{*}} \tag{7.87}\\
& J_{i}=\frac{\Phi^{*} c_{i}}{1+\Phi^{*}}, i=0,1,2,3 \\
& P_{i}=\frac{c_{i}}{1+\Phi^{*}}, i=0,1,2,3
\end{align*} .
$$

The different appearance of the 4-vectors J and P, and the rest masses m_{0} and $\frac{E_{0}}{c^{2}}$ in theorem 3.3 is superficial. Their form depends on whether we use equation Φ or eq. Φ^{*} to write them.

In external symmetry the mutual exchange (7.86) is not enough for the role exchange of the material particle and STEM. From eqs. (7.85) it follows that the role exchange of the material particle and STEM via eqs. (7.87) can only be realized with the simultaneous change of sign of the charge $Q(Q \rightarrow-Q)$.

Combining eqs. (2.10), (3.5) and (4.4), and with eq. (2.13) we have

$$
\begin{align*}
& \frac{\partial J_{i}}{\partial x_{k}}=\frac{b}{\hbar} P_{k} J_{i}+z Q \alpha_{k i}, k, i=0,1,2,3 \\
& J+P=C \tag{7.88}\\
& T J=0
\end{align*}
$$

It is easy to find out that the TSV can be formulated starting from eqs. (7.88). The eqs. (7.88) give the Selfvariations of the 4 -vectors J and P. They are more general than eq. (1.1) since they give the TSV equations independent of whether the rest mass m_{0} of the material particle is zero or not. We have chosen to start the formulation of the TSV from eq. (1.1), which gives the equations of the TSV for $m_{0} \neq 0$, for the reason that there is no other way to approach eqs. (7.88). Moreover their physical content would not be clear.

The study of the external symmetry matrix $T_{010203321321}$ with elements $\alpha_{k i} \neq 0, \forall k \neq i, k, i \in\{0,1,2,3\}$ is algebraically demanding. Hence we shall finish this paragraph by stating the elements of this matrix:
$T=T_{010203321321}=z Q\left[\begin{array}{cccc}0 & \alpha_{01} & \alpha_{02} & \alpha_{03} \\ -\alpha_{01} & 0 & \mp \alpha_{03} & \pm \alpha_{02} \\ -\alpha_{02} & \pm \alpha_{03} & 0 & \mp \alpha_{01} \\ -\alpha_{03} & \mp \alpha_{02} & \pm \alpha_{01} & 0\end{array}\right]$
$\alpha_{01} \alpha_{02} \alpha_{03} \alpha_{32} \alpha_{13} \alpha_{21} \neq 0$
$\boldsymbol{\tau}= \pm \mathbf{n} \neq \mathbf{0}$
$\alpha_{01}^{2}+\alpha_{02}^{2}+\alpha_{03}^{2}=\alpha_{32}^{2}+\alpha_{13}^{2}+\alpha_{21}^{2}=0$

$$
\begin{align*}
& J=J_{0}\left[\begin{array}{c}
1 \\
0 \\
\pm \frac{a_{03}}{a_{01}} \\
\mp \frac{a_{02}}{a_{01}}
\end{array}\right]+J_{1}\left[\begin{array}{c}
0 \\
1 \\
\frac{a_{02}}{a_{01}} \\
\frac{a_{03}}{a_{01}}
\end{array}\right] \tag{7.92}\\
& C=c_{0}\left[\begin{array}{c}
1 \\
0 \\
\pm \frac{\alpha_{03}}{\alpha_{01}} \\
\mp \frac{\alpha_{02}}{\alpha_{01}}
\end{array}\right]+c_{1}\left[\begin{array}{c}
0 \\
1 \\
\frac{\alpha_{02}}{\alpha_{01}} \\
\frac{\alpha_{03}}{\alpha_{01}}
\end{array}\right] \tag{7.93}\\
& c_{0} J_{1} \neq c_{1} J_{0} \tag{7.94}\\
& P=C-J \tag{7.95}\\
& j=0 \tag{7.96}\\
& m_{0}=\frac{E_{0}}{c^{2}}=M_{0}=0 \tag{7.97}\\
& \nabla^{2} \Psi+\frac{\partial^{2} \Psi}{\partial^{2} x_{0}}=0 \tag{7.98}\\
& \frac{\partial \Psi}{\partial x_{0}}=\frac{b}{\hbar}\left(\lambda J_{0}+\mu P_{0}\right) \Psi \\
& \frac{\partial \Psi}{\partial x_{1}}=\frac{b}{\hbar}\left(\lambda J_{1}+\mu P_{1}\right) \Psi \\
& \frac{\partial \Psi}{\partial x_{2}}= \pm \frac{\alpha_{03}}{\alpha_{01}} \frac{\partial \Psi}{\partial x_{0}}+\frac{\alpha_{02}}{\alpha_{01}} \frac{\partial \Psi}{\partial x_{1}} \tag{7.99}\\
& \frac{\partial \Psi}{\partial x_{3}}=\mp \frac{\alpha_{02}}{\alpha_{01}} \frac{\partial \Psi}{\partial x_{0}}+\frac{\alpha_{03}}{\alpha_{01}} \frac{\partial \Psi}{\partial x_{1}}
\end{align*}
$$

The USVI of this symmetry is given by equation

$$
\frac{d J}{d x_{0}}=\frac{d Q}{Q d x_{0}} J+z Q\left[\begin{array}{cccc}
0 & \alpha_{01} & \alpha_{02} & \alpha_{03} \tag{7.100}\\
-\alpha_{01} & 0 & \mp \alpha_{03} & \pm \alpha_{02} \\
-\alpha_{02} & \pm \alpha_{03} & 0 & \mp \alpha_{01} \\
-\alpha_{03} & \mp \alpha_{02} & \pm \alpha_{01} & 0
\end{array}\right]\left[\begin{array}{c}
-1 \\
i u_{1} \\
c \\
\frac{i u_{2}}{c} \\
\frac{i u_{3}}{c}
\end{array}\right]
$$

Using as a base the TSV theorems we can study all external symmetry matrices. In the following paragraphs we present the detailed study of two other external symmetry matrices.

8. The Symmetry $\mathbf{T}=\mathbf{z Q \Lambda}$

In this paragraph we study the T matrices, which have all their elements equal to zero, except the elements on the main diagonal. Thus we study matrices of the form
$T=z Q \Lambda=z Q\left[\begin{array}{cccc}T_{0} & 0 & 0 & 0 \\ 0 & T_{1} & 0 & 0 \\ 0 & 0 & T_{2} & 0 \\ 0 & 0 & 0 & T_{3}\end{array}\right]$
using the notation of equation (4.11). From equations (4.28), (7.3) and (8.1) we have

$$
M=0
$$

$$
\begin{equation*}
N=0^{\circ} \tag{8.2}
\end{equation*}
$$

The matrices M and N are zero; as a consequence the matrices of the symmetries $T=z Q \Lambda$ share common properties, which we shall study in the following.

According to corollary 7.4 , at least one of the diagonal elements of the matrices of equation (8.1) is zero. Also they cannot be all zero, since in the case of the external symmetry it holds that $T \neq 0$. Therefore, there is a number of
$N_{1}=\binom{4}{1}+\binom{4}{2}+\binom{4}{3}=14$
different matrices for which the relation $T=z Q \Lambda$ holds.

A common characteristic for the 14 kinds of symmetries $T=z Q \Lambda$ is that $\boldsymbol{\tau}=\mathbf{0}$, and therefore the plane Π is not defined. Similarly, the vectors $\boldsymbol{\varepsilon}_{1}, \boldsymbol{\varepsilon}_{2}, \boldsymbol{\varepsilon}_{3}$ of equations (7.32) are not defined.

A fundamental characteristic of the symmetries $T=z Q \Lambda$ is that the four-vector j of the conserved physical quantites q vanishes. Combining the first of equations (8.2) with equation (5.7) we obtain
$j=0$.

Therefore, in the part of spacetime occupied by the generalized particle, there is no flow of conserved physical quantities q.

Another common characteristic is that the rest mass m_{0} of the material particle can be diferent from zero
$m_{0}=0 \vee m_{0} \neq 0$
for all 14 matrices of the symmetry. The form of the four-vector J is different for each matrix of the symmetry.

We calculate now the four-vector of momentum J of the matrix T^{12}. According to our notation we have
$T^{12}=z Q\left[\begin{array}{cccc}0 & 0 & 0 & 0 \\ 0 & T_{1} & 0 & 0 \\ 0 & 0 & T_{2} & 0 \\ 0 & 0 & 0 & 0\end{array}\right]$.
$T_{1} T_{2} \neq 0$

From equation (2.13), and since $T_{1} T_{2} \neq 0, T_{0}=T_{3}=0$, we obtain for the four-vector J, in the form
$J=\left[\begin{array}{c}J_{0} \\ 0 \\ 0 \\ J_{3}\end{array}\right]$.

Combining equations (2.7) and (8.6), we obtain for the rest mass m_{0} the equation
$-m_{0}^{2} c^{2}=J_{0}^{2}+J_{3}^{2}$.

We apply now the $S V-T$ method:

We differentiate equation (8.7) with respect to $x_{k}, k=0,1,2,3$ and taking into account equations (2.6), (2.10) and (4.4) we obtain
$-\frac{b}{\hbar} P_{k} m_{0}^{2} c^{2}=J_{0}\left(\frac{b}{\hbar} P_{k} J_{0}+z Q \alpha_{k 0}\right)+J_{3}\left(\frac{b}{\hbar} P_{k} J_{3}+z Q \alpha_{k 3}\right)$
and from equation (8.7) we have
$z Q J_{0} \alpha_{k 0}+z Q J_{3} \alpha_{k 3}=0$
and since $z Q \neq 0$, we have
$J_{0} \alpha_{k 0}+J_{3} \alpha_{k 3}=0, k=0,1,2,3$.

We insert successively $k=0,1,2,3$ into equation (8.8), hence:

For $k=0$ we have
$J_{0} T_{0}+J_{3} \alpha_{03}=0$
which holds since for the matrix T^{12} it is $T_{0}=\alpha_{03}=0$.

For $k=1$ we have
$J_{0} \alpha_{10}+J_{3} \alpha_{13}=0$
which holds since for the matrix T^{12} it is $\alpha_{10}=\alpha_{13}=0$.

For $k=2$ we have
$J_{0} \alpha_{20}+J_{3} \alpha_{23}=0$
which holds since for the matrix T^{12} it is $\alpha_{20}=\alpha_{32}=0$.

For $k=3$ we have
$J_{0} \alpha_{30}+J_{3} T_{3}=0$
which holds since for the matrix T^{12} it is $\alpha_{30}=T_{3}=0$.

According to the proof of eq. (8.7) it is possible that $J_{0}=0$ or $J_{3}=0$, but it is not possible that $J_{0}=J_{3}=0$, since in this case the material particle does not exist. Therefore from equation (8.7) we conclude that
$m_{0} \neq 0 \vee\left\{m_{0}=0 \wedge J_{3}= \pm i J_{0}\right\}$.

Simirarly we can prove that relations analogous to relation (8.10), hold for all matrices of the symmetry $T=z Q \Lambda$.

For the matrix T^{12} it is $T_{1} \neq 0$. Therefore the part of spacetime occupied by the generalized particle in the symmetry T^{12} is curved, according to corollary 6.2 .

Because of equation (8.3) the wave equation (5.17) holds identically $(0=0)$. Therefore for the symmetries $T=z Q \Lambda$ the study of the wave behavior of matter is done via eq. (5.3).

Starting from equation (8.7) and applying the same method of proof as for equations (4.19) and (4.20) we obtain
$\frac{d J}{d x_{0}}=\frac{d Q}{Q d x_{0}} J$
$\frac{d P}{d x_{0}}=-\frac{d Q}{Q d x_{0}} J$
for the symmetry T^{12}. From equations (8.6) and (8.10) we obtain
$\frac{d J_{0}}{d x_{0}}=\frac{d Q}{Q d x_{0}} J_{0}$
$\frac{d J_{3}}{d x_{0}}=\frac{d Q}{Q d x_{0}} J_{3}$
and finally we obtain

$$
\begin{align*}
& J_{0}=\sigma_{0} Q \\
& J_{3}=\sigma_{3} Q \\
& \left(\sigma_{0}, \sigma_{3}\right) \neq(0,0) \tag{8.12}\\
& \sigma_{0}, \sigma_{3}=\text { constants }
\end{align*}
$$

Thus the four-vector J is given by equation
$J=J(Q)=Q\left[\begin{array}{c}\sigma_{0} \\ 0 \\ 0 \\ \sigma_{3}\end{array}\right]$
$\left(\sigma_{0}, \sigma_{3}\right) \neq(0,0)$
$\sigma_{0}, \sigma_{3}=$ constants
as implied by equation (8.6). Therefore, for the symmetry T^{12} the momentum of the material particle is proportional to the charge Q. This feature is a common characteristic for all matrices of the symmetry $T=z Q \Lambda$.

Combining eqs. (3.5) and (8.13) we have
$P=P(Q)=\left[\begin{array}{c}c_{0}-\sigma_{0} Q \\ c_{1} \\ c_{2} \\ c_{3}-\sigma_{3} Q\end{array}\right]$.
$\left(\sigma_{0}, \sigma_{3}\right) \neq(0,0)$
$\sigma_{0}, \sigma_{3}=$ constants
Now from eqs. (4.2) and (8.14) we have

$$
\begin{aligned}
& \frac{\partial Q}{\partial x_{0}}=\frac{b}{\hbar}\left(c_{0}-\sigma_{0} Q\right) Q \\
& \frac{\partial Q}{\partial x_{1}}=\frac{b}{\hbar} c_{1} Q
\end{aligned}
$$

$$
\frac{\partial Q}{\partial x_{2}}=c_{2} Q
$$

$$
\frac{\partial Q}{\partial x_{3}}=\frac{b}{\hbar}\left(c_{3}-\sigma_{3} Q\right) Q
$$

From the identity

$$
\frac{\partial}{\partial x_{k}}\left(\frac{\partial Q}{\partial x_{i}}\right)=\frac{\partial}{\partial x_{i}}\left(\frac{\partial Q}{\partial x_{k}}\right), k \neq i, k, i=0,1,2,3
$$

and eqs. (8.15) we have after the calculations

$$
\begin{aligned}
& \sigma_{0} c_{1}=0 \\
& \sigma_{0} c_{2}=0 \\
& \sigma_{3} c_{1}=0 \\
& \sigma_{3} c_{2}=0 \\
& c_{0} \sigma_{3}=c_{3} \sigma_{0}
\end{aligned}
$$

and because of

$$
\left(\sigma_{0}, \sigma_{3}\right) \neq(0,0)
$$

we finally get
$c_{1}=c_{2}=0$
$c_{0} \sigma_{3}=c_{3} \sigma_{0}$

From eqs. (8.15) and (8.16) we have
$Q=Q\left(x_{0}, x_{3}\right)$
$\frac{\partial Q}{\partial x_{0}}=\frac{b}{\hbar}\left(c_{0}-\sigma_{0} Q\right) Q$.
$\frac{\partial Q}{\partial x_{3}}=\frac{b}{h}\left(c_{3}-\sigma_{3} Q\right) Q$

From eq. (8.17) we have
$Q=\frac{c_{0}}{\sigma_{0}} \frac{1}{1-K_{12} \exp \left(-\frac{b}{\hbar}\left(c_{0} x_{0}+c_{3} x_{3}\right)\right)}$
$c_{0} \sigma_{3}=c_{3} \sigma_{0}$
$\sigma_{0} \neq 0$
$Q=\frac{c_{3}}{\sigma_{3}} \frac{1}{1-K_{12} \exp \left(-\frac{b}{\hbar}\left(c_{0} x_{0}+c_{3} x_{3}\right)\right)}$
$c_{0} \sigma_{3}=c_{3} \sigma_{0}$
$\sigma_{3} \neq 0$
where $K_{12} \in \mathbb{C}, K_{12} \neq 0$ constant. For $\sigma_{0} \sigma_{3} \neq 0$ the eqs. (8.18) and (8.19) are equivalent, because of the $2^{\text {nd }}$ eq. of (8.16).

From eq. (8.14) and the $1^{\text {st }}$ eq. of (8.16) we have
$P=P(Q)=\left[\begin{array}{c}c_{0}-\sigma_{0} Q \\ 0 \\ 0 \\ c_{3}-\sigma_{3} Q\end{array}\right]$.
From eq. (3.5) and the $1^{\text {st }}$ eq. of (8.16) we have

$$
C=\left[\begin{array}{c}
c_{0} \tag{8.2}\\
0 \\
0 \\
c_{3}
\end{array}\right] .
$$

From eqs. (8.18), (8.19) and (8.13) we have

$$
J=J(Q)=J\left(x_{0}, x_{3}, c_{0}, c_{3}\right)=\frac{1}{1-K_{12} \exp \left(-\frac{b}{\hbar}\left(c_{0} x_{0}+c_{3} x_{3}\right)\right.}\left[\begin{array}{c}
c_{0} \tag{8.22}\\
0 \\
0 \\
c_{3}
\end{array}\right]
$$

and from eqs. (8.21), (8.13) and (8.18), (8.19) we have

$$
\left.P=P(Q)=P\left(x_{0}, x_{3}, c_{0}, c_{3}\right)=\left(1-\frac{1}{1-K_{12} \exp \left(-\frac{b}{\hbar}\left(c_{0} x_{0}+c_{3} x_{3}\right)\right.}\right)\right)\left[\begin{array}{c}
c_{0} \tag{8.23}\\
0 \\
0 \\
c_{3}
\end{array}\right] .
$$

From eqs. (8.21), (8.22) and (8.23) it follows that the 4 -vectors J, P, C are parallel.
According to the equivalence (3.4) and eq. (4.4) this parallelism is expected for the symmetries $T=z Q \Lambda$, since it is $\alpha_{k i}=0, \forall k \neq i, k, i=0,1,2,3$. However the parallelism of the 4 -vectors J, P, C we have met in the theorem 3.3 as a characteristic of internal symmetry. Hence we will finish the paragraph for the symmetries $T=z Q \Lambda$ with the refutation of this apparent inconsistency.

From eq. (8.13) we get $J_{1}=J_{2}=0$ for the symmetry T^{12}, hence the initial eq. (2.7) is written

$$
\begin{equation*}
J_{0}^{2}+J_{3}^{2}+m_{0}^{2} c^{2}=0 . \tag{8.24}
\end{equation*}
$$

Subsequently we perform the same procedure as for the proof of eq. (2.10), from eq. (2.7). After the calculations and because in symmetry T^{12} it holds that $\alpha_{k i}=0, \forall k \neq i, k, i=0,1,2,3$ equation (8.5) follows from eq. (8.24). During the procedure of proof, the physical quantities T_{1} and T_{2} do not follow from eq. (8.24). In contrast from eq. (2.7) for $J_{1} \neq 0, J_{2} \neq 0$ and $\alpha_{k i}=0, \forall k \neq i, k, i=0,1,2,3$ we $\operatorname{get} T_{1}=T_{2}=0$, as is predicted from the internal symmetry theorem 3.3. Exactly at this point we find the differences of the symmetries $T=z Q \Lambda$ with internal symmetry. In internal symmetry it is $T_{0}=T_{1}=T_{2}=T_{3}=0$, and according to corollary 6.1 the part of spacetime occupied by the generalized particle may be a plane. Moreover space is isotropic, in the part of spacetime occupied by the generalized particle. The momentum vectors \mathbf{J}, \mathbf{P} and \mathbf{C} are 3-dimensional, and it is not possible to let vanish some component J_{1}, J_{2}, J_{3} of the momentum from eq. (2.7), with an appropriate rotation of the reference system we use. There is a very specific inertial reference frame in which $J_{1}=J_{2}=J_{3}=0$ ([5], paragraph 5.3). In contrast with the symmetries $T=z Q \Lambda$ spacetime is curved as implied by the corollary 6.2. Moreover in symmetries $T=z Q \Lambda$ space is intensely anisotropic, in the part of spacetime which is occupied by the generalized particle.

According to eqs. (8.21), (8.22) and (8.23) the momentums \mathbf{C}, \mathbf{J} and \mathbf{P} in symmetry T^{12} are 1 -dimensional, towards the direction of the axis $x_{3}=z$. The intense anisotropy of space, in the part of spacetime which is occupied by the generalized particle, is a basic characteristic of the symmetry $T=z Q \Lambda$. This anisotropy varies for the symmetries of the set Ω_{1} in eq. (7.78). One symmetry $T=z Q \Lambda$ is characterized by the symmetries of the 4 -vector J which are absend in the eq. (2.7). For symmetry T^{12} the components are J_{1} and J_{2}.

From eqs. (8.13) and (8.24) we have

$$
\begin{align*}
& \left(\sigma_{0}^{2}+\sigma_{3}^{2}\right) Q^{2}+m_{0}^{2} c^{2}=0 \tag{8.25}\\
& \left(\sigma_{0}, \sigma_{3}\right) \neq(0,0)
\end{align*}
$$

Eq. (8.25) gives the contribution of charge Q to the rest mass m_{0} of the material particle.

We now calculate the distribution of the total rest mass M_{0} of the generalized particle between the material particle and STEM. From eqs. (8.22) and (8.24) we have
$\frac{c_{0}^{2}+c_{3}^{2}}{\left(1-K_{12} \exp \left(-\frac{b}{\hbar}\left(c_{0} x_{0}+c_{3} x_{3}\right)\right)\right)^{2}}+m_{0}^{2} c^{2}=0$
and from eq. (8.21) and (3.5) we have

$$
-\frac{M_{0}^{2} c^{2}}{\left(1-K_{12} \exp \left(-\frac{b}{\hbar}\left(c_{0} x_{0}+c_{3} x_{3}\right)\right)\right)^{2}}+m_{0}^{2} c^{2}=0
$$

and finally we get
$m_{0}= \pm \frac{M_{0}}{1-K_{12} \exp \left(-\frac{b}{\hbar}\left(c_{0} x_{0}+c_{3} x_{3}\right)\right)}$

Analogous from eqs. (8.23), (2.8), and (3.5) we have
$E_{0}= \pm \frac{M_{0} c^{2} K_{12} \exp \left(-\frac{b}{\hbar}\left(c_{0} x_{0}+c_{3} x_{3}\right)\right)}{1-K_{12} \exp \left(-\frac{b}{\hbar}\left(c_{0} x_{0}+c_{3} x_{3}\right)\right)}$
Eqs. (8.26) and (8.27) give the distribution of rest mass M_{0} between the material particle and STEM. The study of the remaining 13 symmetries $T=z Q \Lambda$ is done in the same way as the one we demonstrated for symmetry T^{12}.

We now set $K_{12}=-K$ in equations (8.22) and (8.23), where K the constant of equation (3.9). Comparing equations (8.22), (8.23) and (3.9), (3.12), (3.13) we come to the conclusion that the external symmetry T^{12} can emerge from the internal symmetry for $J_{1}=J_{2}=0$. This can occur when an external cause blocks the emmision of STEM along the axes x_{1} and x_{2}. In this way the isotropic emmision of the internal symmetry is converted into the anisotropic external symmetry T^{12}. In general the following corollary of theorem 3.3 holds:

Corollary 8.1 : ''The external symmetry $T=z Q \Lambda$ can emerge from the internal symmetry when an external cause blocks the emmision of STEM along one or more axes $x_{i}, i=0,1,2,3$. These axes define the kind of external symmetry $T=z Q \Lambda$ that results.'

We present the method which can produce the symmetry T^{12} from internal symmetry. We consider a case where an external cause can block the STEM emission in external symmetry, on the plane defined by the two axes x_{1} and x_{2}. In this case we have

$$
\begin{equation*}
P_{1}=P_{2}=0 . \tag{8.28}
\end{equation*}
$$

Now from eqs. (3.13), (3.12) and (8.28) we have

$$
\begin{align*}
& c_{1}=c_{2}=0 \tag{8.29}\\
& J_{1}=J_{2}=0 .
\end{align*}
$$

From the combination of eqs. (8.28), (8.29) with eqs. (3.12), (3.13), (3.10), (3.11) there arise the corresponding eqs. (8.22), (8.23), (8.26), (8.27) with $K_{12}=-K$.

Using function Φ of equation (3.9) for $c_{1}=c_{2}=0$, and $K_{12}=-K$ equations (8.22), (8.23), (8.26) and (8.27) are written in the form
$J_{i}=\frac{c_{i}}{1+\Phi}, \mathrm{i}=0,1,2,3$
$c_{1}=c_{2}=0$
$P_{i}=\frac{\Phi c_{i}}{1+\Phi}, \mathrm{i}=0,1,2,3$
$c_{1}=c_{2}=0$
$m_{0}= \pm \frac{M_{0}}{1+\Phi}$
$c_{1}=c_{2}=0$
$E_{0}= \pm \frac{\Phi M_{0} c^{2}}{1+\Phi}$.
$c_{1}=c_{2}=0$
Corollary 8.1 gives us a mechanism through which the symmetry $T=z Q \Lambda$ can emerge. The external cause is necessary, since the internal symmetry expresses the spontaneous isotropic emmision of STEM due to the selfvariations.

From the combination of equations (3.5), (5.3) and (8.30), (8.31) we get
$\frac{\partial \Psi}{\partial x_{0}}=\frac{b}{\hbar} \frac{(\lambda+\mu \Phi) c_{0}}{1+\Phi} \Psi$
$\nabla \Psi=\frac{b}{\hbar} \frac{\lambda+\mu \Phi}{1+\Phi} \Psi \mathbf{C}$
By setting
$G=G\left(x_{0}, x_{1}, x_{2}, x_{3}\right)=\frac{\lambda+\mu \Phi}{1+\Phi}$
equation (8.34) is written in the form
$\frac{\partial \Psi}{\partial x_{0}}=\frac{b}{\hbar} G c_{0} \Psi$
$\nabla \Psi=\frac{b}{\hbar} G \Psi \mathbf{C}$
From identity
$\nabla \times \nabla \Psi=0$
and with the second of equations (8.36), we get
$\nabla G \times \mathbf{C}=0$
and consequently vector ∇G is written in the form
$\nabla G=\frac{b}{\hbar} g \mathbf{C}$
where $g=g\left(x_{0}, x_{1}, x_{2}, x_{3}\right)$.
From equations (8.36) and (8.37) we get the wave equation of the TSV for the symmetry $T=Q \Lambda$, as given by equations
$\frac{\partial \Psi}{\partial x_{0}}=\frac{b}{\hbar} G c_{0} \Psi$
$\nabla^{2} \Psi=\frac{b^{2}\|\mathbf{C}\|^{2}}{\hbar^{2}}\left(G^{2}+g\right) \Psi$.
$\nabla G=\frac{b}{\hbar} g \mathbf{C}$
The third of the eqs. (8.38) correlates the functions G and g. One of the pairs of functions G and g is given by the equations
$G=\left(\frac{b \mathbf{r} \cdot \mathbf{C}}{\hbar}\right)^{k}$
$g=k\left(\frac{b \mathbf{r} \cdot \mathbf{C}}{\hbar}\right)^{k-1}$
where $\mathbf{r}=\left(x_{1}, x_{2}, x_{3}\right)$ and $k \in \mathbb{C}$ constant. From eqs. (8.38) and (8.39) we have
$\frac{\partial \Psi}{\partial x_{0}}=\frac{b c_{0}}{\hbar}\left(\frac{b \mathbf{r} \cdot \mathbf{C}}{\hbar}\right)^{k} \Psi$
$\nabla^{2} \Psi=\frac{b^{2}\|\mathbf{C}\|^{2}}{\hbar^{2}}\left(\left(\frac{b \mathbf{r} \cdot \mathbf{C}}{\hbar}\right)^{2 k}+k\left(\frac{b \mathbf{r} \cdot \mathbf{C}}{\hbar}\right)^{k-1}\right)$
Equations (8.38) have general validity in the symmetry $T=z Q \Lambda$. Every symmetry $T=z Q \Lambda$ is defined by the constants $c_{i}, i=0,1,2,3$, which go to zero. The same holds for function $\Psi=\Psi\left(x_{0}, x_{1}, x_{2}, x_{3}\right)$. In the symmetry T^{12} it is $\Psi=\Psi\left(x_{0}, x_{3}\right)$. The symmetries of the set Ω_{1} have $j=0$ and therefore the wave equation Ψ does not relate to any flow of conserved physical quantities q.

9. The Symmetries T_{010203}^{0} and T_{010203}.

In this chapter we study the generalized particle of the matrix
$T=z Q\left[\begin{array}{cccc}T_{0} & \alpha_{01} & \alpha_{02} & \alpha_{03} \\ -\alpha_{01} & T_{1} & 0 & 0 \\ -\alpha_{02} & 0 & T_{2} & 0 \\ -\alpha_{03} & 0 & 0 & T_{3}\end{array}\right]$.
$\alpha_{01} \alpha_{02} \alpha_{03} \neq 0$

From theorem 7.3 we have that for this matrix it is
$T_{1}=T_{2}=T_{3}=0$
and thus it is written in the form
$T=z Q\left[\begin{array}{cccc}T_{0} & \alpha_{01} & \alpha_{02} & \alpha_{03} \\ -\alpha_{01} & 0 & 0 & 0 \\ -\alpha_{02} & 0 & 0 & 0 \\ -\alpha_{03} & 0 & 0 & 0\end{array}\right]$.
$\alpha_{01} \alpha_{02} \alpha_{03} \neq 0$
From the matrix in equation (9.2) we obtain the symmetries
$T=T_{010203}^{0}=z Q\left[\begin{array}{cccc}T_{0} & \alpha_{01} & \alpha_{02} & \alpha_{03} \\ -\alpha_{01} & 0 & 0 & 0 \\ -\alpha_{02} & 0 & 0 & 0 \\ -\alpha_{03} & 0 & 0 & 0\end{array}\right]$
$\alpha_{01} \alpha_{02} \alpha_{03} T_{0} \neq 0$
$T=T_{010203}=z Q\left[\begin{array}{cccc}0 & \alpha_{01} & \alpha_{02} & \alpha_{03} \\ -\alpha_{01} & 0 & 0 & 0 \\ -\alpha_{02} & 0 & 0 & 0 \\ -\alpha_{03} & 0 & 0 & 0\end{array}\right]$.
$\alpha_{01} \alpha_{02} \alpha_{03} \neq 0$

First we study the symmetry T_{010203}^{0}. For this symmetry it is $M \neq 0$, hence we apply the $S V-M$-method. From equation (7.3) we have
$\alpha_{01}^{2}+\alpha_{02}^{2}+\alpha_{03}^{2}=0$.
From equations (7.2) we obtain

```
\(J_{0} T_{0}+J_{1} \alpha_{01}+J_{2} \alpha_{02}+J_{3} \alpha_{03}=0\)
\(J_{0} \alpha_{01}=0\)
\(J_{0} \alpha_{02}=0\)
\(J_{0} \alpha_{03}=0\)
```

and since $\alpha_{01} \alpha_{02} \alpha_{03} \neq 0$ and $T_{0} \neq 0$ we have
$J_{0}=0$
$J_{1} \alpha_{01}+J_{2} \alpha_{02}+J_{3} \alpha_{03}=0$.

From the second of the equations (4.6), and for $(i, v, \kappa)=(0,1,2),(0,1,3),(0,2,3),(1,2,3)$ we obtain
$J_{2} \alpha_{01}-J_{1} \alpha_{02}=0$
$J_{3} \alpha_{01}-J_{1} \alpha_{03}=0$.
$J_{3} \alpha_{02}-J_{2} \alpha_{03}=0$

From equations (9.6),(9.7), and since it holds that $a_{01} a_{02} a_{03} \neq 0$, we have
$J_{0}=0$
$J_{2}=\frac{\alpha_{02}}{\alpha_{01}} J_{1}$.
$J=\frac{\alpha_{03}}{\alpha_{01}} J_{1}$

From equations (9.8) we obtain the four-vector $J=J(Q)$
$J=J(Q)=J_{1}\left[\begin{array}{c}0 \\ 1 \\ \frac{\alpha_{02}}{\alpha_{01}} \\ \frac{\alpha_{03}}{\alpha_{01}}\end{array}\right]$
$J_{1} \neq 0$
From equations (4.28) and (9.3) we have
$M=\left[\begin{array}{cccc}0 & \alpha_{01} & \alpha_{02} & \alpha_{03} \\ -\alpha_{01} & 0 & 0 & 0 \\ -\alpha_{02} & 0 & 0 & 0 \\ -\alpha_{03} & 0 & 0 & 0\end{array}\right]$
$M^{2}=\left[\begin{array}{cccc}-\alpha_{01}^{2}-\alpha_{02}^{2}-\alpha_{03}^{2} & 0 & 0 & 0 \\ 0 & -\alpha_{01}^{2} & -\alpha_{01} \alpha_{02} & -\alpha_{01} \alpha_{03} \\ 0 & -\alpha_{01} \alpha_{02} & -\alpha_{02}^{2} & -\alpha_{02} \alpha_{03} \\ 0 & -\alpha_{01} \alpha_{03} & -\alpha_{02} \alpha_{03} & -\alpha_{03}^{2}\end{array}\right]$
and with equation (9.5) we obtain

$$
M^{2}=\left[\begin{array}{cccc}
0 & 0 & 0 & 0 \tag{9.11}\\
0 & -\alpha_{01}^{2} & -\alpha_{01} \alpha_{02} & -\alpha_{01} \alpha_{03} \\
0 & -\alpha_{01} \alpha_{02} & -\alpha_{02}^{2} & -\alpha_{02} \alpha_{03} \\
0 & -\alpha_{01} \alpha_{03} & -\alpha_{02} \alpha_{03} & -\alpha_{03}^{2}
\end{array}\right] .
$$

From the first of the equations (7.14) and the equation (9.11), we get after the calculations $c_{1} \alpha_{01}+c_{2} \alpha_{02}+c_{3} \alpha_{03}=0$.

From the first of the equations (4.6), and for $(i, v, \kappa)=(0,1,2),(0,1,3),(0,2,3),(1,2,3)$ we obtain

$$
\begin{align*}
& c_{0} \alpha_{01}-c_{1} \alpha_{02}=0 \\
& c_{3} \alpha_{01}-c_{1} \alpha_{03}=0 . \tag{9.13}\\
& c_{3} \alpha_{02}-c_{2} \alpha_{03}=0
\end{align*}
$$

From equations (9.12) and (9.13) we have
$c_{1}=\frac{\alpha_{01}}{\alpha_{02}} c_{0}$
$c_{2}=c_{0}$.
$c_{3}=\frac{\alpha_{03}}{\alpha_{02}} c_{0}$

From equations (9.14) we obtain the four-vector C
$C=c_{0}\left[\begin{array}{c}1 \\ \frac{\alpha_{01}}{\alpha_{02}} \\ 1 \\ \frac{\alpha_{03}}{\alpha_{02}}\end{array}\right]$.
$c_{0} \neq 0$

From equation (3.5) and equations (9.9) and (9.15) we obtain the four-vector $P=P(Q)$
$P=P(Q)=\left[\begin{array}{c}c_{0} \\ \frac{\alpha_{01}}{\alpha_{02}} c_{0}-J_{1} \\ c_{0}-\frac{\alpha_{02}}{\alpha_{01}} J_{1} \\ \frac{\alpha_{03}}{\alpha_{02}} c_{0}-\frac{\alpha_{03}}{\alpha_{01}} J_{1}\end{array}\right]$.
With the knowledge of the four-vectors J, P, C we can calculate the rest masses $m_{0}, \frac{E_{0}}{c^{2}}, M_{0}$ of the material which emerges as a concequence of the USVI. From equations (2.7) and (9.9) we get

$$
-m_{0}^{2} c^{2}=J_{1}^{2}\left[1+\left(\frac{\alpha_{02}}{\alpha_{01}}\right)^{2}+\left(\frac{\alpha_{03}}{\alpha_{01}}\right)^{2}\right]
$$

and using equation (9.5) we obtain
$m_{0}=0$.
From equations (2.8) and (9.16) we have

$$
\begin{equation*}
E_{0}= \pm i c c_{0} . \tag{9.18}
\end{equation*}
$$

For the proof of equation (9.18) we used also equation (9.5). From equations (3.6) and (9.15) we have
$c_{0}= \pm i M_{0} c$.

The vector τ vanishes
$\boldsymbol{\tau}=\left(\begin{array}{l}\alpha_{32} \\ \alpha_{13} \\ \alpha_{21}\end{array}\right)=\left(\begin{array}{l}0 \\ 0 \\ 0\end{array}\right)$
and thus the plane Π is not defined. For the same reason it also holds that $\boldsymbol{\mu}=\mathbf{0}$. On the contrary the vector \mathbf{n} is nonzero
$\mathbf{n}=\left(\begin{array}{l}\alpha_{01} \\ \alpha_{02} \\ \alpha_{03}\end{array}\right) \neq\left(\begin{array}{l}0 \\ 0 \\ 0\end{array}\right)$.
From equations (9.9),(9.15) and (9.16) we see that the vectors $\mathbf{J}, \mathbf{P}, \mathbf{C}$ are parallel to the vector \mathbf{n}. We write the vectors \mathbf{J}, \mathbf{C}, as given by equations (9.9), (9.15) and (9.20)
$\mathbf{J}=\mathbf{J}(Q)=\frac{J_{1}}{\alpha_{01}} \mathbf{n}$
$\mathbf{C}=\frac{c_{0}}{\alpha_{02}} \mathbf{n}$.

The vector \mathbf{C} is a constant vector aligned to the direction of the vector \mathbf{n}. From equivalence (3.4) we obtain
$\lambda_{k i}=\frac{b}{2 \hbar}\left(c_{i} J_{k}-c_{k} J_{i}\right), k \neq i, k, i=0,1,2,3$
and with equation (4.4) we have
$z Q \alpha_{k i}=\frac{b}{2 \hbar}\left(c_{i} J_{k}-c_{k} J_{i}\right)$
and for $k=0, i=0,1,2,3$ we obtain
$z Q \alpha_{01}=\frac{b}{2 \hbar}\left(c_{1} J_{0}-c_{0} J_{1}\right)$
$z Q \alpha_{02}=\frac{b}{2 \hbar}\left(c_{2} J_{0}-c_{0} J_{2}\right)$
$z Q \alpha_{03}=\frac{b}{2 \hbar}\left(c_{3} J_{0}-c_{0} J_{3}\right)$
and with equations (9.9) and (9.15) we have
$z Q \alpha_{01}=-\frac{b c_{0}}{2 \hbar} J_{1}$
$z Q \alpha_{02}=-\frac{b c_{0}}{2 \hbar} J_{2}$
$z Q \alpha_{03}=-\frac{b c_{0}}{2 \hbar} J_{3}$
and solving with respect to J_{1}, J_{2}, J_{3} we obtain
$J_{1}=-\frac{2 \hbar}{b c_{0}} z Q \alpha_{01}$
$J_{2}=-\frac{2 \hbar}{b c_{0}} z Q \alpha_{02}$
$J_{3}=-\frac{2 \hbar}{b c_{0}} z Q \alpha_{03}$
and using equation (9.20) we take
$\mathbf{J}=\mathbf{J}(Q)=-\frac{2 \hbar}{b c_{0}} z Q \mathbf{n}$
and taking into account that $J_{0}=0$, we have
$J=J(Q)=-\frac{2 \hbar z Q}{b c_{0}}\left[\begin{array}{l}0 \\ \mathbf{n}\end{array}\right]=-\frac{2 \hbar z Q}{b c_{0}}\left[\begin{array}{c}0 \\ \alpha_{01} \\ \alpha_{02} \\ \alpha_{03}\end{array}\right]$
$P=P(Q)=C-J(Q)=\frac{c_{0}}{\alpha_{02}}\left[\begin{array}{c}\alpha_{02} \\ \alpha_{01} \\ \alpha_{02} \\ \alpha_{03}\end{array}\right]+\frac{2 \hbar z Q}{b c_{0}}\left[\begin{array}{c}0 \\ \alpha_{01} \\ \alpha_{02} \\ \alpha_{03}\end{array}\right]$.

In equation (9.22) the function z is given by equation (4.5). Equation (9.22) expresses the dependence of the four-vector J on the charge Q in the case of the external symmetry T_{01023}^{0}.

For the matrix T_{010203}^{0} it is $M \neq 0$ therefore we apply the $S V_{q}$ - method for the determination of the four-vector j. For $(i, v, \kappa)=(0,1,2),(0,1,3),(0,2,3),(1,2,3)$ in equation (7.51), and considering the elements of the matrix T_{010203}^{0}, we obtain
$j_{2}=\frac{\alpha_{02}}{\alpha_{01}} j_{1}$
$j_{3}=\frac{\alpha_{03}}{\alpha_{01}} j_{1}$

From equations (4.27), (7.16) and (9.10) we have

$$
\begin{equation*}
\alpha_{01} j_{1}+\alpha_{02} j_{2}+\alpha_{03} j_{3}=0 . \tag{9.24}
\end{equation*}
$$

From equations (9.23) and (9.24) we obtain the four-vector j
$j=\left[\begin{array}{c}j_{0} \\ j_{1} \\ \frac{\alpha_{02}}{\alpha_{01}} j_{1} \\ \frac{\alpha_{03}}{\alpha_{01}} j_{1}\end{array}\right]$.
From equations (9.25) and (9.20) we obtain the current density
$\mathbf{j}=\frac{j_{1}}{\alpha_{01}} \mathbf{n}$.

Therefore the current density \mathbf{j} has the same direction as the vector \mathbf{n}.

From the wave equation (5.17) and equations (9.25) and (9.20) we obtain
$\sigma c^{2} F \mathbf{n}=\frac{1}{\alpha_{01}} \frac{\partial j_{1}}{\partial x_{0}} \mathbf{n}-\nabla j_{0}$
$\frac{1}{\alpha_{01}} \frac{\partial j_{1}}{\partial x_{1}}=\frac{1}{\alpha_{02}} \frac{\partial j_{1}}{\partial x_{2}}=\frac{1}{\alpha_{03}} \frac{\partial j_{1}}{\partial x_{3}}$.
$F=\nabla^{2} \Psi+\frac{\partial^{2} \Psi}{\partial x_{0}^{2}}$

From the second of equations (9.27) we have
$\nabla j_{1}=\left(\frac{\partial j_{1}}{\partial x_{1}}, \frac{\partial j_{1}}{\partial x_{1}} \frac{\alpha_{02}}{\alpha_{01}}, \frac{\partial j_{1}}{\partial x_{1}} \frac{\alpha_{03}}{\alpha_{01}}\right)$
$\nabla j_{1}=\frac{1}{\alpha_{01}} \frac{\partial j_{1}}{\partial x_{1}}\left(\begin{array}{l}\alpha_{01} \\ \alpha_{02} \\ \alpha_{03}\end{array}\right)$
and with equation (9.20) we have
$\nabla j_{1}=\frac{1}{\alpha_{01}} \frac{\partial j_{1}}{\partial x_{1}} \mathbf{n}$.

From equations (9.28) and (9.20) we have
$\nabla \cdot \mathbf{j}=\frac{1}{\alpha_{01}^{2}} \frac{\partial j_{1}}{\partial x_{1}}\left(\alpha_{01}^{2}+\alpha_{02}^{2}+\alpha_{03}^{2}\right)$
and with equation (9.5) we get

$$
\begin{equation*}
\nabla \cdot \mathbf{j}=0 \tag{9.29}
\end{equation*}
$$

Combining the continuity equation (5.6) with equation (9.29) we obtain

$$
\begin{equation*}
\frac{\partial j_{0}}{\partial x_{0}}=0 \tag{9.30}
\end{equation*}
$$

Therefore the charge density $j_{0}=i \rho c$ does not depend on time in the symmetry we study.

Combining equations (5.3), (9.9) and (9.16) we have
$\frac{\partial \Psi}{\partial x_{0}}=\frac{b c_{0} \mu}{\hbar} \Psi$
$\nabla \Psi=\frac{b}{\hbar}\left(\frac{\lambda-\mu}{\alpha_{01}} J_{1}+\frac{\mu c_{0}}{\alpha_{02}}\right) \Psi \mathbf{n}$.
$\lambda, \mu \in \mathbb{C},(\lambda, \mu) \neq(0,0)$

Let us remind that the parameters λ, μ appearing in equation (9.31) express the two degrees of freedom of the TSV.

Setting

$G=G\left(x_{0}, x_{1}, x_{2}, x_{3}\right)=\frac{\lambda-\mu}{\alpha_{01}} J_{1}+\frac{\mu c_{0}}{\alpha_{02}}$
equation (9.31) is written in the form
$\frac{\partial \Psi}{\partial x_{0}}=\frac{b c_{0} \mu}{\hbar} \Psi$
$\nabla \Psi=\frac{b}{\hbar} G \Psi \mathbf{n}$
From identity
$\nabla \times \nabla \Psi=0$
and the second of equations (9.33) we get

$$
\nabla G \times \mathbf{n}=0
$$

and, therefore, the vector ∇G is written as
$\nabla G=\frac{b}{\hbar} g \mathbf{n}$
where $g=g\left(x_{0}, x_{1}, x_{2}, x_{3}\right)$.
From the second of equations (9.33) we get
$\nabla^{2} \Psi=\frac{b}{\hbar}(G \nabla \Psi+\Psi \nabla G) \cdot \mathbf{n}$
and with the second of equations (9.33), and equation (9.34) we get
$\nabla^{2} \Psi=\frac{b^{2}}{\hbar^{2}}\left(G^{2} \Psi \mathbf{n}+\Psi g \mathbf{n}\right) \cdot \mathbf{n}$
$\nabla^{2} \Psi=\frac{b^{2}}{\hbar^{2}}\left(G^{2}+g\right) \Psi \mathbf{n}^{2}$
and with equation (9.20) we get
$\nabla^{2} \Psi=\frac{b^{2}}{\hbar^{2}}\left(G^{2}+g\right)\left(\alpha_{01}^{2}+\alpha_{02}^{2}+\alpha_{03}^{2}\right) \Psi$
and with equation (9.5) we finally get

$$
\begin{equation*}
\nabla^{2} \Psi=0 \tag{9.35}
\end{equation*}
$$

In the symmetry T_{010203}^{0} the wave function Ψ of the TSV satisfies the Laplace equation. The first of equations (9.33) and equation (9.35)
$\frac{\partial \Psi}{\partial x_{0}}=\frac{b c_{0} \mu}{\hbar} \Psi$
$\nabla^{2} \Psi=0$
constitute the wave function of the TSV for the symmetry T_{010203}^{0}.
From eq. (9.25) it follows that the 4 -vector of the current density j has two free parameters j_{0} and j_{1}. In theorem 7.5 we find the information for these parameters. From eq. (7.3) we have
$\Lambda=\left[\begin{array}{llll}T_{0} & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0\end{array}\right]$
and with eqs. (7.72) and (9.10), (9.9), (9.15) we get after calculations
$j_{0}=0$
$j_{1}=\frac{\sigma c^{2} b c_{0} \mu}{\hbar} \Psi \alpha_{01}$
and with eq. (9.25) we have
$j=\frac{\sigma b c^{2} c_{0}}{\hbar} \mu \Psi\left[\begin{array}{c}0 \\ a_{01} \\ a_{02} \\ a_{03}\end{array}\right]$
for the symmetry T_{010203}^{0}. It is easy to prove that equation (9.37) is compatible with eqs. (9.27) and (9.36). However eq. (9.37) provides information which are not provided by the $S V_{q}$ method via eq. (9.25). The eq. (9.25) does not provide the information that $j_{0}=0$. Generally, for the symmetries which have $\Lambda J=0$ one must consider theorem 7.5.

The portion of space-time occupied by the generalized particle is curved, since $T_{0} \neq 0$, according to corollary 6.2. Also from the combination of equations (9.9), (4.19), and taking into account that $T_{1}=T_{2}=T_{3}=0$ and $J_{0}=0$, we obtain
$\frac{d \mathbf{J}}{d x_{0}}=\frac{d Q}{Q d x_{0}} \mathbf{J}-\frac{i}{c} Q \boldsymbol{\alpha}=\frac{d Q}{Q d x_{0}} \mathbf{J}+z Q \mathbf{n}$
for the USVI of the external symmetry T_{010203}^{0}.
In symmetry T_{010203} it holds that $T_{0}=T_{1}=T_{2}=T_{3}=0$. Hence from theorem 7.6 we could have that $J_{0} \neq 0$, and the four-vector J could take the form
$J=J(Q)=\left[\begin{array}{c}J_{0} \\ J_{1} \\ \frac{\alpha_{02}}{\alpha_{01}} J_{1} \\ \frac{\alpha_{03}}{\alpha_{01}} j_{1}\end{array}\right]$
$J_{0} \neq 0$
in the symmetry T_{010203}. However equation (9.39) is rejected. Following the same procedure as the one for proving equation (9.17), we obtain from equation (9.39) that
$m_{0}^{2} c^{2}=-J_{0}^{2} \neq 0$.
Applying the $S V-T$ method, we conclude that equation (9.40) cannot hold. Therefore, the symmetries T_{010203}^{0} and T_{010203} have the same four-vectors J, P, C and j. The only difference lies in the vanishing or non-vanishing of the physical quantity T_{0}.

The symmetry T_{010203}^{0} has $T_{0} \neq 0$ and therefore the spacetime part occupied by the generalized particle is curved according to corollary 6.2. In symmetry T_{010203} it is $T_{0}=0$ and following from corollary 6.1 the spacetime could be either flat or curved. We shall prove that in symmetry T_{010203} spacetime is curved.

From eq. (3.5) it follows that the components of the 4 -vector C transform under Lorentz-Einstein as well as the components of the 4 -vectors J and P. That is they transform under Lorentz-Einstein according to eqs. (6.4). The first parts of eqs. (9.18) and (9.19) are invariant under Lorentz-Einstein while the second parts are not. Thus the Lorentz-Einstein transformations are not valid for the symmetry T_{010203}, therefore spacetime is curved. With the observation that spacetime is curved we conclude the study of the symmetries T_{010203}^{0} and T_{01023}.

10. The Generalized Particle of the Field (α, β) and the Confinement Equation.

In this paragraph we study the generalized particle of the field $(\boldsymbol{\alpha}, \boldsymbol{\beta})$, for which the function Ψ is known. This shall allow us to perform a particular application of theorem 5.1.

We prove now that the field $(\boldsymbol{\alpha}, \boldsymbol{\beta})$ is a special case of the field $(\xi, \boldsymbol{\omega})$. For $\lambda=\mu=-\frac{1}{2}$ in equation (5.3) we obtain $\frac{\partial \Psi_{k}}{\partial x_{k}}=-\frac{b}{2 \hbar}\left(J_{k}+P_{k}\right) \Psi, k=0,1,2,3$
and with equation (3.5) we have
$\frac{\partial \Psi_{k}}{\partial x_{k}}=-\frac{b c_{k}}{2 \hbar} \Psi, k=0,1,2,3$
and using the notation of equation (4.9) we have
$\Psi=z=\exp \left[-\frac{b}{2 \hbar}\left(c_{0} x_{0}+c_{1} x_{1}+c_{2} x_{2}+c_{3} x_{3}\right)\right]$

From equation (10.1) and equations (5.1), (5.2) and (4.14), (4.15), we obtain

$$
\begin{align*}
& \boldsymbol{\xi}=\boldsymbol{\alpha}=i c z\left(\begin{array}{l}
\alpha_{01} \\
\alpha_{02} \\
\alpha_{03}
\end{array}\right)=i c z \mathbf{n} \tag{10.2}\\
& \boldsymbol{\omega}=\boldsymbol{\beta}=z\left(\begin{array}{l}
\alpha_{32} \\
\alpha_{13} \\
\alpha_{21}
\end{array}\right)=z \boldsymbol{\tau}
\end{align*}
$$

The field $(\boldsymbol{\alpha}, \boldsymbol{\beta})$ is a special case of the field $(\boldsymbol{\xi}, \boldsymbol{\omega})$ for $\lambda=\mu=-\frac{1}{2}$.

The fact that the function Ψ of the field $(\boldsymbol{\alpha}, \boldsymbol{\beta})$ is known allows us to derive two impotant results about the total rest mass M_{0} of the generalized partcle. The first concerns the relation between the total rest mass M_{0} of the generalized particle with theorem 5.2, in case of field $(\boldsymbol{\alpha}, \boldsymbol{\beta})$. From equation (10.1) we obtain

$$
\nabla^{2} \Psi+\frac{\partial^{2} \Psi}{\partial x_{0}^{2}}=\nabla^{2} \Psi-\frac{\partial^{2} \Psi}{c^{2} \partial t^{2}}=\frac{b^{2}}{4 \hbar^{2}}\left(c_{0}^{2}+c_{1}^{2}+c_{1}^{2}+c_{1}^{2}\right)
$$

and with equation (3.6) we have

$$
\begin{equation*}
\nabla^{2} \Psi+\frac{\partial^{2} \Psi}{\partial x_{0}^{2}}=\nabla^{2} \Psi-\frac{\partial^{2} \Psi}{c^{2} \partial t^{2}}=-\frac{b^{2}}{4 \hbar^{2}} M_{0}^{2} c^{2} \Psi . \tag{10.3}
\end{equation*}
$$

According to equation (10.3) and theorem 5.2 the generalized photon in the field $(\boldsymbol{\alpha}, \boldsymbol{\beta})$ exists, if and only if

$$
\begin{equation*}
M_{0}=0, \tag{10.4}
\end{equation*}
$$

that is in the case the total rest mass of the generalized particle is zero. For $M_{0} \neq 0$ the generalized particle appears.

Setting $\lambda=\mu=-\frac{1}{2}$ in the equations of paragraph 5 , we arrive at the equations of the field ($\boldsymbol{\alpha}, \boldsymbol{\beta})$. For example, by setting $\lambda=\mu=-\frac{1}{2}$ into equation (5.7) we obtain $j=\frac{\sigma c^{2} b z}{2 \hbar} M C$.

This is equation (4.29), as we have proved in paragraph 4, for the field $(\boldsymbol{\alpha}, \boldsymbol{\beta})$. On the other hand, equation (10.3) results only because the function Ψ is known, as given by equation (10.1) for the field $(\boldsymbol{\alpha}, \boldsymbol{\beta})$.

The second conclusion concerns the consequences for the total energy c_{0} of the generalized particle when it is trapped in a fixed volume V. By knowing the function Ψ we can study the consequences for a material particle that is confined within a constant volume V. The conserved physical quantity q, is constant within the volume V occupied by the generalized particle. Therefore, it holds that

$$
\begin{equation*}
\frac{d q}{d t}=\frac{i c d q}{d x_{0}}=0 . \tag{10.5}
\end{equation*}
$$

$V=$ constant
The total conserved physical quantity q contained within the volume V occupied by the generalized particle is
$q=\int_{V} \rho d V$.

The equation (10.6) holds independently of the fact, whether the volume V of the generalized particle variates or not. The density ρ for the field $(\boldsymbol{\alpha}, \boldsymbol{\beta})$ is given by the first of the equations (4.25)
$\rho=-\sigma \frac{i c b z}{2 \hbar}\left(c_{1} \alpha_{01}+c_{2} \alpha_{02}+c_{3} \alpha_{03}\right)$.

In the case of
$c_{1} \alpha_{01}+c_{2} \alpha_{02}+c_{3} \alpha_{03}=0$,
that is in the case of
$\mathbf{n} \cdot \mathbf{C}=0$,
as derived from equations (3.5) and (7.24), we obtain from equation (10.7) that $\rho=0$. That is, for the field $(\boldsymbol{\alpha}, \boldsymbol{\beta})$ the following equivalence holds
$\rho=0 \Leftrightarrow \mathbf{n} \cdot \mathbf{C}=0 \Leftrightarrow c_{1} \alpha_{01}+c_{2} \alpha_{02}+c_{3} \alpha_{03}=0$.

In the case of $\rho \neq 0$, and from the combination of equations (10.6) and (10.7), we have $q=-\sigma \frac{i c b(\mathbf{n} \cdot \mathbf{C})}{2 \hbar} \int_{V} z d V$.

The integration in the second part of equation (10.9) is performed within the total volume V occupied by the generalized particle. Therefore, in the case the volume V is constant, the integral in the second part of equation (10.9) is independent of the quantiites $x_{1}=x, x_{2}=y, x_{3}=z$. Therefore, in the case volume V is constant, the physical quantity q in equation (10.9) depends only on time.

Thus by combining equations (10.5) and (10.9) for a constant volume V, we obtain

$$
\begin{align*}
& \frac{d}{d t} \int_{V} z d V=0 \\
& \mathbf{n} \cdot \mathbf{C} \neq 0 \tag{10.10}
\end{align*}
$$

$V=$ constant

Working with equation (10.10) in the general case presents some mathematical difficulties. Therefore in the present work we will restrict our study on the simplest case. We shall study the case for which the total momentum \mathbf{C} of the generalized particle is aligned on the direction of the x-axis, that is for the case of $c_{1} \neq 0, c_{2}=c_{3}=0$. In this case we obtain from equation (3.6) that $M_{0}^{2} c^{2}=-c_{0}^{2}-c_{1}^{2}$. Furthermore it must also hold that $\rho \neq 0$, that is $c_{1} \alpha_{01} \neq 0$, according to equivalence (10.8), and since $c_{1} \neq 0$, it must also hold that $\alpha_{01} \neq 0$. Therefore our study refers to the particular case where
$c_{1} \neq 0$
$c_{2}=c_{3}=0$
$\alpha_{01} \neq 0$
$M_{0}^{2} c^{2}=-c_{0}^{2}-c_{1}^{2}$.

We suppose that the generalized particle occupies the constant volume V defined by the relations (10.12) in a frame of reference $O\left(t, x_{1}=x, x_{2}=y, x_{3}=z\right)$.
$\alpha \leq x_{1} \leq \beta$
$0 \leq x_{2} \leq L_{2}$
$0 \leq x_{3} \leq L_{3}$
$\alpha<\beta$
$L=\beta-\alpha>0$
$L_{2}, L_{3}>0, L_{2}, L_{3}=$ constants

For the quantities α, β it holds that
$\frac{d \alpha}{d t}=\frac{d \beta}{d t}=u<c$
where u is the velocity with which the volume V is moving in the chosen frame of reference.
From equation (10.1), relations (10.11), and since $x_{0}=i c t$, we have

$$
\begin{align*}
& z=\exp \left(-\frac{i c b c_{0}}{2 \hbar} t\right) \exp \left(-\frac{b c_{1}}{2 \hbar} x\right) \\
& \int_{V} z d V=-\frac{2 \hbar L_{2} L_{3}}{b c_{1}} \exp \left(-\frac{i c b c_{0}}{2 \hbar} t\right)\left[\exp \left(-\frac{b c_{1} \beta}{2 \hbar}\right)-\exp \left(-\frac{b c_{1} \alpha}{2 \hbar}\right)\right] . \tag{10.14}
\end{align*}
$$

From equation (10.14) we see that equation equation (10.10) holds, if and only if
$\exp \left(-\frac{b c_{1} \beta}{2 \hbar}\right)-\exp \left(-\frac{b c_{1} \alpha}{2 \hbar}\right)=0$
$\exp \left(-\frac{b c_{1}(\beta-\alpha)}{2 \hbar}\right)=1$
$\exp \left(\frac{b c_{1} L}{2 \hbar}\right)=1$.

Equation (10.15) holds only in the case the constant b of the Law of Selfvariations is an imaginary number, $b=i\|b\|,\|b\| \in \mathbb{R}$. In this case we obtain
$\cos \left(\frac{b c_{1} L}{2 \hbar}\right)=1$
$\sin \left(\frac{b c_{1} L}{2 \hbar}\right)=0$
$b=i\|b\|,\|b\| \in \mathbb{R}$
and finally, we get
$c_{1}=n \frac{4 \pi \hbar}{L\|b\|}, n= \pm 1, \pm 2, \pm 3, \ldots$

Combining equation (10.16) with the last of the equations (10.11) we have
$M_{0}^{2} c^{2}=-c_{0}^{2}-n^{2} \frac{16 \pi^{2} \hbar^{2}}{L^{2}\|b\|^{2}}, n=1,2,3 \ldots$

Therefore the momentum c_{1} and the rest mass M_{0} of the confined generalized particle is quantized.

In the case of the generalized photon, that is for $M_{0}=0$, and according to equation (10.17) we have
$c_{0}=n \frac{i 4 \pi \hbar}{L\|b\|}, n= \pm 1, \pm 2, \pm 3, \ldots$.
$M_{0}=0$
Combining equations (10.1),(10.16) and (10.18) we have

$$
\begin{align*}
& \Psi=z=\exp \left[n \frac{4 \pi i}{L}(c t-x)\right] \\
& n= \pm 1, \pm 2, \pm 3, \ldots \tag{10.19}\\
& M_{0}=0
\end{align*}
$$

The function Ψ expresses a harmonic wave of wavelenght $\lambda=\frac{L}{2 n}$ propagating along the x axis.

We now calculate the equation corresponding to the equation (10.10) for the field (ξ, ω), in general. The reason of not having calculated the general equation (in the case of the one spatial dimension) already in paragraph 5 is that the relation of the confinement of the generalized particle with the appearance of the quantization would not have become obvious.

From equations (4.27), (4.28) and (5.7), and since it holds that $j_{0}=i \rho c$, we obtain:

$$
\rho=\frac{i c b}{\hbar} \Psi\left[\lambda\left(\alpha_{01} J_{1}+\alpha_{02} J_{2}+\alpha_{03} J_{3}\right)+\mu\left(\alpha_{01} P_{1}+\alpha_{02} P_{2}+\alpha_{03} P_{3}\right)\right]
$$

and together with equations (5.8), (5.9) and (7.24) we have

$$
\begin{equation*}
\rho=\frac{i c b}{\hbar} \Psi(\lambda \mathbf{J} \cdot \mathbf{n}+\mu \mathbf{P} \cdot \mathbf{n}) . \tag{10.20}
\end{equation*}
$$

From equations (10.5), (10.20) for the generalized particle occupying a constant volume V we obtain

$$
\begin{align*}
& \frac{d}{d t} \int_{V} \Psi(\lambda \mathbf{J} \cdot \mathbf{n}+\mu \mathbf{P} \cdot \mathbf{n}) d V=0 \\
& \lambda \mathbf{J} \cdot \mathbf{n}+\mu \mathbf{P} \cdot \mathbf{n} \neq 0 \tag{10.21}\\
& V=\text { constant }
\end{align*} .
$$

For $\lambda=\mu=-\frac{1}{2}$ equation (10.21) gives equation (10.10), after considering equations (3.5) and (10.1).

For the internal symmetry $T=0$ it holds that $M=0$, and from equation (5.7) we obtain $j=0$. Hence equation (10.5) degenerates into the identity, $0=0$, therefore the confinement equation (10.21) does not hold. The same holds also for all the external symmetries $T=z Q \Lambda$ as follows from equation (8.4). Therefore the confinement eq. (10.21) is valid for the 44 generalized particles of the external symmetries of the sets $\Omega_{2}, \Omega_{3}, \Omega_{4}, \Omega_{5}$ of eq. (7.78).

The field $(\boldsymbol{\alpha}, \boldsymbol{\beta})$ exists in all external symmetries, except the ones with $T=z Q \Lambda$ of the set Ω_{1} of eq. (7.78). Every external symmetry of the set $\Omega_{2} \cup \Omega_{3} \cup \Omega_{4} \cup \Omega_{5} \cup \Omega_{6}$ expresses one of the possible states of the generalized particle. For the field $(\boldsymbol{\alpha}, \boldsymbol{\beta})$ every external symmetry expresses one of the possible states of the field. We complete the
paragraph with the study of the symmetry T_{0221}^{2} of the set Ω_{2}, for the field $(\boldsymbol{\alpha}, \boldsymbol{\beta})$. We consider the case where Q is electric charge, hence $\boldsymbol{\alpha}$ is the electric field and $\boldsymbol{\beta}$ the magnetic.

The symmetry T_{0221}^{2} is given by the matrix
$T=z Q\left[\begin{array}{cccc}T_{0} & 0 & \alpha_{02} & 0 \\ 0 & T_{1} & -\alpha_{21} & 0 \\ -\alpha_{02} & \alpha_{21} & T_{2} & 0 \\ 0 & 0 & 0 & T_{3}\end{array}\right]$
$\alpha_{02} \alpha_{21} \neq 0$
according to eq. (7.71), and considering eqs. (7.20) we have
$T=T_{0221}^{2}=z Q\left[\begin{array}{cccc}0 & 0 & \alpha_{02} & 0 \\ 0 & 0 & -\alpha_{21} & 0 \\ -\alpha_{02} & \alpha_{21} & T_{2} & 0 \\ 0 & 0 & 0 & 0\end{array}\right]$.
$\alpha_{02} \alpha_{21} \neq 0$
From eq. (10.22) we get the matrix M
$M=\left[\begin{array}{cccc}0 & 0 & \alpha_{02} & 0 \\ 0 & 0 & -\alpha_{21} & 0 \\ -\alpha_{02} & \alpha_{21} & 0 & 0 \\ 0 & 0 & 0 & 0\end{array}\right]$.
From eqs. (4.14), (4.15) and (10.22) we have
$\boldsymbol{\alpha}=i c z\left(\begin{array}{c}0 \\ \alpha_{02} \\ 0\end{array}\right)$
$\boldsymbol{\beta}=z\left(\begin{array}{c}0 \\ 0 \\ \alpha_{21}\end{array}\right)$.
The electric field is on axis $x_{2}=y$ and the magnetic on axis $x_{3}=z$. The function z in eqs. (10.24) and (10.25) expresses the wave form of the field for
$b=i$
according to eq. (10.1).

Applying the $S V-M$ method we get the eqs.

$$
\begin{align*}
& \alpha_{02}^{2}+\alpha_{21}^{2}=0 \\
& J=J(Q)=J_{0}\left[\begin{array}{c}
1 \\
\pm i \\
0 \\
0
\end{array}\right] \\
& C=\left[\begin{array}{c}
c_{0} \\
\pm i c_{0} \\
c_{2} \\
0
\end{array}\right] \tag{10.27}\\
& P=P(Q)=C-J(Q)
\end{align*}
$$

The material particle exists for $J \neq 0$, hence from the $3^{\text {rd }}$ of eqs. (10.27) we have $J_{0} \neq 0$.

From the $3^{\text {rd }}$ and $4^{\text {th }}$ of eqs. (10.27) it follows that for $c_{2}=0$ the 4 -vectors J and C are parallel, which is impossible in symmetry T_{0221}^{2}. Therefore it is

$$
\begin{equation*}
c_{2} \neq 0 . \tag{10.29}
\end{equation*}
$$

Considering the $2^{\text {nd }}$ of eqs. (10.27), the eq. (10.24) can be written in the form

$$
\boldsymbol{\alpha}= \pm c z\left(\begin{array}{c}
0 \tag{10.30}\\
\alpha_{21} \\
0
\end{array}\right)
$$

From eqs. (10.25) and (10.30) it follows that the electric and the magnetic field have equal norm:

$$
\begin{equation*}
\|\boldsymbol{\alpha}\|=\|\boldsymbol{\beta}\| \tag{10.31}
\end{equation*}
$$

Applying the $S V_{q}$ method, and taking into account the $2^{\text {nd }}$ of eqs. (10.27) we have
$j=j_{0}\left[\begin{array}{c}1 \\ \mp i \\ 0 \\ 0\end{array}\right]=\rho c\left[\begin{array}{c}i \\ \pm 1 \\ 0 \\ 0\end{array}\right]$.

From eqs. (10.7), (10.22) and (10.26) we have
$\rho=\frac{\sigma c c_{2} \alpha_{02} z}{2 \hbar}$
and replacing density ρ in eq. (10.32) we have
$j=\frac{\sigma c^{2} c_{2} \alpha_{02}}{2 \hbar} z\left[\begin{array}{c}i \\ \pm 1 \\ 0 \\ 0\end{array}\right] \neq\left[\begin{array}{l}0 \\ 0 \\ 0 \\ 0\end{array}\right]$.
According to the $3^{\text {rd }}$ of eqs. (10.27) the vector
$\mathbf{J}=\mathbf{J}(Q)=J_{0}\left(\begin{array}{l} \pm i \\ 0 \\ 0\end{array}\right)=\frac{W}{c}\left(\begin{array}{c}\mp 1 \\ 0 \\ 0\end{array}\right) \neq\left(\begin{array}{l}0 \\ 0 \\ 0\end{array}\right)$
of the momentum of the particle is on the axis $x_{1}=x$. Similarly from eq. (10.33) it follows that the vector
$\mathbf{j}=\frac{\sigma c^{2} c_{2} \alpha_{02}}{2 \hbar} z\left(\begin{array}{c} \pm 1 \\ 0 \\ 0\end{array}\right) \neq\left(\begin{array}{l}0 \\ 0 \\ 0\end{array}\right)$
is also on the axis $x_{1}=x$.
Let $\sigma=\varepsilon_{0}$, where ε_{0} is the dielectric constant of the vacuum, then in eq. (10.33) we have
$j=\frac{\varepsilon_{0} c^{2} c_{2} \alpha_{02}}{2 \hbar} z\left[\begin{array}{c}i \\ \pm 1 \\ 0 \\ 0\end{array}\right] \neq\left[\begin{array}{l}0 \\ 0 \\ 0 \\ 0\end{array}\right]$.
Inserting $\sigma=\frac{\hbar \varepsilon_{0}}{e}$ in eq. (10.33) we get
$j=\frac{\varepsilon_{0} c^{2} c_{2} \alpha_{02}}{2 e} z\left[\begin{array}{c}i \\ \pm 1 \\ 0 \\ 0\end{array}\right] \neq\left[\begin{array}{l}0 \\ 0 \\ 0 \\ 0\end{array}\right]$.
Eq. (10.36) gives the 4 -vector of the current density of a conserved quantity of electric charge (see paragraph 5.). Similarly eq. (10.37) gives the 4 -vector of the current density of a
conserved quantity of angular momentum. In both cases the vector \mathbf{j} is on axis $x_{1}=x$, as follows from eq. (10.35). Finally from the $3^{\text {rd }}, 4^{\text {th }}$ and $5^{\text {th }}$ of eqs. (10.27) we have

$$
\begin{align*}
& m_{0}=0 \\
& c_{2}= \pm M_{0} c \neq 0 \tag{10.38}\\
& E_{0}= \pm c c_{2}= \pm M_{0} c^{2} \neq 0
\end{align*}
$$

for the rest masses of the material particle which emerges as a consequence of the USVI.

The above eqs. completely describe the state of the field $(\boldsymbol{\alpha}, \boldsymbol{\beta})$ in the case of the symmetry T_{0221}^{2}. Working in the same way we can study the field $(\boldsymbol{\alpha}, \boldsymbol{\beta})$ for the symmetries of the sets $\Omega_{2}, \Omega_{3}, \Omega_{4}, \Omega_{5}, \Omega_{6}$.

11. The external symmetry factor

In this paragraph we study the factor which generates external symmetry. That is the momentum which emerges from the USVI, which is added to the internal symmetry momentum and eliminates the parallel property of the 4 -vectors J, P and C. To isolate and eventually to work out the external symmetry factor it is necessary to use all fundamental theorems of paragraph 7, as well as theorem 4.4 of paragraph 4. Next we give the first of these:

Corollary $\mathbf{1 1 . 1}$ ' 'In the 36 external symmetries of the set $\Omega_{2} \cup \Omega_{3} \cup \Omega_{5}$, in which $M_{0} \neq 0$, the factor $J(Q)$ which eliminates the parallel property of the 4 -vectors J, P and C of external symmetry during the involvement of a material particle in an interaction (USVI) is given by the equation
$J=J(Q)=-Q A=-Q\left[\begin{array}{l}A_{0} \\ A_{1} \\ A_{2} \\ A_{3}\end{array}\right]=-Q\left[\begin{array}{c}\frac{i V}{c} \\ A_{x} \\ A_{y} \\ A_{z}\end{array}\right]$
where A is the 4 -vector of the potential of the field $(\boldsymbol{\alpha}, \boldsymbol{\beta})$ with gauge function $f_{k}=0, k \in\{0,1,2,3\}$, as given by the equation
$A_{i}=\left\{\begin{array}{l}\frac{2 \hbar}{b} \frac{\alpha_{k i}}{c_{k}} z, \text { for } i \neq k \\ 0, \text { for } i=k\end{array}\right.$
$c_{k} \neq 0$
where $c_{k} \neq 0, k \in\{0,1,2,3\}, i=0,1,2,3$.'

Proof. The field $(\boldsymbol{\alpha}, \boldsymbol{\beta})$ is defined for external symmetries of the sets $\Omega_{2}, \Omega_{3}, \Omega_{4}, \Omega_{5}, \Omega_{6}$ of eq. (7.83). The potential of the field $(\boldsymbol{\alpha}, \boldsymbol{\beta})$ is given by eq. (4.32) of theorem 4.4. the determination of the external symmetry factor was possible only after the study of every one of the 36 external symmetries of the set $\Omega_{2} \cup \Omega_{3} \cup \Omega_{5}$, in which $M_{0} \neq 0$. The external symmetry factor for this set is given by eqs. (11.1) and (11.2). According to corollary 4.1 in external symmetry there is $c_{k} \neq 0$ for at least one index $k \in\{0,1,2,3\}$. Therefore the potential (11.2) is defined in all symmetries of the set $\Omega_{2} \cup \Omega_{3} \cup \Omega_{5}$. In cases where $c_{k} \neq 0$ for more than one index $k \in\{0,1,2,3\}$ the potentials which emerge from eq. (11.2) are equivalent, according to eq. (4.33) of theorem 4.4. The factor of external symmetry is that what, in the field «language» we would name potential momentum of the field ($\boldsymbol{\alpha}, \boldsymbol{\beta}$) of the USVI.ㅁ

With the knowledge of the 4 -vector $J(Q)$, as given by eqs. (11.1) and (11.2) we get the 4 -vector $P(Q)$ of USVI from eq.
$P=P(Q)=C-J(Q)$
From eqs. (11.1) and (11.2) it follows that in all symmetries of the set $\Omega_{2} \cup \Omega_{3} \cup \Omega_{5}$ the rest mass m_{0} of the USVI particle is zero:
$m_{0, U S V I}=m_{0}=0$
From eqs. (11.3) and (11.2) it follows that the rest energy $E_{0, U S V I}=E_{0}$ of the USVI particle is not the same in every symmetry of the set $\Omega_{2} \cup \Omega_{3} \cup \Omega_{5}$, in any case however we have the equality

$$
\begin{equation*}
E_{0, U S V I}=E_{0}= \pm M_{0} c^{2} \tag{11.5}
\end{equation*}
$$

where M_{0} the total rest mass of the generalized particle.

In internal symmetry, i.e. the spontaneous STEM emission of the material particle as a consequence of the Selfvariations, the 4 -vectors J, P and C are parallel. When the material particle involves in an interaction the direction of the 4-vector $J(Q)$ of the potential
momentum of the USVI in spacetime depends not only on the material particle. Thus the addition to the internal symmetry 4 -vector destroys the parallel property of the 4-vectors J, P and C of the generalized particle. The momentum 4-vector of internal symmetry is given by theorem 3.3, and considering eq. (11.1) we have

$$
J=\frac{1}{1+\Phi} C+J(Q)=\frac{1}{1+\Phi} C-Q A=\frac{1}{1+\Phi}\left[\begin{array}{l}
c_{0} \tag{11.6}\\
c_{1} \\
c_{2} \\
c_{3}
\end{array}\right]-Q\left[\begin{array}{c}
A_{0} \\
A_{1} \\
A_{2} \\
A_{3}
\end{array}\right]
$$

for the momentum 4 -vector J of the generalized particle. From eqs. (3.5) and (11.6) we also have

$$
P=\frac{\Phi}{1+\Phi}\left[\begin{array}{l}
c_{0} \tag{11.7}\\
c_{1} \\
c_{2} \\
c_{3}
\end{array}\right]+Q\left[\begin{array}{l}
A_{0} \\
A_{1} \\
A_{2} \\
A_{3}
\end{array}\right]
$$

for the momentum 4 -vector P of STEM. Another proof of the eq. (11.7) can be done from theorem 3.3 and eq. (11.1).

In this notation we do not discriminate between the 4-vectors $J(Q), P(Q)$ of potential momentum as a consequence of the USVI, and the total momentums J, P of the generalized particle, by generally using the symbols J, P. The presence of the function Φ in eqs. (11.6) and (11.7) eliminates any cause of confusion. Also we use the same symbol m_{0} for the rest mass of the particle which emerges as a consequence of the USVI as for the rest mass of the material particle. For the rest masses also there is not case of confusion since the USVI particles of the symmetries of the set $\Omega_{2} \cup \Omega_{3} \cup \Omega_{5}$ have always $m_{0}=0$, while the material particle's rest mass is always $m_{0}=\frac{M_{0}}{1+\Phi}$. This conclusion, as well as corrollary 11.1, follows from the study of all external symmetries of the set $\Omega_{2} \cup \Omega_{3} \cup \Omega_{5}$.

From eqs. (3.4) it follows that we get exactly the same physical quantities $\lambda_{k i}, k, i=0,1,2,3$ whether we use the pair of eqs. (11.1), (11.3) or the pairs (11.6), (11.7) in eq. (3.4). The terms of internal symmetry
$\frac{1}{1+\Phi} C$
in eq. (11.6) and
$\frac{\Phi}{1+\Phi} C$
in eq. (11.7) do not affect the physical quantities $\lambda_{k i}, k, i=0,1,2,3$. We suggest to select one particular symmetry of the set $\Omega_{2} \cup \Omega_{3} \cup \Omega_{5}$ and do the mathematical calculations. A good practice also for the understanding of the TSV is the proof of eqs. (5.10)-(5.15), first with the pairs of 4 -vectors (11.1), (11.3) and then with the pairs (11.6), (11.7). The eqs. of the TSV are valid for the 4 -vectors (11.1), (11.3) as well as for the 4 -vectors (11.6), (11.7). This fact reflects the physical content of the two symmetries, internal and external. The spacetime isotropy implies the parallel property of the 4 -vectors J and P which in turn implies eq. $\lambda_{k i}=0, \forall k, i=0,1,2,3$, as follows from eq. (3.4). The USVI is caused by the spacetime anisotropy, which implies the relation $\lambda_{k i} \neq 0$ for at least a pair of indices $(k, i), k, i=0,1,2,3$, as follows from eq. (3.4).

We now apply corollary 11.1 to symmetry T_{010203}^{0}, whose elements we know from paragraph 9. According to eq. (9.15) we have $c_{0} \neq 0$, hence from eqs. (11.2) we have
$A=\frac{2 \hbar z}{b c_{0}}\left[\begin{array}{c}0 \\ \alpha_{01} \\ \alpha_{02} \\ \alpha_{03}\end{array}\right]$
and with eq. (11.2) we have
$J=J(Q)=-\frac{2 \hbar z Q}{b c_{0}}\left[\begin{array}{c}0 \\ \alpha_{01} \\ \alpha_{02} \\ \alpha_{03}\end{array}\right]$
and with eqs. (9.15), (11.3) and (11.9) we have
$P=P(Q)=\frac{c_{0}}{\alpha_{02}}\left[\begin{array}{l}\alpha_{02} \\ \alpha_{01} \\ \alpha_{02} \\ \alpha_{03}\end{array}\right]+\frac{2 \hbar z Q}{b c_{0}}\left[\begin{array}{c}0 \\ \alpha_{01} \\ \alpha_{02} \\ \alpha_{03}\end{array}\right]$
for the momentum of the USVI particle.
Now from eqs. (11.6), (11.7), (9.15) and (11.8) we have
$J=\frac{c_{0}}{(1+\Phi) \alpha_{02}}\left[\begin{array}{l}\alpha_{02} \\ \alpha_{01} \\ \alpha_{02} \\ \alpha_{03}\end{array}\right]-\frac{2 \hbar z Q}{b c_{0}}\left[\begin{array}{c}0 \\ \alpha_{01} \\ \alpha_{02} \\ \alpha_{03}\end{array}\right]$
$P=\frac{\Phi c_{0}}{(1+\Phi) \alpha_{02}}\left[\begin{array}{l}\alpha_{02} \\ \alpha_{01} \\ \alpha_{02} \\ \alpha_{03}\end{array}\right]+\frac{2 \hbar z Q}{b c_{0}}\left[\begin{array}{c}0 \\ \alpha_{01} \\ \alpha_{02} \\ \alpha_{03}\end{array}\right]$
for the momentum of the generalized particle.

From eqs. (2.7) and (11.9) we have
$\frac{4 \hbar^{2} z^{2} Q^{2}}{b^{2} c_{0}^{2}}\left(\alpha_{01}^{2}+\alpha_{02}^{2}+\alpha_{03}^{2}\right)+m_{0}^{2} c^{2}=0$
and with eq. (9.5) we have
$0+m_{0}^{2} c^{2}=0$
$m_{0}=0$
for the rest mass of the USVI particle. From eqs. (2.8) and (11.10) we have
$\frac{c_{0}^{2}}{\alpha_{02}^{2}}\left(\alpha_{02}^{2}+\alpha_{01}^{2}+\alpha_{02}^{2}+\alpha_{03}^{2}\right)+\frac{4 \hbar^{2} z^{2} Q^{2}}{b^{2} c_{0}^{2}}\left(\alpha_{01}^{2}+\alpha_{02}^{2}+\alpha_{03}^{2}\right)+\frac{4 \hbar z Q}{b \alpha_{02}}\left(\alpha_{01}^{2}+\alpha_{02}^{2}+\alpha_{03}^{2}\right)+\frac{E_{0}^{2}}{c^{2}}=0$
and with eq. (9.5) we have
$c_{0}^{2}+\frac{E_{0}^{2}}{c^{2}}=0$
$E_{0}= \pm i c c_{0}$
which is eq. (9.18).

From eqs. (2.7) and (11.11) we have

$$
\begin{aligned}
& J_{0}^{2}+J_{1}^{2}+J_{2}^{2}+J_{3}^{2}=\frac{c_{0}^{2}}{(1+\Phi)^{2} \alpha_{02}^{2}}\left(\alpha_{02}^{2}+\alpha_{01}^{2}+\alpha_{02}^{2}+\alpha_{03}^{2}\right) \\
& +\frac{4 \hbar^{2} Q^{2}}{b^{2} c_{0}^{2}}\left(\alpha_{01}^{2}+\alpha_{02}^{2}+\alpha_{03}^{2}\right) \pm \frac{4 \hbar z Q}{b(1+\Phi) \alpha_{02}}\left(\alpha_{01}^{2}+\alpha_{02}^{2}+\alpha_{03}^{2}\right)
\end{aligned}
$$

and with eq. (9.5) we have
$J_{0}^{2}+J_{1}^{2}+J_{2}^{2}+J_{3}^{2}=\frac{c_{0}^{2}}{(1+\Phi)^{2}}$
and with eq. (2.7) we have
$-m_{0}^{2} c^{2}=\frac{c_{0}^{2}}{(1+\Phi)^{2}}$.
From eq. (9.15) we have
$c_{0}^{2}+c_{1}^{2}+c_{2}^{2}+c_{3}^{2}=\frac{c_{0}^{2}}{\alpha_{02}^{2}}\left(\alpha_{01}^{2}+\alpha_{02}^{2}+\alpha_{03}^{2}\right)$
and with eq. (9.5) we have
$c_{0}^{2}+c_{1}^{2}+c_{2}^{2}+c_{3}^{2}=c_{0}^{2}$
and with eq. (3.6) we have
$c_{0}^{2}=-M_{0}^{2} c^{2}$
and with eq. (11.13) we have
$m_{0}^{2} c^{2}=\frac{M_{0}^{2} c^{2}}{(1+\Phi)^{2}}$
and finally we have
$m_{0}= \pm \frac{M_{0}}{1+\Phi}$
which is eq. (3.10). Likewise from the eqs. (2.8) and (11.12) we get (3.11)
$E_{0}= \pm \frac{\Phi M_{0}}{1+\Phi}$.
From the pairs of eqs. (11.11) and (11.12) we have

$$
\begin{align*}
& J_{0}=\frac{c_{0}}{1+\Phi} \\
& J_{1}=\left(\frac{c_{0}}{(1+\Phi) \alpha_{02}}-\frac{2 \hbar z Q}{b c_{0}}\right) \alpha_{01} \tag{11.14}\\
& P_{0}=\frac{\Phi c_{0}}{1+\Phi} \\
& P_{1}=\left(\frac{\Phi c_{0}}{(1+\Phi) \alpha_{02}}+\frac{2 \hbar z Q}{b c_{0}}\right) \alpha_{01}
\end{align*}
$$

From eq. (3.4) and eqs. (11.14) we have

$$
\begin{align*}
& \lambda_{01}=\frac{b}{2 \hbar}\left(J_{0} P_{1}-J_{1} P_{0}\right) \\
& \lambda_{01}=\frac{b}{2 \hbar}\left(\frac{c_{0}}{1+\Phi}\left(\frac{\Phi c_{0}}{(1+\Phi) \alpha_{02}}+\frac{2 \hbar z Q}{b c_{0}}\right) \alpha_{01}-\frac{\Phi c_{0}}{1+\Phi}\left(\frac{c_{0}}{(1+\Phi) \alpha_{02}}-\frac{2 \hbar z Q}{b c_{0}}\right) \alpha_{01}\right) \\
& \lambda_{01}=\left(\frac{z Q}{1+\Phi}+\frac{\Phi z Q}{1+\Phi}\right) \alpha_{01} \\
& \lambda_{01}=z Q \alpha_{01} . \tag{11.15}
\end{align*}
$$

Eq. (11.15) is the eq. (4.4) for $k=0$ and $i=1$. In the same way we can proof that the pair of eqs. (11.1), (11.3) and (11.7), (11.8) give eqs. (4.4) for the symmetries of the set $\Omega_{2} \cup \Omega_{3} \cup \Omega_{5}$.

A question which arises from corollary 11.1 is if it can be generalized with the gauge function $f_{k}, k \in\{0,1,2,3\}, c_{k} \neq 0$ to be different than zero ($f_{k} \neq 0$) in eq. (4.32). The answer is yes and is given by the following corollary:

Corollary $\mathbf{1 1 . 2}$ ' For the factor $J(Q)=-Q A$ of external symmetries of the set $\Omega_{2} \cup \Omega_{3} \cup \Omega_{5}$ the 4 -vector A of the potential of the field $(\boldsymbol{\alpha}, \boldsymbol{\beta})$ is given by eq.
$A_{i}=\left\{\begin{array}{l}\frac{2 \hbar}{b} \frac{\alpha_{k i}}{c_{k}} z+\frac{\partial f_{k}}{\partial x_{i}}, \text { for } i \neq k \\ \frac{\partial f_{k}}{\partial x_{i}}, \text { for } i=k\end{array}\right.$
where $c_{k} \neq 0, k \in\{0,1,2,3\}, i=0,1,2,3$ and the gauge function f_{k} satisfies the condition $c_{k} \frac{\partial f_{k}}{\partial x_{i}}=c_{i} \frac{\partial f_{k}}{\partial x_{k}}, k \in\{0,1,2,3\}, i=0,1,2,3$.

In the case where $c_{k} \neq 0$ for more than one index $k \in\{0,1,2,3\}$, i.e. where $c_{k} c_{i} \neq 0, k \neq i, k, i \in\{0,1,2,3\}$, the potentials which arise from eq. (11.16) are equivalent, as follows from eq. (4.33)

$$
\begin{equation*}
f_{k}=f_{i}+\frac{4 \hbar^{2} z}{b^{2}} \frac{\alpha_{k i}}{c_{k} c_{i}}, c_{k} c_{i} \neq 0, k \neq i, k, i=0,1,2,3 \tag{11.18}
\end{equation*}
$$

of the theorem 4.4."
Proof. From eqs. (11.1) and (11.3) we have

$$
\begin{align*}
& J_{k}=-Q A_{k} \\
& P_{i}=c_{i}+Q A_{i} . \tag{11.19}\\
& k, i=0,1,2,3
\end{align*}
$$

Initially we ask that the combination of the eqs. (3.4) and (11.19) should give eq. (4.4):
$\lambda_{k i}=\frac{b}{2 \hbar}\left(J_{k} P_{i}-J_{i} P_{k}\right)$
$z Q \alpha_{k i}=\frac{b}{2 \hbar}\left(-Q A_{k}\left(c_{i}+Q A_{i}\right)+Q A_{i}\left(c_{k}+Q A_{k}\right)\right)$
$z Q \alpha_{k i}=\frac{b}{2 \hbar}\left(-Q c_{i} A_{k}-Q^{2} A_{k} A_{i}+Q c_{k} A_{i}+Q^{2} A_{i} A_{k}\right)$
$z Q \alpha_{k i}=\frac{b}{2 \hbar} Q\left(c_{k} A_{i}-c_{i} A_{k}\right)$

$$
\begin{equation*}
\frac{2 \hbar}{b} z \alpha_{k i}=c_{k} A_{i}-c_{i} A_{k} . \tag{11.20}
\end{equation*}
$$

Combining eqs. (11.20) and (11.16) for $c_{k} \neq 0, k \in\{0,1,2,3\}, i \neq k, i=0,1,2,3$ we have

$$
\begin{aligned}
& \frac{2 \hbar}{b} z \alpha_{k i}=c_{k}\left(\frac{2 \hbar}{b} \frac{\alpha_{k i}}{c_{k}} z+\frac{\partial f_{k}}{\partial x_{i}}\right)-c_{i} \frac{\partial f_{k}}{\partial x_{k}} \\
& 0=c_{k} \frac{\partial f_{k}}{\partial x_{i}}-c_{i} \frac{\partial f_{k}}{\partial x_{k}}
\end{aligned}
$$

and finally we have
$c_{k} \frac{\partial f_{k}}{\partial x_{i}}=c_{i} \frac{\partial f_{k}}{\partial x_{k}}$
which is condition (11.17). The proof is completed by showing that the corollary is valid for everyone of the external symmetries of the set $\Omega_{2} \cup \Omega_{3} \cup \Omega_{5}$. The last step of the proof is necessary because in the procedure of the proof we used eq. (11.1) of corollary 11.1.

Corollary 11.1 is a special case of corollary 11.2 for $f_{k}=0, k \in\{0,1,2,3\}$. Via eqs. (11.6), (11.7) and (11.1), (11.3) corollary 11.2 gives the 4 -vectors J and P of the material particle and the USVI particle respectively for the symmetries of the set $\Omega_{2} \cup \Omega_{3} \cup \Omega_{5}$. It is easy to prove that the rest mass of the material particle is given by eq. (3.10) and the rest mass of the USVI particle is zero.

For the symmetries $T=z Q \Lambda$ of the set Ω_{1} the field $(\boldsymbol{\alpha}, \boldsymbol{\beta})$ is not defined. Therefore the present study does not concern the symmetries $T=z Q \Lambda$. The cause of external symmetries for the symmetries of the set Ω_{1} is given by corollary 8.1 of paragraph 8 .

12. The Cosmological Data as a Consequence of the Theorem of Internal Symmetry

The theorem 3.3., that is the theorem of internal symmetry, predicts and justifies the cosmological data. We present the relevant study in this paragraph.

The emission of the electromagnetic spectrum of the far-distant astronomical objects we observe today has taken place a long time interval ago. At the moment of the emission the rest mass and the electric charge of the material particles had smaller values than the
corresponding ones measured in the laboratory, "now", on Earth, due to the manifestation of the Selfvariations. The consequences resulting from this difference are recorded in the cosmological data. The cosmological data have a microscopic and not a macroscopic cause.

Due to the Selfvariations of the rest masses of the material particles the gravitational interaction cannot play the role attributed to it by the Standard Cosmological Model (SCM). The gravitational interaction cannot cause neither the collapse, nor the expansion of the universe, since it decreases on a cosmological scale according to the factor $\frac{1}{1+z}$. The gravitational interaction exercised on our galaxy by a far-distant astronomical object with redshift $z=9$ is only the $\frac{1}{10}$ of the expected one. The universe is static and flat, according to the law of Selfvariations.

For a non- moving particle, that is for $J_{1}=J_{2}=J_{3}=0$, from equation (3.12) we get that $c_{1}=c_{2}=c_{3}=0$ and from equation (3.9) we obtain

$$
\Phi=K \exp \left(-\frac{b}{\hbar} c_{0} x_{0}\right)
$$

and since $x_{0}=i c t$, we have

$$
\Phi=K \exp \left(-\frac{i c c_{0}}{\hbar} t\right)
$$

and from equation (3.10) we obtain
$m_{0}=m_{0}(t)= \pm \frac{M_{0}}{1+K \exp \left(-\frac{i c c_{0}}{\hbar} t\right)}$.
The rest mass m_{0} of the material particle is a function of time t.
We now denote by k the constant
$k=-\frac{i c c_{0}}{\hbar}$
and from eq. (3.5) we have
$k=-\frac{i c c_{0}}{\hbar}=\frac{W+E}{\hbar}$.
We also denote by A the time-dependent function
$A=A(t)=-K \exp (k t)=-\Phi$.

Following this notation, equation (12.1) is written as
$m_{0}=m_{0}(t)= \pm \frac{M_{0}}{1-A}$.
From equation (12.3) we have
$\frac{d A}{d t}=\dot{A}=k A$.
for the expression of the parameter $A=A(t)$. Similarly, using the above notation equation (3.11) is written as
$E_{0}=E_{0}(t)=\mp \frac{M_{0} c^{2} A}{1-A}$.

We consider an astronomical object at distance r from Earth. The emission of the electromagnetic spectrum of the far-distant astronomical objects we observe "now"on Earth has taken place before a time interval $\delta t=t-\frac{r}{c}$. From equation (12.3) we have that the parameter A obtained the value

$$
A=A(r)=A(t) \exp \left(-k \frac{r}{c}\right)
$$

and from equation (12.4) we have
$m_{0}(r)= \pm \frac{M_{0}}{1-A \exp \left(-k \frac{r}{c}\right)}$.
Similarrly from equation (12.6) we have
$E_{0}(r)=\mp \frac{M_{0} c^{2} A \exp \left(-k \frac{r}{c}\right)}{1-A \exp \left(-k \frac{r}{c}\right)}$.
From equations (12.4) and (12.7) we have
$m_{0}(r)=m_{0} \frac{1-A}{1-A \exp \left(-k \frac{r}{c}\right)}$.
We can prove that for the electric charge q of the material particles an equation analogous to equation (12.7) is valid. From equation (4.2) we derive an equation corresponding to equation (12.9), which is the following equation
$q(r)=q \frac{1-B}{1-B \exp \left(-k_{1} \frac{r}{c}\right)}$.
The fine structure constant α is defined as

$$
\begin{equation*}
\alpha=\frac{q^{2}}{4 \pi \varepsilon_{0} c \hbar} \tag{12.11}
\end{equation*}
$$

and using equation (12.10) we obtain

$$
\begin{equation*}
\alpha(r)=\alpha\left(\frac{1-B}{1-B \exp \left(-k_{1} \frac{r}{c}\right)}\right)^{2} \tag{12.12}
\end{equation*}
$$

The wave length λ of the linear spectrum is inversely proportional to the factor $m_{0} q^{4}$, where m_{0} is the rest mass and q is the electric charge of the electron. If we denote by λ_{0} the wavelength of a photon emitted by an atom "now"on Earth, and by λ the same wavelength of the same atom received "now" on Earth from the far-distant astronomical object, the following relation holds:
$\frac{\lambda}{\lambda_{0}}=\frac{m_{0} q^{4}}{m_{0}(r) q^{4}(r)}$
and from equations (12.9) and (12.10) we obtain
$\frac{\lambda}{\lambda_{0}}=\frac{1-A \exp \left(-k \frac{r}{c}\right)}{1-A}\left(\frac{1-B \exp \left(-k_{1} \frac{r}{c}\right)}{1-B}\right)^{4}$.

From equation (12.13) we have for the redshift
$z=\frac{\lambda-\lambda_{0}}{\lambda_{0}}=\frac{\lambda}{\lambda_{0}}-1$
of the astronomical object that
$z=\frac{1-A \exp \left(-k \frac{r}{c}\right)}{1-A}\left(\frac{1-B \exp \left(-k_{1} \frac{r}{c}\right)}{1-B}\right)^{4}-1$.

Equation (12.14) can also be written as
$z=\frac{1-A \exp \left(-k \frac{r}{c}\right)}{1-A}\left(\frac{\alpha}{\alpha(r)}\right)^{2}-1$
after considering equation (12.12).
From the cosmological data and from measurements conducted on Earth, we know that the variation of the fine structure constant is extremely small. Therefore, from equation (12.15), we obtain with extremely accurate approximation

$$
\begin{align*}
& z=\frac{1-A \exp \left(-k \frac{r}{c}\right)}{1-A}-1 \\
& z=\frac{A}{1-A}\left(1-e^{-\frac{k r}{c}}\right) . \tag{12.16}
\end{align*}
$$

Equation (12.16) holds with great accuracy. The variation of the fine structure constant is so small, so that any contribution t redshift is overlapped by the same contributions from the fardistant astronomical objects, due to Doppler's effect.

For small distances r, we obtain from equation (12.16)
$z=\frac{A}{1-A}\left(1-1+\frac{k r}{c}\right)$
$z=\frac{k A}{c(1-A)} r$
and comparing this with Hubble's law
$c z=H r$
we get
$\frac{k A}{1-A}=H$
where H is Hubble's parameter.
From equation (12.17) we have
$\frac{d H}{d t}=\dot{H}=\frac{k \dot{A}(1-A)+k \dot{A}}{(1-A)^{2}}$
$\dot{H}=\frac{k \dot{A}}{(1-A)^{2}}$
and with equation (12.5) we obtain
$\dot{H}=\frac{k^{2} A}{(1-A)^{2}}$
and from equation (12.17) we have
$\dot{H}=\frac{H}{A}$.

For $\frac{m_{0} c^{2}}{M_{0} c^{2}}>0 \wedge \frac{E_{0}}{M_{0} c^{2}}<0$ or $\frac{m_{0} c^{2}}{M_{0} c^{2}}<0 \wedge \frac{E_{0}}{M_{0} c^{2}}>0$ we have
$\frac{m_{0} c^{2}}{M_{0} c^{2}} \frac{E_{0}}{M_{0} c^{2}}<0$
and with eqs. (3.10) and (3.11) we have
$\frac{\Phi}{(1+\Phi)^{2}}<0$
$\Phi<0$
and with eq. (12.3) we finally get
$\Phi<0$
$A=-\Phi>0$.

From eq. (12.17) we have
$\frac{k A}{1-A}>0$
and considering relation (12.19) we get two combinations for the constant k and the parameter A :

$$
\begin{align*}
& 0<A<1 \wedge k>0 \Leftrightarrow 0<1+\Phi<1 \wedge k>0 \tag{12.20}\\
& A>1 \wedge k<0 \Leftrightarrow 1+\Phi<0 \wedge k<0
\end{align*}
$$

From eqs. (12.7) and (12.8) it follows that the sign change of the constant k is equivalent with the interchange of the roles of the rest masses m_{0} and $\frac{E_{0}}{c^{2}}$. Hence it suffices to present the conclusions resulting from the first case of (12.20).

For $k>0$ for eq. (12.16) we have

$$
\begin{equation*}
\lim _{r \rightarrow \infty} z=\frac{A}{1-A} . \tag{12.21}
\end{equation*}
$$

The redshift has an upper limit which depends on the value of the parameter A, even in the case that the universe extends to infinity. In the case the universe has finite extension, let $r_{\max }=R$ and from eq. (12.16) we have
$z_{\max }=\frac{A}{1-A}\left(1-e^{-\frac{k R}{c}}\right)$.
Thus redshift has a maximum value. The upper redshift limit of eq. (12.21) and $z_{\max }$ of eq. (12.22) are almost equal. Hence in the following we will use eq. (12.21).

From eqs. (12.16) and (12.5) we get after the calculations
$\frac{d z}{d t}=\dot{z}=\frac{k A}{(1-A)^{2}}\left(1-e^{-\frac{k r}{c}}\right)$
and with eq. (12.17) we have
$\dot{z}=\frac{H}{1-A}\left(1-e^{-\frac{k r}{c}}\right)=\frac{H}{A} z>0$.

Thus the redshift of far distant astronomical objects increases slightly with the passage of time.

According to eq. (12.21) it is
$z<\frac{A}{1-A}$
and because of $1-A>0$ we have
$\frac{z}{1+z}<A$
and because of $A<1$ we have
$\frac{z}{1+z}<A<1$.
From the inequality (12.24) it follows that
$A \rightarrow 1^{-}$.

We prove now that as $A \rightarrow 1^{-}$the equation (12.16) tends to Hubble's law $c z=H r$. Let $x=\frac{1-A}{A}$ then $x \rightarrow 0^{+}$for $A \rightarrow 1^{-}$, while from eq. (12.17) we get $k=x H$ and eq. (12.16) may be written as

$$
z=\frac{1}{x}\left[1-\exp \left(-\frac{H r}{c}\right)\right] .
$$

Hence we get
$\lim _{A \rightarrow 1^{-}}=\lim _{x \rightarrow 0^{+}} \frac{1}{x}\left[1-\exp \left(-x \frac{H r}{c}\right)\right]=\frac{H r}{c}$.

From relation (12.5) follows the conclusion that
$\frac{d A}{d t}=k A>0$.
Thus the parameter A increases with the passage of time. Hence according to the forementioned proof, the eq. (12.16) tends to the Hubble law with the passage of time.

Combining eqs. (12.9) and (12.16) we have
$m_{0}(z)=\frac{m_{0}}{1+z}$.
The eq. (12.27) has multiple consequences on cosmological scale.
According to eq. (12.27) the gravitational interaction between two astronomical objects is smaller than expected by the factor $\frac{1}{1+z}$. The redshift z depends on their distance r as given in eq. (12.16). This is the redshift that an observer on one object would measure by observing the other object.

For the solar system or for the structure of a galaxy or a galaxy cluster, eq. (12.27) has no consequences. On this distance scale we practically have $z=0$. However we can seek consequences on this scale from another equation. From eq. (12.4) we have
$\frac{d m_{0}}{d t}=\dot{m_{0}}= \pm \frac{M_{o} \dot{A}}{(1-A)^{2}}$
and from eq. (12.4) we have
$\dot{m_{0}}=m_{0} \frac{\dot{A}}{1-A}$
and with eq. (12.5) we get
$\frac{\dot{m}_{0}}{m_{0}}=\frac{k A}{1-A}$
and with eq. (12.17) we get
$\frac{\dot{m_{0}}}{m_{0}}=H$
for the rest mass of the electron.

Eq. (12.28) concerns the mass $m_{0}=m_{0}(t)$. Therefore its consequences can be found in our galaxy or even in the solar system. We notice that the value of the Hubble parameter H is probably smaller than the one accepted today, but we will not continue the analysis to this matter in this publication. In any case the experimental verification of eq. (12.28) requires measurements with sensitive instruments of observation. For the conduct of these measurements eq. (4.19) of the USVI must also be taken into account.

Eq. (12.27) has important consequences on cosmological scale distances. For such distances the gravitational interaction diminishes quickly and beyond some distance it practically vanishes. It has however played an important role for the creation of all large structures in the universe.

As we will see further down, the very early universe differed only slightly from vacuum. The gravitational interaction strengthens with the passage of time, as the rest masses of material particles increase. Moreover, its strength depends on distance as predicted by the law of universal gravitation, but also for cosmological distances, as predicted by eq. (12.27). Both these factors played an important role for the creation of all large structures in the universe and have not been both accounted for in the interpretation of the cosmological data via the SCM.

From eqs. $E=m c^{2}$ and (12.27) we have

$$
\begin{equation*}
E(z)=\frac{E}{1+z} . \tag{12.29}
\end{equation*}
$$

In every case of transformation of mass to energy. The production of energy in the universe is mainly achieved via hydrogen fusion and nuclear reactions. Therefore the energy produced in the past in the far distant astronomical objects was smaller than the corresponding energy produced today in our galaxy through the same mechanism. This fact has two immediate consequences.

The first is that eq. (12.16) is valid for the redshift z_{a} of the radiation which stems from accelerated/ decelerated electrons
$z_{a}=\frac{A}{1-A}\left(1-e^{-\frac{k r}{c}}\right)$.
And hence for the continuous spectrum. Similar mechanisms which accelerate electrons in our galaxy and in far distant astronomical objects do not give the same amount of energy to the electrons. According to eq. (12.29) the energy which is supplied to the electrons in far distant astronomical objects is less than the corresponding energy in our galaxy.

The second consequence concers the luminosity distance D of far distant astronomical objects. The overall decrease of the energy produced in the past, due to eq. (12.29) has as consequence the overall decrease of luminositites of distant astronomical objects. From the definition of the luminosity distance D it follows easy that

$$
\begin{equation*}
D=r \sqrt{1+z} . \tag{12.31}
\end{equation*}
$$

Between the distance r of the astronomical object and the distance D measured from its luminosity. The luminosity distance D is measured always larger than the real distance of the astronomical object. The real distance r of the distant astronomical object is given by eq.
$r=\frac{c}{k} \ln \left(\frac{A}{1-z(1-A)}\right)$
which follows from eq. (12.16). The distance measurement from eq. (12.32) can be made if we know the constant k and the parameter A. Generally, due to eq. (12.17) it suffices to know two of the parameters k, A, H.

The ionization energy as well as the excitation energy X_{n} of atoms is proportional to the factor $m_{0} q^{4}$, where m_{0} is the rest mass and q the electric charge of the electron. Hence we get
$\frac{X_{n}(r)}{X_{n}}=\frac{m_{0}(r)}{m_{0}}\left(\frac{q(r)}{q}\right)^{4}$
$\frac{X_{n}(r)}{X_{n}}=\frac{m_{0}(r)}{m_{0}}\left(\frac{\alpha(r)}{\alpha}\right)^{2}$
and because of

$$
\frac{\alpha(r)}{\alpha} \approx 1
$$

we have
$\frac{X_{n}(r)}{X_{n}}=\frac{m_{0}(r)}{m_{0}}$
and with eq. (12.27) we have

$$
\begin{align*}
& \frac{X_{n}(r)}{X_{n}}=\frac{X_{n}(z)}{X_{n}}=\frac{1}{1+z} \\
& X_{n}(r)=X_{n}(z)=\frac{X_{n}}{1+z} . \tag{12.3}
\end{align*}
$$

From eq. (12.33) we conclude tha the ionization and excitation energies of atoms decrease with inceasing redshift. This fact has consequences on the degree of ionization of atoms in the distant astronomical objects

The number of excited atoms in a gas in a state of thermodynamic equilibrium is given by Boltzmann's eq.
$\frac{N_{n}}{N_{1}}=\frac{g_{n}}{g_{1}} \exp \left(-\frac{X_{n}}{K T}\right)$
where N_{n} is the number of atoms at energy level n, X_{n} the excitation energy from the the $1^{\text {st }}$ to the $n^{\text {th }}$ energy level, $K=1.38 \times 10^{-23} J K^{-1}$ Boltzmann's constant, T the temperature in degrees Kelvin, and g_{n} the multiplicity of level n, i.e. the number of levels into which level n is split apart inside a magnetic field.

Combining eqs. (12.33) and (12.34) we get

$$
\begin{equation*}
\frac{N_{n}}{N_{1}}=\frac{g_{n}}{g_{1}} \exp \left(-\frac{X_{n}}{K T(1+z)}\right) \tag{12.35}
\end{equation*}
$$

For the hydrogen atom for $n=2, X_{2}=10.5 \mathrm{eV}=16.4 \times 10^{-19} \mathrm{~J}, g_{1}=2, g_{2}=8$ and at the surface of the Sun where $T \sim 6000 K$ eq. (12.34) implies that just one in 10^{8} atoms is at state $n=2$.

Correspondingly from eq. (12.35) and for $z=1$ we have $\frac{N_{2}}{N_{1}}=2.2 \times 10^{-4}$, for $z=2$ we have $\frac{N_{2}}{N_{1}}=5.8 \times 10^{-3}$, and for $z=5$ we have $\frac{N_{2}}{N_{1}}=0.15$.

Considering eq. (11.21) we get from eq. (12.33)
$X_{n}(r \rightarrow \infty)=X_{n}(1-A)$.
Considering relations (12.24) and (12.25) we conclude that the ionization and excitation energies of atoms tend to zero in the very early universe. The universe went through an ionization phase in its initial phase of evolution.

The laboratory value of the Thomson scattering coefficient is given by eq.

$$
\begin{equation*}
\sigma_{\mathrm{T}}=\frac{8 \pi}{3} \frac{q^{4}}{m_{0}^{2} c^{4}} \tag{12.37}
\end{equation*}
$$

where m_{0} the rest mass and q the electric charge of the electron. Thus we have

$$
\frac{\sigma_{T}(z)}{\sigma_{T}}=\left(\frac{m_{0}}{m_{0}(z)}\right)\left(\frac{\alpha}{\alpha(z)}\right)^{2}
$$

and because of $\alpha(z) \sim \alpha$ we get

$$
\frac{\sigma_{T}(z)}{\sigma_{T}}=\left(\frac{m_{0}}{m_{0}(z)}\right)^{2}
$$

and with eq. (12.27) we have

$$
\begin{equation*}
\frac{\sigma_{T}(z)}{\sigma_{T}}=(1+z)^{2} \tag{12.38}
\end{equation*}
$$

The Thomson coefficient concerns the scattering of photons with low energy E. For photons with high energy E the photon scattering is determined from the Klein-Nishina coefficient :

$$
\begin{equation*}
\sigma=\frac{3}{8} \sigma_{T} \frac{m_{0}}{E}\left[\ln \left(\frac{2 E}{m_{0} c^{2}}\right)+\frac{1}{2}\right] \tag{12.39}
\end{equation*}
$$

in the laboratory and
$\sigma(z)=\frac{3}{8} \sigma_{T}(z) \frac{m_{0}(z) c^{2}}{E(z)}\left[\ln \left(\frac{2 E(z)}{m_{0}(z) c^{2}}\right)+\frac{1}{2}\right]$
in astronomical objects with redshift z. From eqs. (12.27) and (12.29) we have
$\frac{m_{0}(z)}{E(z)}=\frac{m_{0}}{E}$
hence from eq. (12.40) we get
$\sigma(z)=\frac{3}{8} \sigma_{T}(z) \frac{m_{0} c^{2}}{E}\left[\ln \left(\frac{2 E}{m_{0} c^{2}}\right)+\frac{1}{2}\right]$
and with eq. (12.38) we have

$$
\begin{equation*}
\frac{\sigma(z)}{\sigma}=\frac{\sigma_{T}(z)}{\sigma_{T}}=(1+z)^{2} . \tag{12.41}
\end{equation*}
$$

From eq. (12.41) we conclude that the Thomson and Klein-Nishina scattering coefficients increase with redshift and indeed in the same manner. Considering eq. (12.21) we have

$$
\begin{equation*}
\frac{\sigma(r \rightarrow \infty)}{\sigma}=\frac{\sigma_{T}(r \rightarrow \infty)}{\sigma_{T}}=\frac{1}{(1-A)^{2}} . \tag{12.42}
\end{equation*}
$$

Considering eqs. (12.24) and (12.25) we conclude that the Thomson and Klein-Nishina scattering coefficients had enormous values in the vary early universe. In its initial phase the universe was totally opaque. From this initial phase stems the cosmic microwave background radiation (CMBR) we observe today.

The internal symmetry theorem (3.3) predicts that the initial universe was at a 'vacuum state' with temperature $T=0 K$. Due to the Selfvariations the universe evolved to the state we observe today. This evolution agrees with the fact that the CMRB corresponds to a black body radiation with temperature $T \sim 2.73 \mathrm{~K}$.

Combining eqs. (3.11) and (12.3) we have in the laboratory
$J_{i}=\frac{c_{i}}{1-A(t)}, i=0,1,2,3$
and
$J_{i}(r)=\frac{c_{i}}{1-A\left(t-\frac{r}{c}\right)}=\frac{c_{i}}{1-A \exp \left(-\frac{k r}{c}\right)}, i=0,1,2,3$
for an astronomical object at distance r, and combining these two eqs. with eq. (12.9) we get
$\frac{J_{i}(r)}{J_{i}}=\frac{m_{0}(r)}{m_{0}}$
and with eq. (12.27) we have
$\frac{J_{i}(z)}{J_{i}}=\frac{1}{1+z}$

$$
\begin{equation*}
J_{i}(z)=\frac{J_{i}}{1+z}, i=0,1,2,3 . \tag{12.43}
\end{equation*}
$$

From the Heisenberg uncertainty principle for the axis $x_{1}=x$ we have

$$
J_{1} \Delta x \sim \hbar
$$

in the lab, and

$$
J_{1}(z) \Delta x(z) \sim \hbar
$$

for the astronomical object, and combining these two relations we get

$$
J_{1}(z) \Delta x(z)=J_{1} \Delta x
$$

and with eq. (12.43) we have

$$
\begin{equation*}
\Delta x(z)=(1+z) \Delta x . \tag{12.44}
\end{equation*}
$$

From eq. (12.44) we conclude that the uncertainty $\Delta x(z)$ of position of a material particle increases with redshift. Moreover as the universe evolved towards the state we observe today, the uncertainty of position of material particles was decreasing.

From eqs. (12.44) and (12.21) we have

$$
\begin{equation*}
\Delta x(r \rightarrow \infty)=\frac{\Delta x}{1-A} . \tag{12.45}
\end{equation*}
$$

Considering relations (12.24) and (12.25) we conclude that in the very early universe there existed great uncertainty of position of material particles. The same conclusions arise for the Bohr radius. The TSV is agrees with the uncertainty principle. In the next paragraph we will see that the uncertainty of position of a material particle is one more consequence of theorem 3.3.

From eq. (12.33) it follows that as the universe evolved to the state we observe today the ionization energy increased. This prediction is generally valid for any kind of negative dynamical energies which bind together material particles to produce more complex particles. From eq. (12.27) we have

$$
\begin{equation*}
\Delta m_{0}(z) c^{2}=\frac{\Delta m_{0} c^{2}}{1+z} \tag{12.46}
\end{equation*}
$$

for the energy $\Delta m_{0} c^{2}$, the mass deficiency, which ties together the particles which constitute the nuclei of the elements. According to eq. (12.46) the energy $\Delta m_{0} c^{2}$, like the ionization energies, increased as the universe evolved towards its present state.

Particle like the electron, which today are considered fundamental may in fact be composed of other particles. Our inability to break them apart could be due to the strengthening of the binding energies of the constituent particles. The mass M_{0} in eq. (3.10) has many chances to the only realy fundamental rest mass, from which the masses of all other particles are composed.

From eqs. (12.27) and (12.21) we have

$$
\begin{equation*}
m_{0}(r \rightarrow \infty)=m_{0}(1-A) \neq 0 . \tag{12.47}
\end{equation*}
$$

Considering the relations (12.24) and (12.25) we conclude that, towards the initial state of the universe, the rest masses of material particles tend to zero:

$$
\begin{equation*}
m_{0}(r \rightarrow \infty)=m_{0}(1-A) \rightarrow 0 . \tag{12.48}
\end{equation*}
$$

From eq. (12.8) we have

$$
\begin{equation*}
E_{0}(r \rightarrow \infty)=0 . \tag{12.49}
\end{equation*}
$$

According to the relations (12.48) and (12.49) the initial state of the universe slightly differed from vacuum. The same conclusion arises in the case the universe is finite, taking $r_{\text {max }}=R<\infty$ instead of the condition $r \rightarrow \infty$ we have used.

We have studied the case of $J_{1}=J_{2}=J_{3}=0$ in equation (3.12) in order to bypass the consequences on the redshift produced by the proper motion of the electron. Thus, from equation (3.6) we obtain
$M_{0}= \pm \frac{i c_{0}}{c}$.

From equation (12.2) we also have

$$
\begin{equation*}
M_{0}= \pm \frac{k \hbar}{c^{2}} . \tag{12.50}
\end{equation*}
$$

From equation (12.17) we obtain that the constant k obtains an extremely small value. Therefore, the same holds and for the rest mass M_{0}, as a result of equation (12.50).

From equation (12.5) we conclude that the parameter A varies only very slightly with the passage of time. The age of the Universe is correlated at a greater degree with the value of the parameter A we measure today, and less with Hubble's parameter H. In any case the two parameters A and H are correlated via eq. (12.17).

With the exception of eqs. (12.16) and (12.32), the TSV equations for cosmology do not depend on the values of the parameters k, A and H. They solely depend on z, which is accurately measured. Eq. (12.27) allows us to express all the fundamental astrophysical equations as a function of z. For measurements with higher accuracy, and whenever allowed by the observation instruments, we have to consider eqs. (12.10) and (12.12).

The redshift in equation (12.14) comes from the selfvariations of the rest mass and the electric charge of the electron. The redshift in the main volume of the linear spectrum we observe from distant astronomical objects, is actually caused by this effect. Today, however, we have the capability [16] to perform high sensitivity measurements of the effects of the Selfvariations. The structure of matter predicted by TSV must be taken into account in these measurements. The fundamental rest mass M_{0} of equation (12.50) is by far smaller than the neutrino mass. Neutrinos, not to speak of other particles, have internal structure. This
structure could influence the sum $W+E$ in the right part of equation (12.2). In such a case, we will obtain a different value for the constants k and c_{0} for different material particles.

Writing equation (12.2) in the form
$k_{p}=-\frac{i c_{0, p}}{\hbar}=\frac{W_{p}+E_{p}}{\hbar}$
we can introduce an index " p " in the equations of this paragraph. Every index " p " corresponds to a specific particle when the right part of equation (12.2) is not constant.

The measurements we perform on a cosmological scale depend on the physical quantity
$\frac{k_{p} A_{p}}{1-A_{p}}=H_{p}$.

The main volume of the linear spectrum we get from distant cosmological objects comes from the process of atomic excitation/relaxation, thus the Hubble parameter H as given by equation (12.17)
$\frac{k A}{1-A}=H$
expresses the consequences of the selfvariation of the electron rest mass. In equations (12.14), (12.16), (12.22), (12.32), (12.33), (12.35), (12.41) and (12.42) the rest mass of the electron comes into play. Therefore, these equations are unaffected by equation (12.51).

The energy of the γ radiation that comes from nuclear reactions, and not from accelerated/decelerated electrons, depends on the particles that take part in the reaction. Consequently, their energy depends on equation (12.51). In this case equation (12.9) takes the form
$m_{0}(r)=m_{0} \frac{1-A_{p}}{1-A_{p} \exp \left(-k_{p} \frac{r}{c}\right)}$
and considering that
$\frac{\lambda_{\gamma}(r)}{\lambda_{\gamma}}=\frac{\Delta m_{0} c^{2}}{\Delta m_{0}(r) c^{2}}$
we get
$\frac{\lambda_{\gamma}(r)}{\lambda_{\gamma}}=\frac{1-A_{p} \exp \left(-k_{p} \frac{r}{c}\right)}{1-A_{p}}$
and we finally get

$$
\begin{equation*}
z_{\gamma}=\frac{A_{p}}{1-A_{p}}\left(1-\exp \left(-k_{p} \frac{r}{c}\right)\right) . \tag{12.54}
\end{equation*}
$$

For relatively small distances, from equation (12.54) we get

$$
\begin{equation*}
z_{\gamma}=\frac{k_{p} A_{p}}{1-A_{p}} \frac{r}{c}=H_{p} \frac{r}{c} . \tag{12.55}
\end{equation*}
$$

Correlating a source of γ radiation from nuclear reactions with a galaxy, we can compare the z and z_{γ} redshifts. From this comparison we can draw important conclusions about equation (12.51) as well as about the predictions of the TSV. We note that the SCM, in explaining the redshift through the hypothesis of universal expansion, does not predict any difference between the z and z_{γ} redshifts.

Equation (12.28)

$$
\frac{\dot{m_{0}}}{m_{0}}=H
$$

holds for the rest mass of the electron. For other particles it is written in the form

$$
\begin{equation*}
\frac{\dot{m_{0}}}{m_{0}}=\frac{k_{p} A_{p}}{1-A_{p}}=H_{p} . \tag{12.56}
\end{equation*}
$$

The mass of the electron represents a small part of the mass of the atom. Therefore, in measurements based on the gravitational interaction, the consequences of the mass selfvariation are governed by equation (12.56).

The rest mass $m_{0, H}$ of the hydrogen atom is

$$
\begin{equation*}
m_{0, H}=m_{0, p}+m_{0, e} \tag{12.57}
\end{equation*}
$$

where $m_{0, p}$ and $m_{0, e}$ the rest mass of the proton and the electron respectively. From eq. (12.57) we have

$$
\dot{m}_{0, H}=\dot{m}_{0, p}+\dot{m}_{0, e}
$$

and with eqs. (12.56) for the proton and (12.28) for the electron we have

$$
\begin{equation*}
\dot{m}_{0, H}=H_{p} m_{0, p}+H m_{0, e} . \tag{12.58}
\end{equation*}
$$

From eqs. (12.57) and (12.58) we have

$$
\frac{\dot{m}_{0, H}}{m_{0, H}}=\frac{H_{p} m_{0, p}+H m_{0, e}}{m_{0, p}+m_{0, e}}
$$

and considering that today it is
$m_{0, e}=5.4 \times 10^{-4} m_{0, p}$
we have

$$
\begin{equation*}
\frac{\dot{m}_{0, H}}{m_{0, H}}=\frac{H_{p}+5.4 \times 10^{-4} \mathrm{H}}{1+5.4 \times 10^{-4}}=H_{p}+5.4 \times 10^{-4} \mathrm{H} . \tag{12.59}
\end{equation*}
$$

From eq. (12.59) we conclude that the ratio
$\frac{\dot{m}_{0, H}}{m_{0, H}}$
of the hydrogen atom depends on the relation of the parameter H_{p} for the proton with the Hubble parameter H. Similarly we obtain
$\frac{\dot{m}_{0, a}}{m_{0, a}}=\frac{\mathrm{Z}}{\mathrm{A}} H_{p}+\left(1-\frac{\mathrm{Z}}{\mathrm{A}}\right) H_{n}+\frac{\mathrm{Z}}{\mathrm{A}} \times 5.4 \times 10^{-4} H$
for any atom, where Z is the atomic number and A is the nucleon number of the atom. Eqs. (12.59) and (12.60) is valid for relatively small distances, up to a few hundred $k p c$. For larger distances we have to repeat the procedure of the proof using eqs. (12.9) and (12.53) instead of (12.28) and (12.56).

Equation (12.51) affects equations (12.27) and (12.29), which are written in the form

$$
\begin{align*}
& m_{0}\left(z_{\gamma}\right)=\frac{m_{0}}{1+z_{\gamma}} \tag{12.61}\\
& E\left(z_{\gamma}\right)=\frac{E}{1+z_{\gamma}} . \tag{12.62}
\end{align*}
$$

The energy produced in the past at distant astronomical objects was smaller than the corresponding energy produced today in our galaxy. The production of energy in the universe is mainly through hydrogen fusion and nuclear reactions. Therefore, equation (12.62) is of greater accuracy than equation (12.29). Nevertheless, the selfvariation of the electron's rest mass played a defining role in the energy produced in the past at distant cosmological objects. This is due to the fact that the fundamental astrophysical parameters depend on the rest mass of the electron. These parameters, therefore, depend on the redshift z, and not on the z_{γ}, according to equations (12.33), (12.35), (12.36), (12.41) and (12.42). The most characteristic example concerns type I_{a} supernovae. The value of the rest mass of the electron, given as a function of the redshift z from equation (12.27), plays a defining role at all phases of evolution of a star undergoing type I_{a} supernovae.

It is very likely that there exists a small set of elementary particles with rest masses $M_{0}=\frac{k_{p} \hbar}{c^{2}}$
and not just one elementary particle of rest mass

$$
M_{0}=\frac{k \hbar}{c^{2}} .
$$

It seems improbable that the sum $W+E$ on the right side of equation (12.2) is not affected by the internal structure of the generalized particles.

All of the presented consequences of theorem 3.3 are recorded within the cosmological data [17-27]. For the confirmation of the predictions of the theorem for the initial state of the Universe the improvement of our observational instruments is demanded. We also recommend evaluating the data recorded in CMRB, based on the equations of the TSV.

In the observations conducted for distances of cosmological scales, we observe the Universe as it was in the past. That is, we observe directly the consequences of the Selfvariations. We do not possess this possibility for the distances of smaller scales. The cosmological data are the result of the immediate observation of the Selfvariations and their consequences.

13. Other Consequences of the Theorem of the Internal Symmetry . The set Ω.

The consequences of the theorem of the internal symmetry cover a wider spectrum, than the one already stated for the cosmological data. In these, the consequences of the dependence of the function Φ on time $x_{0}=i c t$ are recorded. The function Φ, according to equation (3.9), is a function of the set of the coordinates and also of the constants $x_{0}, x_{1}, x_{2}, x_{3}, c_{0}, c_{1}, c_{2}, c_{3}$, and given as
$\Phi\left(x_{0}, x_{1}, x_{2}, x_{3}, c_{0}, c_{1}, c_{2}, c_{3}\right)=K \exp \left[-\frac{b}{\hbar}\left(c_{0} x_{0}+c_{1} x_{1}+c_{2} x_{2}+c_{3} x_{3}\right)\right]$.
As in the previous paragraph, we refrain our study in the case of $\Phi \neq-1$, as included in theorem 3.3. This case is equivalent with the relation $C \neq 0$.

Equations (3.10) and (3.11) express the rest mass m_{0} of the material particle and the rest energy E_{0} as a function of Φ
$m_{0}= \pm \frac{M_{0}}{1+\Phi}$
$E_{0}= \pm \frac{\Phi M_{0} c^{2}}{1+\Phi}$
$E_{0}+m_{0} c^{2}= \pm M_{0} c^{2}$.
In these equations the only constant is the rest mass M_{0} of the generalized particle.
Additionally the rest masses m_{0} and E_{0} depend on the constants $c_{0}, c_{1}, c_{2}, c_{3}$, according to eqs. (13.2), (13.3) and (3.9), in the following sense: For a constant rest mass M_{0} of a
generalized particle there are infinite values of the constants $c_{0}, c_{1}, c_{2}, c_{3}$, i.e. infinite states of the 4 -vector C, for which eq. (3.6) is valid:
$c_{0}^{2}+c_{1}^{2}+c_{2}^{2}+c_{3}^{2}=-M_{0}^{2} c^{2}$.
According to eq. (3.12) the different states of the 4 -vector C are equivalent with the ability of the material particle to have different momentums at the same point $A\left(x_{0}, x_{1}, x_{2}, x_{3}\right)$.

Therefore the evolution of the generalized particle depends on all physical quantities $x_{0}, x_{1}, x_{2}, x_{3}, c_{0}, c_{1}, c_{2}, c_{3}$. We now deduce corollary 13.1 of theorem 3.3.

Corollary 13.1." The only constant physical quantity for a material particle is its total rest mass M_{0}. The evolution of the Universe, or of a system of particles, or of one particle, does not depend only on time. Its evolution is determined by the Selfvariations, as this manifestation is expressed through the function Φ."

Proof. Corollary 13.1 is an immediate consequence of theorem 3.3.a
According to corollary 13.1 , each material particle is uniquely defined from the rest mass M_{0} of equations (13.2) and (13.3).

From equations (2.4), (2.5) and (3.5), and since it holds that $x_{0}=i c t$, we can write the function Φ in the form
$\Phi=\Phi\left(t, x_{1}, x_{2}, x_{3}\right)=K \exp \left(-\frac{b}{\hbar}\left[-(W+E) t+c_{1} x_{1}+c_{2} x_{2}+c_{3} x_{3}\right]\right)$
with the sum $W+E=-i c c_{0}$ being constant. This equation gives Φ as a function of time t, instead of the variable $x_{0}=i c t$.

In the afterword we present the reasons, according to which the TSV strenghtens at an important degree the Theory of Special Relativity [28-29]. In contrast, the theorem of internal symmerty highlights a fundamental difference between the TSV and the Theory of General Relativity. According to equations (13.1) and (13.2), the physical quantity, which is being introduced into the equations of the TSV and remains invariant with repsect to all systems of reference, is the quantity given by
$\delta=\frac{b}{\hbar}\left(c_{0} x_{0}+c_{1} x_{1}+c_{2} x_{2}+c_{3} x_{3}\right) \in \mathbb{C}$.

Therefore, the TSV studies the physical quantity δ, and not, the also invariant with respect to all systems of reference, physical quantity of the four-dimensional arc length

$$
\begin{equation*}
d S^{2}=\left(d x_{0}\right)^{2}+\left(d x_{1}\right)^{2}+\left(d x_{2}\right)^{2}+\left(d x_{3}\right)^{2} . \tag{13.8}
\end{equation*}
$$

This arc length is studied by the Theory of General Relativity. The study of $d S^{2}$ can be interpreted in the manner that the Theory of General Relativity is a macroscopic theory. On the contrary, in the TSV a differentiation between the levels of the macrocosm and the microcosm does not exist. In equations (3.12), and for the energy and the momentum of the material particle,
$J_{i}=\frac{c_{i}}{1+\Phi}, i=0,1,2,3$
the concept of velocity does not exist. With the exception of equations (4.19) and (4.20), within the totality of the equations of the TSV we already presented, the concept of velocity does not enter. As we will see in the following, theorem 3.3 which justifies the cosmological data, predicts the uncertainty of the postion-momentum of the material particles. The difference among these two theories is highlighted in a concrete manner by the comparison of equations (13.7) and (13.8). In the first, spacetime appers together with the four-vector C. The second equation refers only to spacetime.

We present an example which highlights the diffrences among these two theories. It is the famous Twin Paradox. We consider that the reader is familiar with this thought experiment, as well as the result of the Theory of General Relativity [30]. The Theory of General Relativity predicts correctly the time difference in the time duration counted by the two twins. On the other hand, according to corollary 13.1, this time difference does not suffice for providing a difference in the evolution of the twins. The twins have the same generalized particles, which acquire the same rest masses M_{0}, at the time they meet together. At the beginning and at the end of the travel the two twins are identical. Einstein drives the wrong conclusion, not because the Theory of General Relativity is wrong, but because he regards that this time difference implies a different evolution of the twins. But, this is not a characteristic of the Theory of General Relativity. This is a common characteristic of all the physical theories preceding the TSV.

At this point let me commentate. Einstein refers to this thought experiment as the "Twin Paradox", and not as a consequence of the Theory of General Relativity. According to
my opinion, Einstein understood that something was missing from the Theory of General Relativity. To this point advocates also his peristance for determining the cause of the quantum phenomena.

General relativity has been experimentaly verified from a large number of experiments. Moreover on a distance scale of a few hundred $k p c$ its predictions are not affected by eq. (12.27). We expect that the combination of the two theories on this distance scale will give important results for the physical reality.

We consider a generalized particle with rest mass M_{0}. The material particle of the generalized particle (together with STEM) can be at the spacetime point $A\left(x_{0}, x_{1}, x_{2}, x_{3}\right)$ with its energy-momentum having any value. According to eqs. (3.9) and (3.12) this can happen only with the variation of the 4 -vector C. For a generalized particle the rest mass M_{0} is constant, which means that through the variation of the 4 -vector C, equation (13.5) remains valid.

From eq. (3.1) we have

$$
\begin{equation*}
\frac{\partial J_{i}}{\partial c_{k}}+\frac{\partial P_{i}}{\partial c_{k}}=\frac{\partial c_{i}}{\partial c_{k}}, k, i=0,1,2,3 \tag{13.9}
\end{equation*}
$$

and from eq. (3.9) we have

$$
\begin{equation*}
\frac{\partial \Phi}{\partial c_{k}}=-\frac{b}{\hbar} \Phi\left(x_{k}+\sum_{\substack{j=0 \\ j \neq k}}^{3} x_{j} \frac{\partial c_{j}}{\partial c_{k}}\right), k=0,1,2,3 . \tag{13.10}
\end{equation*}
$$

Eqs. (13.9) and (13.10) remain valid for any variation of the 4 -vector C. We will know prove the following corollary of theorem 3.3:

Corollary $\mathbf{1 2 . 2}$ ' The variation of the 4 -vector C of a generalized particle with rest mass M_{0},
$c_{0}^{2}+c_{1}^{2}+c_{2}^{2}+c_{3}^{2}=-M_{0}^{2} c^{2}$
implies the variation of the 4 -vectors J and P according to eqs.

$$
\begin{equation*}
\frac{\partial J_{i}}{\partial c_{k}}=\frac{1}{1+\Phi}\left(\frac{\partial c_{i}}{\partial c_{k}}+\frac{b}{\hbar} \frac{c_{i}}{1+\Phi} \Phi\left(x_{k}+\sum_{\substack{j=0 \\ j \neq k}}^{3} x_{j} \frac{\partial c_{j}}{\partial c_{k}}\right)\right), k, i=0,1,2,3 \tag{13.12}
\end{equation*}
$$

$$
\begin{equation*}
\frac{\partial P_{i}}{\partial c_{k}}=\frac{\Phi}{1+\Phi}\left(\frac{\partial c_{i}}{\partial c_{k}}-\frac{b}{\hbar} \frac{c_{i}}{1+\Phi}\left(x_{k}+\sum_{\substack{j=0 \\ j \neq k}}^{3} x_{j} \frac{\partial c_{j}}{\partial c_{k}}\right)\right), k, i=0,1,2,3 . . \tag{13.13}
\end{equation*}
$$

Proof: From eq. (13.11) it follows that any change of one of the constants $c_{k}, k=0,1,2,3$, induces a change to the others. Taking the derivatives with respect to $c_{k} \neq 0, k=0,1,2,3$ we have

$$
\begin{equation*}
c_{k}=-\sum_{\substack{j=0 \\ j \neq k}}^{3} c_{j} \frac{\partial c_{j}}{\partial c_{k}}, c_{k} \neq 0, k=0,1,2,3 . \tag{13.14}
\end{equation*}
$$

The corollary is then implied from the combination of the eqs. (3.12), (13.10) and (13.9).
According to the relation (12.19) we have $\Phi<0$, while according to the relations (12.20) the physical quantity $1+\Phi$ can be a positive or negative number. Hence from eqs. (13.12) and (13.13) we may determine the consequences for the material particle depending on whether the rates of change of

$$
\frac{\partial J_{i}}{\partial c_{k}}, \frac{\partial P_{i}}{\partial c_{k}}, k, i=0,1,2,3
$$

are negative, positive or zero.
As the 4 -vector C variates there arises an uncertainty for the position of the material particle. Corollary (13.2) predicts many cases for this uncertainty. We will restrict ourselves to one of them. For $\frac{\partial J_{i}}{\partial c_{k}}>0$ and $1+\Phi<0$ from eq. (13.12) we have

$$
\frac{\partial c_{i}}{\partial c_{k}}+\frac{b}{\hbar} \frac{c_{i}}{1+\Phi} \Phi\left(x_{k}+\sum_{\substack{j=0 \\ j \neq k}}^{3} x_{j} \frac{\partial c_{j}}{\partial c_{k}}\right)<0, k, i=0,1,2,3
$$

and from eq. (3.12) we have

$$
\begin{equation*}
\frac{\partial c_{i}}{\partial c_{k}}+\frac{b}{\hbar} J_{i} \Phi\left(x_{k}+\sum_{\substack{j=0 \\ j \neq k}}^{3} x_{j} \frac{\partial c_{j}}{\partial c_{k}}\right)<0, k, i=0,1,2,3 . \tag{13.15}
\end{equation*}
$$

From inequality (13.15) for $i=k, k, i=0,1,2,3$ we have
$1+\frac{b}{\hbar} J_{k} \Phi\left(x_{k}+\sum_{\substack{j=0 \\ j \neq k}}^{3} x_{j} \frac{\partial c_{j}}{\partial c_{k}}\right)<0, k=0,1,2,3$
and because $\Phi<0$ we have

$$
\begin{equation*}
J_{\kappa}\left(x_{k}+\sum_{\substack{j=0 \\ j \neq k}}^{3} x_{j} \frac{\partial c_{j}}{\partial c_{k}}\right)>-\frac{\hbar}{b \Phi}, k=0,1,2,3 . \tag{13.16}
\end{equation*}
$$

In the case where

$$
\begin{equation*}
\sum_{\substack{j=0 \\ j \neq k}}^{3} x_{j} \frac{\partial c_{j}}{\partial c_{k}} \leq 0 \tag{13.17}
\end{equation*}
$$

from inequality (13.16) we have

$$
\begin{equation*}
J_{k} x_{k}>-\frac{\hbar}{b \Phi}, k=0,1,2,3 . \tag{13.18}
\end{equation*}
$$

$(\Phi<0)$
From eqs. (3.12) and (3.13) it follows that $P_{k}=\Phi J_{k}, k=0,1,2,3$, and considering that $\Phi<0$ we get from inequality (13.18) that
$P_{k} x_{k}<-\frac{b}{\hbar}, k=0,1,2,3$.
The inequalities (13.16), (13.17), (13.18) and (13.19) reverse direction for $1+\Phi>0$. The inequalities (13.18) and (13.19) correspond to Heisenberg's uncertainty principle [31]. Corollary (13.2) gives rise to restrictions in the position of the material particle, in the spacetime area occupied by the generalized particle. These restrictions concern the positionmomentum product.

The USVI gives the variation of the 4 -vectors J and P in spacetime. However the internal symmetry theorem brings about a 'hidden' parameter of the interactions: The 4vectors J and P may variate according to the variation of the 4 -vector C. One of the consequences of the variation of the 4 -vector C is the intense uncertainty of positionmomentum showing up in the laboratory.

The theorem of internal symmetry, as well as the two degrees of freedom appearing in equations (5.3) and (5.7), foundain on a novel basis the manipulation of quantum information. The generalized particle is a sustained state, with constant total rest mass M_{0}. We may however interfere with the internal structure of the generalized particle changing the momentum of the material particle. According to eq. (3.12) the variation of the momentum of the material particle can be effected either with the change of position $A\left(x_{0}, x_{1}, x_{2}, x_{3}\right)$ of the material particle, or with the change of the 4 -vector C. The first variation is determined by the USVI and the second from corollary 13.2. With a periodic variation of either the energy of the material particle or the 4 -vector C we can achieve the redistribution of the physical quatities m_{0}, E_{0}, J, P, j in the spacetime area occupied by the generalized particle. Through the variation of the physical quantities m_{0}, E_{0}, J, P, j we can transmit information in spacetime. Until now the transmission of information was achieved only with the first approach. Moreover we did not know the origin or structure of STEM. Corollary 13.2 permits us to study the possibility of information transmission through the variation of the 4 -vector C . The two degrees of freedom in eqs. (5.3) and (5.7) refer to the function Ψ, which has a fundamental role for the transmission of information in either way. This role is clearly visible in eq. (5.7) for the 4 -vector j of the current density of the preserved quantities of the generalized particle.

In corollary 13.2 we assumed that the change of the 4 -vector C does not change the total rest mass M_{0} of the generalized particle. It is easy to show that the relations (13.12) and (13.13) are also valid in the case where the change of the 4 -vector C causes a change of the total rest mass M_{0} of the generalized particle. In such a case there happens a transition to another generalized particle since the rest mass M_{0} characterizes the generalized particle. In this case we have a change of eq. (13.14) which becomes

$$
\begin{equation*}
c_{k}=-\sum_{\substack{j=0 \\ j \neq k}}^{3} c_{j} \frac{\partial c_{j}}{\partial c_{k}}-M_{0} \mathrm{c}^{2} \frac{\partial M_{0}}{\partial c_{k}}, c_{k} \neq 0, k=0,1,2,3 . \tag{13.20}
\end{equation*}
$$

Eq. (13.20) is obtained from differentiation with respect to $c_{k} \neq 0, k=0,1,2,3$ of eq. (13.11).
If there is only one fundamental particle, with rest mass $M_{0}=\frac{k \hbar}{c^{2}}$, eq. (13.14) necessarily applies. The eq. (13.20) can only be applied if there are more than one fundamental material particles, with rest masses $M_{0}=\frac{k_{p} \hbar}{c^{2}}$. Moreover, if there are more than
one fundamental material particles, the constants $c_{k}, k=0,1,2,3$ can vary independently, i.e. they can vary in a way such that

$$
\begin{equation*}
\frac{\partial c_{j}}{\partial c_{k}}=0, j \neq k, k \in\{0,1,2,3\}, j=0,1,2,3 \tag{13.21}
\end{equation*}
$$

during the variation of the 4 -vector C. In this case from corollary 13.2 there follow the inequalities (13.18) and (13.19) for $1+\Phi<0$, and in opposite direction for $1+\Phi>0$. The condition (13.21) can be realized when rest masses M_{0} are more than one.

We now present a physical procedure where the 4 -vector C varies. Initially we use the notation Ω_{0} for the set which has as unique element the internal symmetry matrix. The internal symmetry matrix is the 4×4 zero matrix $T=0$, hence
$\Omega_{0}=\{T=0\}$.

The sets $\Omega_{0}, \Omega_{1}, \Omega_{2}, \Omega_{3}, \Omega_{4}, \Omega_{5}, \Omega_{6}$ contain all symmetries of the TSV. Moreover the sets $\Omega_{0}, \Omega_{1}, \Omega_{2}, \Omega_{3}, \Omega_{4}, \Omega_{5}, \Omega_{6}$ do not have common elements, that is
$\Omega=\Omega_{0} \cup \Omega_{1} \cup \Omega_{2} \cup \Omega_{3} \cup \Omega_{4} \cup \Omega_{5} \cup \Omega_{6}$ $\Omega_{0} \cap \Omega_{1} \cap \Omega_{2} \cap \Omega_{3} \cap \Omega_{4} \cap \Omega_{5} \cap \Omega_{6}=\varnothing$.

Every generalized particle corresponds to a particular matrix of the set Ω. Therefore the set Ω all possible states of matter, all possible states of physical reality predicted by the TSV.

Inside the set Ω any transition can happen, with the generalized particle going from one symmetry to another. This transition can happen either inside one set $\Omega_{k}, k \in\{0,1,2,3,4,5,6\}$ or between two different sets $\Omega_{k}, \Omega_{i}, k, i \in\{0,1,2,3,4,5,6\}$.

The set Ω contains $N_{T}+N_{o}=59+1=60$ matrices. The transitions inside the set Ω can happen to both directions, therefore there are in total
$N=2\binom{60}{2}=3540$
possible transitions inside the set Ω. In 3524 of the 3540 possible transitions the 4 -vector C changes, and only in 16 cases it remains unchanged. In the 3524 cases where the 4 -vector C changes the corollary 13.2 is valid. Of particular interest are the
$\binom{7}{2}=21$
transitions between sets Ω_{k} and Ω_{i} with $k \neq i, k, i \in\{0,1,2,3,4,5,6\}$.
In contrast with the variation of the 4 -vector C, in all transitions there is either a constant rest mass
$M_{0}=\frac{k \hbar}{c^{2}}$
or a limited, possibly small number of rest masses
$M_{0}=\frac{k_{p} \hbar}{c^{2}}$.
The finite number of rest masses M_{0} emerges as a consequence of the finite number of elements of set Ω.

In the 4 symmetries of the set $\Omega_{4} \cup \Omega_{6}$ the matrix T of the symmetry, as well as the 4 -vector C, have more than one mathematical expressions. In these symmetries the 4 -vector C can vary inside the symmetry. These transitions are not included in the 3540 possible transitions of eq. (13.24). A characteristic of these symmetries is that the total rest mass of the generalized particle is $M_{0}=0\left(m_{0}=\frac{E_{0}}{c^{2}}=M_{0}=0\right)$. An example of such a symmetry is $T_{01033221}$ of the set $\Omega_{4} \subset \Omega_{4} \cup \Omega_{6}$. The matrix $T_{01033221}$ has four different mathematical expressions
$T=z Q \alpha_{01}\left[\begin{array}{cccc}0 & 1 & 0 & i \\ -1 & 0 & -i & 0 \\ 0 & i & 0 & -1 \\ -i & 0 & 1 & 0\end{array}\right]$
$T=z Q \alpha_{01}\left[\begin{array}{cccc}0 & 1 & 0 & i \\ -1 & 0 & i & 0 \\ 0 & -i & 0 & 1 \\ -i & 0 & -1 & 0\end{array}\right]$
$T=z Q \alpha_{01}\left[\begin{array}{cccc}0 & 1 & 0 & -i \\ -1 & 0 & i & 0 \\ 0 & -i & 0 & -1 \\ i & 0 & 1 & 0\end{array}\right]$
$T=z Q \alpha_{01}\left[\begin{array}{cccc}0 & 1 & 0 & -i \\ -1 & 0 & -i & 0 \\ 0 & i & 0 & 1 \\ i & 0 & -1 & 0\end{array}\right]$
and correspondingly four different 4 -vectors C
$C=\left[\begin{array}{c}c_{0} \\ c_{1} \\ i c_{0} \\ i c_{1}\end{array}\right]$
$C=\left[\begin{array}{c}c_{0} \\ c_{1} \\ -i c_{0} \\ i c_{1}\end{array}\right]$
$C=\left[\begin{array}{c}c_{0} \\ c_{1} \\ -i c_{0} \\ -i c_{1}\end{array}\right]$
$C=\left[\begin{array}{c}c_{0} \\ c_{1} \\ i c_{0} \\ -i c_{1}\end{array}\right]$
The generalized particle has rest mass $M_{0}=0\left(m_{0}=\frac{E_{0}}{c^{2}}=M_{0}=0\right)$.
There are symmetries in which the 4 -vector C has more than one mathematical expressions, with $M_{0} \neq 0$. In these symmetries the 4 -vector C can also vary inside the symmetry. As an example we mention the symmetry $T_{0103221321}$ of the set Ω_{5}, which has two mathematical expressions for the 4 -vector C
$C=c_{0}\left[\begin{array}{c}1 \\ 0 \\ \frac{\alpha_{21}}{\alpha_{01}} \\ -\frac{\alpha_{13}}{\alpha_{01}}\end{array}\right]$
$c_{0} \neq 0$
$C=c_{1}\left[\begin{array}{c}0 \\ 1 \\ 0 \\ \frac{\alpha_{03}}{\alpha_{21}}\end{array}\right]$
$c_{1} \neq 0$
and the rest mass $M_{0} \neq 0$.
The Selfvariations illuminate a property of the universe that cannot be illuminated by the theories of the last century. It is the «internality of the universe to the process of measurement». That is , the fact that the Selfvariations also affect the physical quantities we use as units for the measurement of other similar physical quantities.

Comparing the rest masses of two similar material particles, two electrons for example, we will always find them equal. This equality stems from the fact that a certain material particle, like the electron, expresses a certain state within set Ω; a state in which the Selfvariations are evolving in the exact same maner.

Two different material particles express two different states of set Ω and, therefore, the selfvariations could evolve at different rates. The ratio of the rest masses of two different material particles could vary with time. In such a case, this variation will occur at an extremely slow rate, as emerges from the analysis of the cosmological data.

The electric charge of material particles can be either positive or negative. It also increases at a clearly slower rate than that of the rest mass of the electron. These are two fundamental differences we already know between the rest mass and the electric charge. We can make analogous hypotheses regarding the differences of the "selfvariating charge Q " and the rest mass. We have not presented these hypotheses in the current article, since it is about the basic study of the Selfvariations.

The observational instruments we have at our disposal, and the techniques that have been devised $[16,19,25,26]$ have brought us on the cusp of a direct detection of the consequences of the Selfvariations. Together with the measurements we perform, it is essential to analyse the microwave background radiation (CMBR) according to the predictions of the TSV. During the phase of evolution of the universe when the CMBR was produced, the rest masses of material particles were clearly smaller than the corresponding
laboratory ones. A similar thing is true about the electric charge of the electron. We speculate that this fact is in some way recorded on the CMBR.

The continuous emmision of STEM in the surrounding spacetime of the material particles entails the continuous strengthening of negative potential energies of every kind. The consequences of this strengthening are multiple: from the shortening of the Bohr radius, to the strengthening of the cohesion of the material particles with time. The analysis of the cosmological data allows us to define the order of magnitude of the rest mass M_{0}. A conclusion that emerges is that particles we considered fundamental, like the electron and the neutrino, constitute composites of simpler particles. Our inability to break up the electron in the lab is a consequence of the strengthening of its cohesion, for the afforementioned reason.

There are a number of ways in which we can search for material particles with elementary rest masses
$M_{0}=\frac{k \hbar}{c^{2}}$
and
$M_{0}=\frac{k_{p} \hbar}{c^{2}}$
predicted by the TSV. But they all require the improvement of our observational instruments.
One way is to give material particles extremely large energies in the laboratory. The energies at which we collide particles today are far too small to achieve such a disintegration. Another way is to perform measurements at extremely large distances. In the very early universe the cohesion of material particles, even of the neutrino, tends to zero. This phase of the evolution of the universe is predicted over and above the limit set by the standard cosmological model for the size of the universe.

The TSV predicts M_{0} as the minimum value of the rest mass of material particles. Since neutrinos have the smallest rest mass of all material particles we know off today, it is quite likely that they have the simplest structure of all known material particles. We, therefore, propose the intensification of the experimental study of neutrinos and their properties.

14. Afterword

We offer as an epilogue some comments on the TSV as a whole. Having concluded our study, it has become clear that the network of equations of the TSV arises from the combination of the axiom of the Selfvariations, as given by equation (4.2), and the principle of conservation of the momentum 4 -vector and equation (2.7). The conservation principle of the 4-dimentional momentum has emerged empirically, from the experimental data. The TSV lays the axiomatic foundations of theoretical physics with just three axioms. Indeed, it is very likely that equation (2.7) emerges from the other two axioms. As far as we know, no other science, including mathematics, is axiomatically founded with such a small number of axioms. Equation (2.7) comes from special relativity. We, therefore, start our comments with the relation of the TSV with special relativity.

Special relativity imposes constraints on the mathematical formulation of physical laws. All mathematical equations of physical laws have to be invariant under LorentzEinstein transformations. The TSV comes to impose an even greater constraint on these mathematical formulations. If we denote L the set of equations that are Lorentz-Einsteininvariant and S the set of equations compatible with the law of Selfvariations, it is $S \neq L$ with $S \subset L$.

A classic example are the Lienard-Wiechert electromagnetic potentials. These were proposed by Lienard and Wiechert in 1899 and give the correct electromagnetic field and electromagnetic radiation for a randomely moving electric charge. After the formulation of special relativity by Einstein in 1905, the Lienard-Wiechert potentials proved to also be invariant under Lorentz-Einstein transformations. On the contrary, with the formulation of the TSV they prove to be incompatible with the Selfvariations. The TSV replaces the Lienard-Wiechert electromagnetic potentials with the macroscopic potentials of the TSV, which give exactly the same field with the Lienard-Wiechert potentials. The macroscopic potentials of the TSV are compatible with the Selfvariations as well as with the LorentzEinstein transformations ($S \subset L$). An additional characteristic of the macroscopic potentials of the TSV is this: Whether we consider that the Selfvariations happen, or whether we consider the electric charge constant, exactly the same field emerges. It is an expression of the ''internality of the universe to the process of measurement'".

To get the Lorentz-Einstein transformations we consider two observers exchanging signals with velocity c. If the observers are moving with the same velocity with respect to each other, the Lorentz-Einstein transformations emerge. If the observers exchange signals with a velocity different from c, for example sound signals, other transformations emerge which are incorrect. As is natural, Einstein was asked about this issue. His answer essentially was that we chose the exchange of signals with light speed because of the result: the transformations that emerge in this way are the correct ones.

On this point the TSV reinforces special relativity to a superlative degree. There is a constant exchange of STEM between material particles which, in the macrocosm, and when spacetime is flat, occurs with velocity c. According to the TSV the exchange of signals with velocity c is not just a hypothesis we can make in order to obtain the Lorentz-Einstein transformations, but constitutes a continuous physical reality.

The Selfvariations of the rest massess occur if and only if they are counterbalanced by a corresponding emmission of negative energy in the surrounding spacetime of the material particle, so that the energy-momentum conservation holds. This energy-content of the spacetime is expressed by the 4 -vector P of equation (2.5). Macroscopicaly this energy is expressed by equation (12.8), which has emerged from equation (3.11), i.e. the internal symmetry theorem. This is expected since the internal symmetry expresses specifically the spontaneous realization of the Selfvariations. Something analogous holds for the electric charge and for any selfvariating charge Q. The spontaneous emmision of negative energy in spacetime has two fundamental consequences.

The continuous exchange of STEM implies a continuous exchange of information between material particles. If the universe is finite, with a finite age, there are still parts of it that have not exchanged information through the STEM, as a consequence of the finite speed of the STEM. This, however, will occur in the future. With the passage of time, every part of the universe interacts with an ever larger part of the rest of the universe. According to equation (12.45), going back in time the uncertainty of the position of material particles tends to become infinite. Regions of the universe which will interact through STEM at a future time, have already interacted through material particles at a past time. The above hold even in the case where the universe is infinite and of infinite age. The only difference is that all of its parts have also interacted through STEM. We thus come to the following fundamental conclusion of the TSV: The universe behaves as one object.

The second consequence is the indirect dynamic interaction of the material particles (USVI). When we were differentiating for the calculation of the rate of change of the momentum of the material particle, there where specific conditions: the law of Selfvariations predicts a unified mechanism for all interactions. Consequently, the Lorentz force should emerge after the differentiation and also, in some way, the relation of the USVI with the curvature of spacetime according to Einstein's work on gravity. We now know that equation (4.19) contains both of these terms.

We are often asked why we set as an axiom the Selfvariations of the rest masses and the electric charge, and not the Selfvariation of some other physical constant. An axiom is judged exclusively by the conclusions to whch it leads. Nevertheless, there is always a specific "logic" for the introduction of an axiom in a scientific field. This is also the case for the axiom of the Selfvariations. Taking into account the energy-momentum conservation principle, the Selfvariation of the rest mass of the material particle can only take place with the simultaneous emmision of energy-momentum into the surrounding spacetime of the particle. The combination of the Selfvariations with the conservation of energy-momentum has as a consequence the presence of energy-momentum in the surrounding spacetime of the material particle. The introduction of the axiom of the rest mass Selfvariation was made with the expectation that this energy-momentum in spacetime could provide a cause for the interaction of material particles. In retrospect, this expectation was confirmed. The fundamental physical quantities $\lambda_{k i}, k, i=0,1,2,3$ that emerge from this combination lead to the USVI, and are at the heart of the TSV. Being aware of the existence of the gravitational interaction we set as an axiom the selfvariation of the rest mass. Similarly, due to the existence of the electromagnetic interaction we set as an axiom the selfvariation of the electric charge. Following the same "logic" we introduce in the TSV the "selfvariating charge Q " through equation (4.2).

The internal symmetry theorem and the set Ω_{0} express the isotropic emission of STEM in the flat spacetime of special relativity. The theorems of external symmetry and the set $\Omega_{1} \cup \Omega_{2} \cup \Omega_{3} \cup \Omega_{4} \cup \Omega_{5} \cup \Omega_{6}$ express the anisotropic emmision of STEM in an anisotropic spacetime. Every generalized particle corresponds to a matrix-element of the set $\Omega=\Omega_{0} \cup \Omega_{1} \cup \Omega_{2} \cup \Omega_{3} \cup \Omega_{4} \cup \Omega_{5} \cup \Omega_{6}$. Every element of set Ω contains an extremely large amount of data and information about the physical condition it describes. The set Ω contains all the information about the physical reality predicted by the TSV.

In the internal symmetry, the distribution of the total rest mass M_{0} of the generalized particle, between the material particle and the STEM, is given by equations (3.10) and (3.11). For every selfvariating charge Q there are $N_{T}=59$ external symmetry matrices. There are, therefore, $N_{T}=59$ ways to distribute the rest mass M_{0} in the external symmetry. In chapter 8 we proved that in the $N_{1}=14$ symmetries $T=z Q \Lambda$, it can be $m_{0} \neq 0$ for the rest mass of the USVI particle. In the remaining $N_{T}-N_{1}=45$ external symmetries, it is $m_{0}=0$.

We left for last some comments on equations (2.10), (2.13) and (4.6). Equation (2.10) cannot arise without the axiom of the Selfvariations. The fundamental physical quantities $\lambda_{k i}, k, i=0.1,2,3$ cannot arise from the physical theories of the last century. That is, they cannot arise in any way other than the hypothesis of the Selfvariations. From equations (2.10) flows the entire network of equations of the TSV, including equations (2.13) and (4.6).

Equations (2.13) and (4.6) predict the USVI and, additionally, correlate the corpuscular with the wave behaviour of matter. The properties of the wave-function Ψ as well as the 4 -vector j of the conserved physical quantities, express exactly these equations. The laws of Maxwell are four preciselly because the first of equations (4.6) expands into four distinct equations. The theorems of chapter 7, which define the corpuscular structure of matter, are nothing more than the consequences of equation (2.10). The same holds for the internal symmetry theorem and its consequences, which emerge from equation (2.10).

Using the $S V-T$ method we can verify the self-consistency of the network of equations we provide. The TSV is a closed and self-consistent theory.

Acknowledgments

I would like to express my greatest thanking to Prof. Xenophon Moussas for his valuable counselling, Kyriakos Kefalas, Dr. Spyridoula Theodorou, Dr. Konstantinos Panteris, Dr. Alexander Kiupakis, Dr. Panagiotis Papaspyrou, Msc. George Cheliotis, Msc. Kyriaki Manousou and the public benefit foundation Alexander S. Onassis for their contribution to the publication of this article.

References

1. Einstein, A. (1905). On the electrodynamics of moving bodies. Annalen der Physik, 17 (10), 891-921.
2. French, A. P. Special relativity. (CRC Press, 1968).
3. Resnick, R. Introduction to Special Relativity (Wiley, New York, 1968).
4. Woodhouse, N. M. J. Special relativity (Springer Science \& Business Media, 2003).
5. Manousos, E. Mass and Charge Selfvariation: A Common Underlying Cause for Quantum Phenomena and Cosmological Data. Progress in Physics 3, 73141 (2013).
6. Maxwell, J. C. A Dynamical Theory of the Electromagnetic Field. Proceedings of the Royal Society of London 13, 531-536 (1863).
7. Shadowitz A. The Electromagnetic Field (Dover, New York, 1988).
8. Reitz J.R., Milford F.J., Christy R.W. Foundations of Electromagnetic Theory (Addison-Wesley, MA, 2000).
9. Helrich, C. S. The Classical Theory of Fields: Electromagnetism (Springer Science \& Business Media, 2012).
10. Bécherrawy, Tamer. Electromagnetism: Maxwell Equations, Wave Propagation and Emission. John Wiley \& Sons, 2013.
11. Planck, M. On the law of distribution of energy in the normal spectrum. Annalen der Physik 4 (553), 1 (1901).
12. Schrödinger, Erwin. "Die Erfüllbarkeit der Relativitätsforderung in der klassischen Mechanik." Annalen der Physik 382.11 (1925): 325-336.
13. Dirac, Paul AM. "The quantum theory of the electron." Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences. Vol. 117. No. 778. The Royal Society, 1928.
14. Gasiorowitz S. Quantum Physics (Wiley, New York, 1974).
15. French, A. P., \& Taylor, E. F. An Introduction to Quantum Mechanics (Norton, New York, 1978).
16. Melnikov, V. N. "A need to return to space project SEE for measuring G and its possible variations." Gravitation and Cosmology 22.4 (2016): 333-338.
17. Hubble, Edwin, and Milton L. Humason. "The velocity-distance relation among extra-galactic nebulae." The Astrophysical Journal 74 (1931): 43.
18. Penzias, Arno A., and Robert Woodrow Wilson. "A Measurement of Excess Antenna Temperature at $4080 \mathrm{Mc} / \mathrm{s}$." The Astrophysical Journal 142 (1965): 419-421.
19. Izmailov, V. P., et al. "Temporal and spatial variations of measured values of the gravitational constant." Measurement Techniques 36.10 (1993): 10651069
20. Riess A.G. et al. Observational Evidence from Supernovae for an Accelerating Universe and a Cosmological Constant. Astronomical Journal 116, 1009-1038 (1998).
21. Perlmutter S., Turner M.S., White M. Constraining Dark Energy withType Ia Supernovae and Large-Scale Structure. Physical Review Letters 83, 670-673 (1999).
22. Melnikov, Vitaly N. "Gravity as a key problem of the millenium." arXiv preprint gr-qc/0007067 (2000).
23. Gott J.R. et al. A Map of the Universe. ApJ 624, 463 (2005)
24. Manousos, E. The theory of self-variations. A continuous slight increase of the charges and the rest masses of the particles can explain the cosmological data. Nuovo Cimento B Serie, 122, 359-388 (2007).
25. Webb J.K., King J. A., Murphy M. T., Flambaum V. V., Carswell R. F., Bainbridge M. B. Indications of a Spatial Variation of the Fine Structure Constant. Physical Review Letters 107, 191101-1-191101-5 (2011).
26. King, J. A., Webb, J. K., Murphy, M. T., Flambaum, V. V., Carswell, R. F., Bainbridge, M. B., ... \& Koch, F. E. Spatial variation in the fine-structure constant-new results from VLT/UVES. Monthly Notices of the Royal Astronomical Society 422(4), 3370-3414 (2012).
27. Manousos, E. Selfvariations vs Standard Cosmological Model Using as Criterion the Cosmological Data. Global Journal of Science Frontier Research 14(2), (2014).
28. Einstein, Albert. "Die grundlage der allgemeinen relativitätstheorie." Annalen der Physik 354.7 (1916): 769-822.
29. Adler, Ronald, Maurice Bazin, and Menahem Schiffer. Introduction to general relativity. Vol. 220. New York: McGraw-Hill, 1975.
30. Rodrigues Jr, Waldyr A., and Marcio AF Rosa. "The meaning of time in the theory of relativity and "Einstein's later view of the Twin Paradox"." Foundations of Physics 19.6 (1989): 705-724.
31. Heisenberg, W. "Heisenberg Nobel lecture." (1933).
