A Note on the Dirac-like Equation in Non-commutative Geometry

Valeriy V. Dvoeglazov
Universidad de Zacatecas
Apartado Postal 636, Suc. 3
Zacatecas 98061, Zac., México
E-mail: valeri@fisica.uaz.edu.mx

Abstract

We postulate the non-commutativity of 4 -momenta and we derive the mass splitting in the Dirac equation. The applications are discussed.

The non-commutativity [1, 2] manifests interesting peculiarities in the Dirac case. Recently, we analized Sakurai-van der Waerden method of derivations of the Dirac (and higher-spins too) equation [3]. We can start from

$$
\begin{equation*}
\left(E I^{(2)}-\boldsymbol{\sigma} \cdot \mathbf{p}\right)\left(E I^{(2)}+\boldsymbol{\sigma} \cdot \mathbf{p}\right) \Psi_{(2)}=m^{2} \Psi_{(2)} \tag{1}
\end{equation*}
$$

or

$$
\begin{equation*}
\left(E I^{(4)}+\boldsymbol{\alpha} \cdot \mathbf{p}+m \beta\right)\left(E I^{(4)}-\boldsymbol{\alpha} \cdot \mathbf{p}-m \beta\right) \Psi_{(4)}=0 \tag{2}
\end{equation*}
$$

As in the original Dirac work, we have

$$
\begin{equation*}
\beta^{2}=1, \quad \alpha^{i} \beta+\beta \alpha^{i}=0, \quad \alpha^{i} \alpha^{j}+\alpha^{j} \alpha^{i}=2 \delta^{i j} . \tag{3}
\end{equation*}
$$

For instance, their explicite forms can be chosen

$$
\alpha^{i}=\left(\begin{array}{cc}
\sigma^{i} & 0 \tag{4}\\
0 & -\sigma^{i}
\end{array}\right), \quad \beta=\left(\begin{array}{cc}
0 & 1_{2 \times 2} \\
1_{2 \times 2} & 0
\end{array}\right)
$$

where σ^{i} are the ordinary Pauli 2×2 matrices.

We also postulate the non-commutativity relations for the components of 4-momenta:

$$
\begin{equation*}
\left[E, \mathbf{p}^{i}\right]_{-}=\Theta^{0 i}=\theta^{i}, \tag{5}
\end{equation*}
$$

as usual. Therefore the equation (2) will not lead to the well-known equation $E^{2}-\mathbf{p}^{2}=m^{2}$. Instead, we have

$$
\begin{equation*}
\left\{E^{2}-E(\boldsymbol{\alpha} \cdot \mathbf{p})+(\boldsymbol{\alpha} \cdot \mathbf{p}) E-\mathbf{p}^{2}-m^{2}-i\left(\boldsymbol{\sigma} \otimes I_{(2)}\right)[\mathbf{p} \times \mathbf{p}]\right\} \Psi_{(4)}=0 \tag{6}
\end{equation*}
$$

For the sake of simplicity, we may assume the last term to be zero. Thus, we come to

$$
\begin{equation*}
\left\{E^{2}-\mathbf{p}^{2}-m^{2}-(\boldsymbol{\alpha} \cdot \boldsymbol{\theta})\right\} \Psi_{(4)}=0 \tag{7}
\end{equation*}
$$

However, let us apply the unitary transformation. It is known [4, 5] that one can 1

$$
\begin{equation*}
U_{1}(\boldsymbol{\sigma} \cdot \mathbf{a}) U_{1}^{-1}=\sigma_{3}|\mathbf{a}| . \tag{8}
\end{equation*}
$$

For $\boldsymbol{\alpha}$ matrices we re-write (8) to

$$
\mathcal{U}_{1}(\boldsymbol{\alpha} \cdot \boldsymbol{\theta}) \mathcal{U}_{1}^{-1}=|\boldsymbol{\theta}|\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \tag{9}\\
0 & -1 & 0 & 0 \\
0 & 0 & -1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)=\alpha_{3}|\boldsymbol{\theta}|
$$

The explicit form of the U_{1} matrix is $\left(a_{r, l}=a_{1} \pm i a_{2}\right)$:

$$
\begin{align*}
U_{1} & =\frac{1}{\sqrt{2 a\left(a+a_{3}\right)}}\left(\begin{array}{cc}
a+a_{3} & a_{l} \\
-a_{r} & a+a_{3}
\end{array}\right)=\frac{1}{\sqrt{2 a\left(a+a_{3}\right)}}\left[a+a_{3}+i \sigma_{2} a_{1}-i \sigma_{1} a_{2}\right] \\
\mathcal{U}_{1} & =\left(\begin{array}{cc}
U_{1} & 0 \\
0 & U_{1}
\end{array}\right) . \tag{10}
\end{align*}
$$

Let us apply the second unitary transformation:

$$
\mathcal{U}_{2} \alpha_{3} \mathcal{U}_{2}^{\dagger}=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \tag{11}\\
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0
\end{array}\right) \alpha_{3}\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0
\end{array}\right)=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & -1 & 0 \\
0 & 0 & 0 & -1
\end{array}\right)
$$

[^0]The final equation is

$$
\begin{equation*}
\left[E^{2}-\mathbf{p}^{2}-m^{2}-\gamma_{\text {chiral }}^{5} \mid \boldsymbol{\theta} \|\right] \Psi_{(4)}^{\prime}=0 \tag{12}
\end{equation*}
$$

In the physical sense this implies the mass splitting for a Dirac particle over the non-commutative space, $m_{1,2}= \pm \sqrt{m^{2} \pm \theta}$. This procedure may be attractive for explanation of the mass creation and the mass splitting for fermions.

References

[1] H. Snyder, Phys. Rev. 71, 38 (1947); ibid. 72, 68 (1947).
[2] A. Kempf, G. Mangano and R. B. Mann, Phys. Rev. D52, 1108 (1995); G. AmelinoCamelia, Nature 408, 661 (2000); gr-qc/0012051; hep-th/0012238; gr-qc/0106004; J. Kowalski-Glikman, hep-th/0102098; G. Amelino-Camelia and M. Arzano, hepth/0105120; N. R. Bruno, G. Amelino-Camelia and J. Kowalski-Glikman, hepth/0107039.
[3] V. V. Dvoeglazov, Rev. Mex. Fis. Supl. 49, 99 (2003) (Proceedings of the DGFMSMF School, Huatulco, 2000)
[4] R. A. Berg, Nuovo Cimento 42A, 148 (1966).
[5] V. V. Dvoeglazov, Nuovo Cimento A108, 1467 (1995).

[^0]: ${ }^{1}$ Some relations for the components a should be assumed. Moreover, in our case $\boldsymbol{\theta}$ should not depend on E and \mathbf{p}. Otherwise, we must take the non-commutativity $\left[E, \mathbf{p}^{i}\right]_{-}$ into account again.

