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Abstract: Within a substratum, the GGU-model is either a pure sub-

stratum secular analog model for processes that produce universes,

processes that we cannot otherwise comprehend, or a non-secular

model that also generates the General Intelligent Design (GID) Model.

Specific analog models, such as Newton’s dynamic geometry, are inves-

tigated and various GGU-model schemes for the producing universes

are discussed. With the exception of intelligent mechanical and lin-

guistic invention via a biological entity such as the human being, our

physical universe displays no linguistic information. The problem as to

how it is possible that such physical behavior does follow the linguistic

descriptions described by intelligent beings, descriptions that do not

appear within Nature, is solved.

1. Analog Models.

Certain basic terms used throughout this article are defined in the Internet Ref-

erence [A]. For example, this article is written in a “positive” language. It deals with

“objects,” “models,” “objective reality,” “observables,” and the like. The terms en-

tity and analog do not appear in [A]. The term “entity” means a thing that has an

individual existence in physical reality or in the mind. That is, an entity can be but

a mental construct. The term “analog (analogue)” simply means a type of simplified

representation that leads to the rational prediction of observable physical behavior.

However, these terms tend to have varying definitions that allow for extended philo-

sophic discussions. The term “object” has its basic dictionary definition, “anything

that can be seen or touched,” but in scientific practice it is often used as a synonym

for entity. For my articles and for a particular science community, the (physical or ma-

terial) “objects” are accepted observed and defined (named with guessed properties)

and predicted unobserved members of our universe.

Secular science considers our universe as composed of material objects. A physical

science community names such objects and accepts a list of physical-systems as its

foundational area of study. The term “Nature” refers to the accepted material universe

with the exception of intelligent mechanical and linguistic inventions via a biological
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entity such as the human being. In this article, rather than rely upon some general

definition for model or the term analog, specific examples are given. In general, the

term “physical” refers to a finite, but varying, list of terms accepted by a specific group

of individuals as naming real entities and also naming properties that are presented in

various forms.

2. Infinitely Small, Fluxions and Dynamic Geometry.

After geometry, for the physical sciences and engineering, the most significant

mathematical structure thus far developed is the Calculus. The actual calculus is not

presented in Newton’s major work The Mathematical Principles of Natural Philosophy

(Newton, 1686), but rather it is found elsewhere in his writings produced within a 20

period prior to this books publication.

Newton’s modeling of physical behavior is firmly rooted in his concept of the rela-

tion between geometry (the basic mathematical structure of the 1600’s) and mechanics.

This is his method of dynamic geometry - the locus approach.

“Geometry does not teach us to draw lines, but requires them to be drawn,

for it requires that the learner should first be taught to describe these ac-

curately before he enters geometry, then it shows how by these operations

problems may be solved. To describe right lines and circles are problems,

but not geometrical problems. The solution of these problems is required

from mechanics,....therefore geometry is founded in mechanical practice,

and is nothing but that part of universal mechanics which accurately pro-

poses and demonstrates the art of measure.” (Newton, 1934, (p. xvii))

Newton’s claim is that our observations and intuitive comprehension of mechanics

comes first in our education. These concepts are then abstracted to include the vague

notion that objects have certain “capacities or potentials to do things”- the capacity

or potential idea. We are told that it is after experimentation, observation and reflec-

tion that the mathematical structure is evoked and these “easy” capacity concepts are

modeled.

In Newton, (1686), he gives what he claims is the easily comprehended notion of

the “ultimate velocity or fluxions,” or what we now term the instantaneous velocity,

for an actual material object as well as the “ultimate ratio,” which is the ratio p/q of

two ultimate velocities. He does this via his notion that motion is first “observed”

and this yields a collection of positions modeled by geometry and then “numerical”

measures associated with geometric concepts are employed. But it is actually in the

middle 1600’s that Newton utilizes a purely dynamic method to arrive at his geometry.

He introduces a new type of dynamics that for some natural philosophers is not related

to the material world and needs to be rejected. Unfortunately, some of Newton’s
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actual demonstrations of the more complex geometric concepts, such as curvature, are

not valid from the viewpoint of the modern theory of infinitesimals and require slight

alterations. When these alterations are conjoined with the modern treatment, then

elementary demonstrations are easily obtained and comprehended.

In Newton’s paper (Summer, 1665), an algorithm is given that yields the relations

between the “fluxions” p, q associated with variables x, y. These variables are related

by an algebraic expression that is assumed to generate a geometric configuration. Ac-

cording to Euclid, these geometric entities do not materially exist but are names given

to the mental concept of collections of positions, of systems of points. In Newton (New-

ton, Oct. 1665 - May 1666. (1967, (p. 383))) the algorithm is specifically described.

How Newton, by observation, arrives at this algorithm and what exactly p, q represent

is discussed later in his paper. A better explanation of how he formulates his algorithm

and the meaning of the term fluxion appears in his Oct. 1666 tract (Newton, 1666).

Under proposition 7 (Newton, 1666, (1967, (p. 402))), he explains his algorithm, step

by step. After some examples, he discusses how he arrives at this algorithm and what

fluxions signify (Newton, 1666, (1967, (p. 414))). First, he considers two “bodies A,

B moving uniformly.” He lets an algebraic expression f(x, y) = 0 represent a relation

between the distances traveled by these two bodies.

Then Newton introduces the numerical concept of the distance traveled by a body

having uniform velocity p, usually, over a “moment, an instant” of “infinitely small”

time o. Newton represents the distance each body travels by the sum of line segment

lengths. Body A first travels along ac and at the same time body B travels along bg.

Now in an “infinitely small” (infinitesimal) period of time, o, body A travels along cd

and during the same time interval body B travels along the segment gh. He states that

the motion is not, in general uniform, but it is “as if the body A with its velocity p

describe the infinitely little line cd = p × o in one moment, in that moment the body

B with the velocity q will describe the line gh = q × o. So that if the described lines be

ac = x, and bg = y, in one moment, they will be ad = x + p o, and bh = y + q o in the

next.”

Clearly, cd, in cd = p × o, indicates a non-zero infinitesimal measure, a number of

some sort and, since he allows ordinary real number arithmetic to be used, his fluxion

p = cd/o. Newton claims that the fluxions p and q are a type of velocity and he proceeds

to demonstrate how relations between these fluxions, in particular the relations relative

to the quotient q/p, are obtained. It is within this demonstration that a contradiction

occurs. Newton writes “Now if the equation expressing the relation between the lines x

and y be x3 − abx + a3 − dy2 = 0. I may substitute x + p o and y + q o into the place of

x and y; because (by the above) they as well as x and y do signify the lines described
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by the bodies A and B. [Of course, this statement would only be true if fluxions or

the motion of the bodies is uniform over a standard time interval, o, and the ordinary

Galilean physics is applied.] By doing so there results

x3 + 3pox2 + 3p2o2x + p3o3 − dy2 − 2dpoy − dq2o2

−abx − abpo

+a3 = 0. (1)

But x3 − abx + a3 − dy2 = 0 (by supp). Therefore there remains only

3pox2 + 3p2o2x + p3o3 − 2dqoy − dq2o2 − abpo = 0. (2)

Or dividing it by o it is

3px2 + 3p2ox + p3o2 − 2dqy − dq2o − abp = 0. (3)

[Thus, for the algebraic processes of the 1600’s, o behaves, with an exception during

one point in his deriavtions, like a nonzero real number. Newton goes on to write:] Also

those terms are infinitely little in which o is. Therefore omitting them there results

3px2 − abp − 2dqy = 0. (4)

[This is the exception.] The like may be done in all other equations. Newton would

then continue and express his important ratio

q

p
=

3x2 − ab

2dy
. (5)

Obviously step (4) is not justified and to some, such as Berkeley, contradicts the nature

of the infinitely small nonzero quantity o. That is, at one moment it behaves like a non-

zero number but at another personally selected moment in a derivation it behaves like

zero. For Berkeley, it can have only one mode of behavior.

Notice that using the modern notion of differentiation of x3 − abx + a3 − d′y2 = 0

yields 2x2dx−abdx−2d′ydy = 0 and this implies that dy/dx = (2x2−ab)/(2d′y) = p/q,

where Newton’s notation requires the substitution of d′ for d.

After this, and in other demonstrations, Newton indicates that he guessed at por-

tions of his fluxion creating algorithm by applying steps (1) - (5) to numerous algebraic

expressions and making certain observations as to the physical appearance of such equa-

tions as (4) and (5). This algorithm, his observation, is claimed to simply eliminate the

need to apply continually the above, often criticized, process. Newton repeats similar
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derivations in his Winter 1670 - 1671 tract as well as suggesting that the delineated

process may be applied to relations between three or more variables.

Newton writes:

“Perhaps it may be objected, that there is no ultimate proportion of

evanescent quantities; because the proportion, before the quantities have

vanished, is not ultimate, and when they are vanished is none. But by the

same argument it may be alleged that a body arriving at a certain place,

and there stopping, has no ultimate velocity; because the velocity, before

the body comes to the place, is not its ultimate velocity; when it has

arrived, there is none. But the answer is easy; for by the ultimate velocity

is meant that with which the body is moved, neither before it arrives at

its last place and the motion ceases, nor after, but at the very instant it

arrives; that is, the velocity with which the body arrives at its last place,

and with which the motion ceases. And in like manner, by the ultimate

ratio of evanescent quantities is to be understood the ratio of the quantities

not before they vanish, nor afterwards, but with which they vanish....For

those ultimate ratios with which quantities vanish are not truly the ratios

of ultimate quantities, but limits towards which the ratios of quantities

decreasing without limit do always converge; and to which they approach

nearer than by any given difference, but never go beyond, nor in effect

attain to, till the quantities are diminished in infinitum.” (Scholium to

Lemma XI in Book 1, (Newton, 1686))

What Newton describes is very close to the classical limit notion. However, from

his applications and arguments this does not seem to be what Newton truly believes but

only a popular exposition that would not offend the geometers of his day. As is well-

known Newton was very fearful of criticism and, even though he would use his fluxion

methods in private to model physical behavior, he did not perform fluxion computations

directly within this all important research document.(Scholium to Lemma XI in Book

1, (Newton, 1686))

Newton considered the notion of time as a type of continuous flowing notion and

that there are such things as an “instant” of time. For the case of nonzero instantaneous

velocity, one might gather from this the power of Newton’s mental vision and his

intuitive comprehension of future behavior. Since even though the object may not

appear to move at the instant one observes the hands of a clock point at a numerical

representation for the time, the object did arrive at a space location and has the

capacity to change its position. It is claimed that this indicates where a type of change

in position is noted when a second observation is made and the hands of the same clock
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are assumed to point at a different numerical representation for the time.

Newton assumes that instantaneous velocity is a measure for real physical behavior.

This rather abstract notion may be “easy” for Newton to grasp, but it was incompre-

hensible to Berkeley and many others who believed that such abstractions could not be

applied to actual material objects. The paramount philosophy of science for Berkeley

was a science of the material and a directly observed universe. Any arguments that

relied upon such abstractions would need to be rejected.

From these ideas, Newton also develops the “simple” infinitesimal geometry, which

predictes, via numerical measures, the more complex behavior we observe. For example,

what constitutes a “curve” from the new vewpoint of infinitesmial modeling is defined in

the first calculus textbook. De l’Hospital (1715) uses the “infinitely small” terminology

exclusively and utilizes a formal “definition - axiom” process supposedly delineating

from the notion of “simple” infinitesimal behavior.

For de l’Hospital, a curve is an infinite collection of infinitely small line segments.

The notion of the “curvature” is but the angle made by adjacent line segments. Indeed,

he also describes a curve as being identifiably the same as a polygon with a fixed infinite

number of line segments comprising its sides. On the other hand, Eudoxus [370 BC]

devised the method of exhaustion, which assumes the existence of a finite sequence of

inscribed and circumscribed polygons. In general, for a closed non-polygonal curve none

of these Eudoxus polygons were considered to be the curve under investigation; but,

rather, by the “continuity process” they would continually squeeze the curve between

these two types of polygons and “exhaust” the space in between. By this process,

the length of a curved segment was conceived of as an intuitive sequence composed

of portions of the polygon perimeters. Thus developed the idea of a partial sum that

represented the sum of the lengths of the sides of an n-gon - a finite sum that remained

finite but acquired more and more terms. Those that employ this method often guess at

a specific formula then justify their guess by indirect and not direct argument. Newton

uses this type of arguement in his Mathematical Principles of Natural Philosophy.

After Newton, the language of the infinitesimals and infinitesimal geometric enti-

ties becomes the foundations of mathematical analysis and the calculus. Unfortunately,

the languaue leads to a major contradition. A reading of Cauchy’s Cours d’Analyse

(Analyse Algébrique, 1821) yields the fact, even to the causal observer, that he relied

heavily upon this amalgamation of terms and in numerous cases utilized infinitesi-

mal reasoning entirely for his “rigorous” demonstrations. He claims to establish an

important theorem using his methods - a theorem that Abel (1826) shows by a coun-

terexample to be in error. No matter how mathematicians of that time period describe

their vague infinitesimal methods they fail to produce the appropriately altered theo-
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rem - a modified theorem that is essential to many applied areas such as Fourier and

Generalize Fourier Analysis. So, Cauchy introduced a new definition to rectify the

situation. Later this terminology was replaced with the formal limit concept.

But, in the physical sciences, the use of this language continues. In his 1930’s books

on mechanics, Planck describes the accepted procedure for modeling the behavior of

a physical-system when he writes that: “a finite change in Nature always occurs in a

finite time, and hence resolves into a series of infinitely small changes which occur in

successive infinitely small intervals of time.” All of these difficuties are corrected by

the methods of Robinson (1966) and we can now return to the highly intuitive concepts

of infinitesimal analysis. (Keesler, 1986. Herrmann [B]) But, do infinitesimal measures

depict physical reality or are all such concepts merely imaginary and a calculus based

upon them is but the most outstanding example of an analog mathematical model?

That is, it predicts physical behavior but it is based entirely on a simplified imaginary

construct that neither physically exists nor measures aspects of any physical-system.

It is in 1961 that Robinson solves the three hundred year old problem of Leibniz and

fines the correct algebraic properties for the infiniteimals. Distinct from the statements

made by Leibniz, they do not act like the real numbers in all respects. They do form

a subset of the hyperreal numbers, ∗
IR, and satisfy only “ring” properties. Technically,

the infinitesimals, µ(0), form a maxium ideal in the ring of finite numbers, where the

finite numbers also form a subset of the hyperreals. However, although the set ∗
IR is

an ordered field, it is missing an important real number property. For example, each

positive hyperreal, which is not an infinitesimal, is an upper bound for the set µ(0),

but µ(0) has no least upper bound. With respect to the use of the infinitesimals µ(0)

or other members of the hyperreals ∗
IR to measure quantities or properties Robinson

makes the following observation.

“For phenomena on a different scale, such as considered in Mod-

ern Physics, the dimensions of a particular body or process may not be

observable directly. Accordingly the question whether or not a scale of

non-standard analysis is appropriate to the physical world really amounts

to asking whether or not such a system provides a better explanation of

certain observable phenomena than the standard system of real numbers.

The possibility that this is the case should be borne in mind.” Fine Hall,

Princeton University. (Robinson, l961)

Human beings using mental processes construct devices to measure, via numerical

means, what they define as physical properties. These devices did not exist prior to

their invention and construction. Except for these devices, Nature does not display any

numerical quantities. Thus far in this section, with the exception of an observation of
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the motion of an observable object, all of the named entities are mental constructs used

to predict observable behavior. Whether these correspond to “real” entities that are

not observable is a philosophic stance. For the GGU-model, this is strongly the case.

Although the systems produced by the GGU-model processes are independent from

a specific cosmology, from everyday observation of physical behavior, the entities em-

ployed are predicted by the methods of nonstandard analysis. Indeed, the GGU-model

into-fields are composed of gatherings of propertons and they are dependent upon

the ultra-properton that is characterized by but two non-zero infinitesimal numbers.

These entities produce each physical-system within a universe. But, if such entities

exist, they are not physical entities within a universe but rather exist in a substratum

world that contains a physical world.

3. Vector Fields and the Further Modeling of Observables and Unob-

serbables.

Newton actually is the one who thought of what we today call the “vector.” We can

observe vector behavior in that we notice not merely motion but the relative direction

of such motion. Newton models mathematically the combined result of two such vector

motions via the diagonal of a parallelogram. Thus, one can first observe behavior, then

linguistically describe such behavior, then mathematically model it. This is followed by

returning to the linguistic description for an observation and this yields human mental

impressions for those who comprehend the meanings of the terms employed. Certain

processes take place within the brain of an individual. This is where an individual’s

“thoughts” are composed and the linguistic description and mathematical model appear

to originate. Nature does not provide these linguistic aspects.

Today, geometric vector fields and the vector calculus are a major tool for the

prediction of physical behavior. Aristotle rejected the notion of there being any dif-

ference between a set of line segment points and the “direction” one might choice for

generating such a collection. But, the elementary illustration of the directed line is

the main stay of the physical application of the vector calculus. These predict the two

notions, a numerical measure and a relative direction. Is there any doubt that this

is but a mental device, enhanced by a pictorial representation, and beyond this

directed line segments do not exist in physical reality?

Under specific circumstances, a physical “force” can be considered as producing

observable effects. We invent various devices to measure forces. The concept of ac-

celeration is also observable and can be described by the use of such a phase as “the

speed (velocity as some state it) seems to be getting greater and greater.” But, just

by watching such behavior does one obsevre a numerical relation between measures for

these two notions? No. But, such a relation is obtainable via humanly constructed
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measuring devices.

Newton was very careful in differentiating between the physical concept and mea-

sures for the concept. This is not done today. First, Newton defines the “quantity of

motion” as follows:

“The quantity of motion is the measure of the same, arising from the

[scalar] velocity and the quantity of matter conjointly.” (Newton, 1686

(1934, (p. 1)))

Thus the quantity of motion is what we call momentum. One might ask, how or

why did Newton even consider this notion since it is rather unobservable. As indicated

by the explanation that follows his statement, his Second Law was not derived but

rather is based upon an observation that

“The [uniform] change of [the quantity of] motion is proportional to

the [constant] motive force impressed; and is made in the direction of the

right [i.e., straight] line in which the force is impressed.” (Newton, 1686

(1934, (p. 13)))

In the standard elementary physics textbook, the Second Law, in differential form, is

used to derive an expression that yields a symbolic expression that involves the first

quantity, the measure of momentum.

Newton then proceeds in the Scholium to that section to apply this Second Law

and his idea that the total effect of finitely many constant forces is additive over time

to establish Galileo’s discovery that the “...descent of bodies varies as the square of the

time.” (Newton, 1686 (1934, (p. 21))) In terms of a constant impulse notion, Newton’s

argument does not include the mass, but rather leaves the mass as the constant of

proportionality. It has been stated that, due to its applications, his Second Law of

Motion is the most significant physical law ever devised and it does relate to observables.

It is a mathematical model for observable acceleration (uniform change) effects.

The mathematical model expressed as F = ma = m(dv/dt) or in Newton notation

F = mvt can predict relative behavior that is linguistically describable without actual

measuring devices. Consider F = K and F1 = Kt. Then a little calculus yields Kt =

mv, (K/2)t2 = mv1. (Today, these are usually written in vector form.) One object A

moving with measured speed Kt/m = v can be compared, in an approximate way via

observation, with an object B moving “parallel” to A but with speed (K/(2m))t2 = v1

by stating that B appears to be accelerating (changing its speed) more rapidity than A.

This observation and description can precede the actual calculation of these expressions.

On the other hand, this observation is a type of verification that such interpreted

mathematical expressions have merit. Man made measuring devices can further verify

the mathematical expressions.
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Kepler’s Laws of Planetary motion are consider as major examples of empirical

science. One views the planet Mars over a long time period and notices that it appears

to block out members of the star background. So, assuming the star background is

rather fixed, our experiences with our environment allows us to conclude that Mars is

moving. This is considered an observable property. Numerical measures are taken as to

its changing position and after years of effort Kepler states his Second Law of Motion

and it is claimed to be a major “Physical (Natural) Law.” A line segment from the

Sun to a planet, though changing in length, sweeps out equal areas in equal time.

However, there does not exist a material line segment from the Sun to a planet,

there does not exist a material region swept out, and there is no material time marks

within Nature. These are mental and unobservable constructs that we associate with

measures or measuring devices that we employ. Nature does not display such numer-

ical mesures. Further, one of the major claimed physical laws is the “conservation of

momentum.” As expressed today it states: The total (vector) momentum of a physical-

system that is subject to only internal forces remains constant. But, vector momentum

cannot be observed. The vector momentum has an indivivual existence, at least in sym-

bolic form, as do measures of area but neither is a physical object beyond its symbolic

form.

A 1950 college dictionary defines a Physical Law as follows:

A physical law is a sequence of events in nature or human activities

that has been observed to occur with unvarying uniformity under the same

conditions. Then this is followed by the formation, in words, of such a

sequence.

(Of course, one might wonder how one shows that behavior “always” occurs in an

unvarying uniform manner. Or is this just assumed to be the case after only a small

finite number of observations?) Under this definition, the Conservation of Momentum

and Kepler’s Second Law are not physical laws. Indeed, today many entities listed as

physical are not observable and any statement as to their behavior does not fit such

a definition. These are mental constructs. Yet, such statements are claimed to be

physical laws since we can use them to predict observed behavior that seems to verify

our mental constructs. The evidence for the acceptance of any such physical law is

said to be “indirect.” However, there are distinctly different statements that yield, via

human deduction, the same observed predictions. Which statements one accepts

as fact and, indeed, which unobservables one accepts as existing within a

physical universe is a philosophic stance based upon other considerations.

What is even more remarkable is that modern science is based upon human lin-

guistics, invention and especially rational thought. How is it possible that but one
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species has developed these capacities and that our universe is so constructed that we

can predict future behavior by application of these mental constructs? Much behavior

within Nature corresponds to our mental activity. Indeed, Nature seems to behave

more like a mind than anything else we know. What is the probability that we are the

only species on earth that has “evolved” in this manner?

4. Quantum Physics.

One of the most significant examples of the uses of unobservables as assumed

physical objects is the Standard Model of Particle Physics. It appears likely that this

secular model will be the final model and any further refinements will be rejected due

to the lack of any indirect evidence for the existence of such refinements. The language

for this theory does not allow for any description for the composition of a quantum

field. This unobservable object is a primitive and as such must simply be assumed

to exist and to have a set of endowed properties, properties that will allow it to be

mathematically modeled.

Attempts are made to make two basic properties more imaginable by use of the

terms “ripples” or “vibrations.” The basic need for such vibrations for this “something”

is due to the basic notion of the energy quanta first introduced by Max Planck and

for which he won the 1918 Noble Prize in Physics. Planck first considers the expression

E = hν as a purely symbol form that he uses in his expression for black-body radition

as first presented in his published article (1900). But, to win such a prize, at that time,

one would need to assume that it represents real physical behavior. The constant h has

the units of joul-sec. In this specific case, electromegnetic energy occurs in a discrete

form, where ν is a freqeuncy measure so that the energy measure has the proper unit of

measure. The 1918 Nobel Prize in Physics was awarded to Max Planck for this specific

idea and accepted physical “fact.”

One not only endows such a thing with energy quanta but with momentum quanta

as well via the expression p = mc = (E/c2)c = E/c = (hν)/c = h/λ, where λ is

the wave-length of the electromagnetic radiation. But, does it take a great deal of

imagination to now generalize this quanta idea to other physical objects that have a

mass measure? De Broglie did just that, for electrons, and simply changed c to v.

He postulates the de Broglie wave length for such particles as λ = h/p = h/(mv).

One might even consider a de Broglie frequency. After all its just a change in how

one expresses this result. And, of course, he won the Noble Prize in Physics for his

“discovery” of the wave nature of electrons.

What is good for an electron is certainly good for all other particles with a mass

number. Hence, from this one case, a complete generalization is made. Thus is born the

unobservable general quantum field that ripples and displays particle properties. A true
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physical entity, we are told by the realist, that is not merely a mental construct used

to calculate observed physical behavior. Then there are the “virtual” particles, such as

virtual photons. They exist, of course, but are so elusive that . . . they never really

appear in the initial or final conditions of the experiment. . . .(Feynman. 1985, (p. 95,

Foot note 7)) There are the positivists who do not accept such fields as physically real.

To them, quantum mechanics is but a mathematical tool to calculate behavior, which

we cannot otherwise comprehend. We have the two opposite philosophic stances that

arrive at the same predicted conclusions, where the realist community has a grandiose

idea as to the creative inventiveness of its members.

5. Why Are There Contradictions and The Secular GGU-model Cosmogony.

As children we learn how to count and associate the symbols 1, 2, 3, 4, . . . with

objects in a nonempty bag of apples. The symbols 1, 2, 3, 4, . . . represent members

of the set of natural numbers, IN. Then we learn about the number 0 that symbolizes

the number of objects in an empty bag and it is considered as a member of IN, (i.e.

0 ∈ IN.) Then IN is also accorded certain order properties. The set IN and its properties

can be assumed or such entities are constructed from collections of empty sets, when

modern set-theory is applied. This same set-theory, with an added item, is used to the

construct the GGU-model’s mathematical structure.

The order < is used to define a special collection of subsets of IN. Let n ∈ IN and

n ≥ 1. Then define the interval [1, n] as a subset of IN, where x ∈ [1, n] if and only

if 1 ≤ x ≤ n. Mathematically, we then model our counting of a bag of 5 apples by

considering a relation f , a function as it is termed among other names, that assigns to

each member of the set [1, 5] one and only one object from the bag so that all members

of the bag of apples are assigned one of these number names. (Notice how precise this

process has been defined.) Finally, we say that we have a finite bag of apples. So, one

states that a set of entities is finite if such a function exists. We add to this by calling

the empty set, a set that contains no members, finite. If such a function does not exist

for a nonempty set C , then the set C is not finite, that is, it is infinite.

All the mathematical entities just named are called standard entities although a

few individuals call them “classical.” Indeed, all of the usual mathematical objects one

learns about today can be classified as standard entities and each carries its standard

name. Using the standard names, one learns that collections of finite sets have prop-

erties. For example, if A and B are two nonempty finite sets, then the combination

A ∪ B is a finite set. Also the other basic set-theory operations ∩, and − applied to

finite sets yield finite sets.

But, what happens when such sets are formally defined and their properties are

viewed from a special structure called a nonstandard structue, an enlargement?
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(The term “nonstandard” is but a technical term.) A standard set such as A turns

into the set ∗A. The original standard set A has a copy in this structure, which has

the same formal proprties as A. This is denoted by σA. (In certain cases the σ is

dropped.) The entity ∗A is, in general, an internal set. (Some authors also call ∗A a

standard (internal) set. I call it an extended standard set.) But why do we need this

new percision of language?

The reason for this is that the “formal” properties of the finite hold for the trans-

formed standard finite sets. Further, we can investigate and describe in terms of the

meta-language of the set-theory, where all these things exist, relations between the

standard behaving object σA and the internal ∗A. First, if A is finite, then σA is finite

and, indeed, σA = ∗A in this case. But, there are internal sets that formally behave

like finite sets if only the terms for internal objects are used, where in the set-theory

they are actually infinite. Consider the result that the natural numbers IN transform

into the set of “hypernatural” numbers ∗
IN and σ

IN 6= ∗
IN, where, for technical reasons,

it can be assumed that σ
IN = IN.

Taking internal λ in ∗
IN− IN, we have the internal hyper-interval [0, λ] = {x | (x ∈

∗
IN) and (0 ≤ x ≤ λ)}. (Technically, one would write 0 as ∗0 but, by convention,

it is expressed as 0.) Formally, the language of the internal must be used and [0, λ]

behaves just like a finite interval, but IN ⊂ [0, λ], when viewed in the meta-language.

Thus, [0, λ] is actually an infinite set. That is why we generally call such entities

hyperfinite although some hyperfinite sets can be finite in the set-theoretic sense. Now

IN is considered as a member of the mathematical structure, but it is not an internal

member so we call it an external member. This is why we must be more precise in

the use of language. This additional language avoids the obvious contradiction that a

set is both finite and infinite. The set of natural numbers IN is a standard entity, but

the hyperfinite interval [0, λ] is a nonstandard internal entity.

Thus is born the notion of the hyperfinite. All hyperfinite sets are internal. The

difference between the hyperfinite and finite, when viewed from the meta-langrage,

can be rather unusual. If A is any infinite standard set, then its copy σA is infinite.

But, there exists a hyperfinite B such that σA ⊂ B. This indicates that to avoid

contradictions the language must be precise and one needs to use such differentiating

terms as “standard” and “internal” or it is necessary to understand that the entities

are of these two types. But, they are not mutally exclusive. A nonempty finite σA is

also internal. (If one can follow this, then this is why. A nonempty finite set A has

constant names assigned to its members, say a, b, c, d. Then the following formal

statement holds in the standard superstructure, ∀x(x ∈ A ∈ Xn ↔ ((x = a) ∧ (x =

b) ∧ (x = c) ∧ (x = d))). One thinks of ∧ as “and” to arrive at this from the informal
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statement. Then this transforms into the statement ∀x(x ∈ ∗A ∈ ∗Xn ↔ ((x =
∗a) ∧ (x = ∗b) ∧ (x = ∗c) ∧ (x = ∗d))). Due to the location of ∗A, it is internal.)

(There are actually two different “superstructures” employed, the standard one

and the enlangement. If a ∈ X, where X is the basic underlying set from which the

standard superstructure is constructed, then ∗a ∈ ∗Y , where Y is the basic set from

which the enlargement is constructed. For these sets, due to the type of set-theory

employed, by convention, each ∗a is denoted by a and one considers X ⊂ Y at this

level, at least, of the construction of the enlargment. (Loeb and Wolf, 2000, (p. 39))

One significant feature of all of this is that it is in the nonstandard structure

that the infinitesimals µ(0) reside and the basic construction of the GGU-model leads

directly to the hyperfinite. If you only communiate in the standard or internal language,

then the set of infinitesimals cannot be discussed. However, each member and each finite

subset of the infinitesimals is internal and can be discussed. The observed behavior

modeled by the standard portion of the GGU-model is composed of finite behavior.

The interpreted nonstandard portion is usually in terms of the hyperfinite, which when

restricted to our physical world is but the finite case. Further, the hypernatural numbers
∗
IN have the order < that restricted to IN is its usual order, but it does not satisfy an

important property. The set of all infinite hypernaural numbers, IN∞ = ∗
IN − IN, does

not have a least (a first) member (i.e. ∗
IN is not well-ordered). Further, these numbers

model the infinitely large numbers of Newton and Leibniz.)

Electromagnetic radiation has a continuous energy spectrum. From this, by a

special technique of coding or by a direct approach, the general paradigm method ra-

tionally predicts the statement “An elementary particle with total energy c′+1/(10γ′

).”

The γ′ is an infinite hyper-natural number. Let c′ = 0 and denote γ′ by ω. Hence, this

predicts an infinitesimal energy value 1/10ω. Theorem 11.1.1 ([C]) states that for any

real number r 6= 0 there is an infinite hyper-natural number λ such that r is “in-

finitesimally near to” λ/10ω. This means that there is an infinitesimal ǫ such that

r = λ/10ω + ǫ. A human being can rather easily pick form one-hundred black balls on a

pool table the only white ball present. This type of selection process is one property of

the “standard part operator” St. Applying this operator to λ/10ω yields the unique r.

Hence, following the generalization procedure previously described, ± this infinitesimal

measure is accorded other numerically defined measures for physical properties. Using

only ±1/10ω as coordinates in n-tuple form with certain linear algebra properties, the

substratum mathematical representation for the ultra-properton is obtained.

Consider the “energy” coordinate. A hyperfinite gathering of λ ultra-propertons

yields the intermediate properton as follows: Using independent coordinate addition

applied hyperfinitely many λ “times” (a hyperfinite process) to this ultra-properton
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yields an intermediate properton. This is an substratum entity or a mere intermediate

step in the formation of a physical universe. For example, all the property measuring

coordinates, except for the one say the energy, remain as ±1/10ω while the energy

coordinate is now λ/10ω. After application of St, this yields the non-infinitesimal

physical measure r for the one physical property - energy. If a property is only generally

describable, then this property also has a coordinate assigned and the intermediate

properton is obtained by applying the model’s coded representation for the general

description. A properton is a mathematical representation.

We differentiate physical objects from one-another by their proper-

ties. Intermediate propertons are gathered together, and then these gath-

erings are further gathered together. To produce a physical-system, this

“gathering process” is continued until all entities that comprise the sys-

tem are represented via properties - via these properton combinations.

This gathering notion is modeled after the raw material gathering process

employed to prepare for the construction of man made physical-systems.

Mathematics is based upon detailed and exact definitions and instructions. These

must be commonly understood by a mathematics community. It is also based upon

human physical notations such as to the “left, right, top, bottom, back, and front.”

Often, for a “simple” set of rules, the actual linguistic instructions are diagrammatically

presented. In mathematically logic, one needs to express strings of symbols in a common

exact “left-to-right” form. Such a form is (1) ∀x∃y(p(x) ∧ q(y) → ∀z(q(z) → P )).

(One often simplifies by removing some of the parentheses via the concept of strengths

of connectives.) Why is this form considered as correct and (2) ∧∀x(p(x)∃yq(y) →

∀z(q(z) → P )) is not acceptable? The way one does this for this type of symbol

string is via its standard interpretation, which is a linguistic statement written from

left-to-right.

The “sentence” (1) translates as “For each x, there exists a y such that if p(x) and

q(y), then for each z, if q(z), then P.” If one substitutes simply declarative statements

for p(x)and q(y), like “x is a boy” “y is a girl” etc., then this can have a “truth value.”

Now (2) reads “And, for each x, if p(x) there exist y such that q(y), then for each

z, if q(z), then P.” One needs to know that in these forms ∧ is a binary operation

and requires an entity on the “left.” Then considered the notion of the “free variable”

in a symbol string of this type. All logicians need to agree as to what free variables

are and where they are located within a collection of such strings of symbols or they

cannot follow the explicit rule “substitute at each position where x is free the variable

z.” Of course, there are many, many other such explicit instructions and definitions

given throughout mathematics.
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There are certain instructions that, although describable, also have a diagrammat-

ical definition. In an advanced textbook, an orientated lift-hand coordinate system is

defined by a drawing of a left-hand, where the thumb and two figures are pointing in

the appropriate relative directions.

Throughout all of physical science, explicit and commonly understood general

descriptions, descriptions that are linguistic or diagrammatical in nature, are the ma-

jor way to convey physical behavior. The most general aspect of the GGU-model is

that it is, in the scalar case, an analogue modeled that directly yields a one-to-one

relation between descriptions for physical-systems and the “actual” physical-systems

depicted. Within our physical world, certain human and mental processes are first

modeled. These mathematically symbolized entities are embedded within a mathemat-

ical structure and corresponding entities are predicted to exist within a substratum

world. These lead to a small finite number of sequentially presented operators that

represent substratum process. It is these operators that yield a physical universe.

A complete slice of a developing universe at a moment of observer time, a universe

wide frozen frame (UWFF), is considered as describable in detail and in relative

terms via members of a general language L. This is accomplished by describing its

physical-systems in ever increasing complexity. But, the model predicts an additional

feature.

The mathematics predicts that there is another language ∗L that con-

tains L and, except in a few cases, we can have no knowledge as the

members of ∗L that are not members of L (members of ∗L − L). Fur-

ther, combinations of these unknown elements also have “meanings” that

no biological entity within a universe can comprehend. These are termed

as hyper-meaningful expressions.

Due to the hyper-meaningful expressions, we are not able to describe the universe

producing GGU-model processes in great detail. Only general descriptions are possible.

There are various mathematically presented schemes that are used to express these

processes. Each is presented in two different patterns depending upon how one wishes

to read the sequence. The symbolically least complex of these schemes is

(M) St([[( ∗A((Γ(q,r)(x, λ), IF
(q,r)
λ (a, b))))]]) ⇒ U . (5.1)

A specific gathering, that is the properton combinations, for a UWFF is called an

info-field. But, the actual gathering process is not assumed for this scenario. Only

the info-fields are assumed to exist within the substratum. Although the GGU-model

is a cosmogony and not dependent upon specific physical laws, the notion of general

“physical-systems” is retained as is the concept of numerical measures OR general
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property descriptions. Only the collections of substratum info-fields need to exist for

the model to produce a developing universe. Thus, for the substratum, they are not

primitives in the sense of quantum fields since they are composed of combinations of

primitive ultra-propertons. The symbols IF
(q,r)
λ (a, b) denote such an info-field. And

the symbols Γ(q,r)(x, λ) denote a special collection of info-fields that, in a sequential

manner, produce a universe. But, assuming that within a secular substratum the

mathematical notion of an ordered set of natural numbers has no meaning, how can

such a sequence be achieved?

In order to obtain a sequential development, the set of info-fields Γ(q,r)(x, λ) is

constructed in a special manner. Prior to embedding into our mathematical structure,

the algorithm A is the basic logic-system algorithm for a specially modified logic-

system. Upon embedding into the mathematical structure, the predicted algorithm is

now applied to an “hyperfinite internal” object Γ(q,r)(x, λ).

The description for the standard algorithm A displays the most basic deductive

process that is known as modus ponens (the rule of detachment). But, for

this special case, this logic-system algorithm can be simplified by presenting the logic-

system in a special form. When this logic-system is embedded, the hyperfinite collection

Γ(q,r)(x, λ) is predicted to exist. Then the predicted and characterizable algorithm ∗A

is applied to Γ(q,r)(x, λ) and each info-field is presented in its proper sequential order.

The symbols St([[...]]) signify the application of the standard part operator at each

sequential step. This reveals each physical UWFF at each moment in observer time.

A few more descriptive refinements yields the entire development of a universe. This

approach applies even in the case a universe has no “beginning” or no “ending” or

where each UWFF is of infinite content.

6. An Intermediate GGU-model Cosmogony.

In order to incorporate the gathering process, the notion of the instruction

paradigm is adjoined to the scheme (5.1). In this case, there are two forms of the

appropriate scheme.

(StG
(q,r)
λ )([[( ∗A( ∗Λ(q,r)(x, λ), { ∗I

(q,r)
ν,γ,λ(b, c)}))]]) ⇒ U . (6.1)

G
(q,r)
λ ([[( ∗A( ∗Λ(q,r)(x, λ), { ∗I

(q,r)
ν,γ,λ(b, c)}))]]) = (Γ(q,r)(x, λ), IF

(q,r)
λ (b, c)) ⇒

St([[( ∗A((Γ(q,r)(x, λ), IF
(q,r)
λ (b, c)))]]) ⇒ U (6.2).

The symbols with the * attached in the three schemes (5.1), (6.1), (6.2) all represent

the predicted embedded objects [D]. The “instructions,” such as ∗I
(q,r)
ν,γ,λ(b, c) where ∗I

is also denoted as ∗F, are considered as linguistically presented substratum laws.
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The collection ∗Λ(q,r)(x, λ) of hyper-instructions has the same sequential generating

form as Γ(q,r)(x, λ) and ∗A is the same algorithm as in the (5.1) case. G
(q,r)
λ ([[...]])

is the gathering operator that is guided by each sequentially produced member of
∗Λ(q,r)(x, λ) and yields the appropriate info-fields to which St is applied. Of course,

the last expression in (6.2) is (M).

This scheme reveals an additional interpretation that corresponds to the non-

secular case. However, this interpretation is not necessary at this stage. It refers to

the linguistic nature of the instructions and that they are a predicted extension of the

simple “counting” concept.

7. A Non-Secular GGU-model Interpretation.

Each of the schemes thus far presented has a non-secular interpretation in terms

of General Intelligent Design (GID). Scheme (M) is the weakest of these. For GID, the

operator ∗A is modeled after an embedded human deductive process. When math-

ematically characterized and compared to human deduction, it displays an “infinitely

powerful” form of deduction. The operator St also displays a property that corre-

sponds to a basic deduction scheme. Then for schemes (6.1) and (6.2), the instructions

are actually hyper-instructions. This means they are written in terms of members of
∗L − L. And, we can actually display some of these rules by adding a few symbols

that represent the infinite numbers. We cannot add all the necessary symbols, how-

ever. Thus, these schemes can be interpreted as modeling certain higher-intelligence

thoughts and thought processes. There is yet another scheme for the single-complexity

universes that has a stronger GID interpretation. An additional scheme is used that is

almost identical to a previous scheme.

(S) ( ∗Λ(q,r)(x, λ), { ∗f
(q,r)
ν,γ,λ(b, c)) ⇒ ∗A[[( ∗Λ(q,r)(x, λ), { ∗f

(q,r)
ν,γ,λ(b, c)})]] = dq

a. (7.1)

In this case, the ∗ f
(q,r)
ν,γ,λ is an in-depth pre-designed description taken from ∗L

for a physical or physical-like “beginning” UWFF. This is the case even if a universe is

without a physical beginning. The ∗Λ(q,r)(x, λ) is, as before, a specifically constructed

collection of the pre-designed descriptions and ∗A is exactly same hyper-algorithm

and sequential generates the pre-designed development, a developmental paradigm dq
a.

The instruction paradigm composed of members of the previous Λ set parallels this

pre-designed developmental paradigm. This is a stronger GID scheme since it includes

the per-design of a universe by a higher-intelligence.

There is yet another stronger scheme, the multi-complexity scheme found in [D]

along with its additional higher-intelligence processes. All of these schemes yield ratio-

nal models for creation of a universe by a higher-intelligence, and a general statement
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that “thoughts” are being changed into various realities. Given a particular UWFF

E(j). Then, for the GGU-model, what we glean as physical laws do not change this

UWFF into the next sequentially produced E(j + 1). Yet, we describe such laws and

predict future behavior. How is this possible? There is, at least, one answer to this

question.

8. The Participator Model and a Solution.

A necessary and additional complexity is added to the GGU-model that selects

specific members from a vast storehouse of pre-designed universes. These are the par-

ticular ones that correspond to alterations produced by our participation. [E] The

thoughts of which we are aware are the products of physical-systems, which need to be

a part of those systems that comprise our universe. Such thought patterns would con-

sequently be pre-designed by a higher-intelligence if a scheme such as (7.1) is applied.

Assuming this case, then one can conclude that what we claim are physical laws are

actually pre-designed descriptions that will satisfy the sequential development of our

universe. And, importantly, they allow us to predict future aspects of our universe’s

development. This also implies that many features of these laws can be but imaginary.

Since the GGU-model is a substratum model, it cannot be eliminated as a viable

general alternative. As defined in [A], it is rather easy to show that when one adds

the additional feature that the perceived physical laws are satisfied that the model is

falsifiable. [F]
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