

Florentin Smarandache

Compiled and Solved Problems in Geometry and Trigonometry

FLORENTIN SMARANDACHE

255 Compiled and Solved Problems in Geometry and Trigonometry
(from Romanian Textbooks)

Peer reviewers:
Prof. Rajesh Singh, School of Statistics, DAVV, Indore (M.P.), India.Dr. Linfan Mao, Academy of Mathematics and Systems, Chinese Academy of Sciences,Beijing 100190, P. R. China.
Mumtaz Ali, Department of Mathematics, Quaid-i-Azam University, Islamabad, 44000,
Pakistan
Prof. Stefan Vladutescu, University of Craiova, Romania.
Said Broumi, University of Hassan II Mohammedia, Hay El Baraka Ben M'sik,
Casablanca B. P. 7951, Morocco.
E-publishing, Translation \& Editing:
Dana Petras, Nikos VasiliouAdSumus Scientific and Cultural Society, Cantemir 13, Oradea, Romania
Copyright:
Florentin Smarandache 1998-2015
Educational Publisher, Chicago, USA
ISBN: 978-1-59973-299-2

Table of Content

Explanatory Note 4
Problems in Geometry (9 ${ }^{\text {th }}$ grade) 5
Solutions 11
Problems in Geometry and Trigonometry 38
Solutions 42
Other Problems in Geometry and Trigonometry ($10^{\text {th }}$ grade) 60
Solutions 67
Various Problems 96
Solutions 99
Problems in Spatial Geometry. 108
Solutions 114
Lines and Planes 140
Solutions 143
Projections 155
Solutions 159
Review Problems 174
Solutions 182

Explanatory Note

This book is a translation from Romanian of "Probleme Compilate şi Rezolvate de Geometrie şi Trigonometrie" (University of Kishinev Press, Kishinev, 169 p., 1998), and includes problems of 2D and 3D Euclidean geometry plus trigonometry, compiled and solved from the Romanian Textbooks for 9th and 10th grade students, in the period 1981-1988, when I was a professor of mathematics at the "Petrache Poenaru" National College in Balcesti, Valcea (Romania), Lycée Sidi El Hassan Lyoussi in Sefrou (Morroco), then at the "Nicolae Balcescu" National College in Craiova and Dragotesti General School (Romania), but also I did intensive private tutoring for students preparing their university entrance examination. After that, I have escaped in Turkey in September 1988 and lived in a political refugee camp in Istanbul and Ankara, and in March 1990 I immigrated to United States. The degree of difficulties of the problems is from easy and medium to hard. The solutions of the problems are at the end of each chapter. One can navigate back and forth from the text of the problem to its solution using bookmarks. The book is especially a didactical material for the mathematical students and instructors.

The Author

Problems in Geometry ($9^{\text {th }}$ grade)

1. The measure of a regular polygon's interior angle is four times bigger than the measure of its external angle. How many sides does the polygon have?

Solution to Problem 1
2. How many sides does a convex polygon have if all its external angles are obtuse?

Solution to Problem 2
3. Show that in a convex quadrilateral the bisector of two consecutive angles forms an angle whose measure is equal to half the sum of the measures of the other two angles.

Solution to Problem 3
4. Show that the surface of a convex pentagon can be decomposed into two quadrilateral surfaces.

Solution to Problem 4
5. What is the minimum number of quadrilateral surfaces in which a convex polygon with 9, 10, 11 vertices can be decomposed?

Solution to Problem 5
6. If $(\widehat{A B C}) \equiv\left(\widehat{A^{\prime} B^{\prime} C^{\prime}}\right)$, then \exists bijective function $f=(\widehat{A B C}) \rightarrow\left(\widehat{A^{\prime} B^{\prime} C^{\prime}}\right)$ such that for $\forall 2$ points $P, Q \in(\widehat{A B C}),\|P Q\|=\|f(P)\|,\|f(Q)\|$, and vice versa.

Solution to Problem 6
7. If $\triangle A B C \equiv \triangle A^{\prime} B^{\prime} C^{\prime}$ then \exists bijective function $f=A B C \rightarrow A^{\prime} B^{\prime} C^{\prime}$ such that $(\forall) 2$ points $P, Q \in A B C,\|P Q\|=\|f(P)\|,\|f(Q)\|$, and vice versa.
8. Show that if $\triangle A B C \sim \Delta A^{\prime} B^{\prime} C^{\prime}$, then $[A B C] \sim\left[A^{\prime} B^{\prime} C^{\prime}\right]$.

Solution to Problem 8
9. Show that any two rays are congruent sets. The same property for lines.
10. Show that two disks with the same radius are congruent sets.
11. If the function $f: M \rightarrow M^{\prime}$ is isometric, then the inverse function $f^{-1}: M \rightarrow M^{\prime}$ is as well isometric.
12. If the convex polygons $L=P_{1}, P_{2}, \ldots, P_{n}$ and $L^{\prime}=P_{1}^{\prime}, P_{2}^{\prime}, \ldots, P_{n}^{\prime}$ have $\left|P_{i}, P_{i+1}\right| \equiv$ $\left|P_{i}^{\prime}, P_{i+1}^{\prime}\right|$ for $i=1,2, \ldots, n-1$, and $P_{i} P_{l+1} \widehat{P_{l+2}} \equiv P_{i}^{\prime} P_{l+1}^{\prime} \widehat{P_{l+2^{\prime}}^{\prime}}(\forall) i=1,2, \ldots, n-$ 2 , then $L \equiv L^{\prime}$ and $[L] \equiv\left[L^{\prime}\right]$.

Solution to Problem 12
13. Prove that the ratio of the perimeters of two similar polygons is equal to their similarity ratio.

Solution to Problem
14. The parallelogram $A B C D$ has $\|A B\|=6,\|A C\|=7$ and $d(A C)=2$. Find $d(D, A B)$.
15. Of triangles $A B C$ with $\|B C\|=a$ and $\|C A\|=b, a$ and b being given numbers, find a triangle with maximum area.

Solution to Problem 15
16. Consider a square $A B C D$ and points E, F, G, H, I, K, L, M that divide each side in three congruent segments. Show that $P Q R S$ is a square and its area is equal to $\frac{2}{9} \sigma[A B C D]$.

Solution to Problem 16
17. The diagonals of the trapezoid $A B C D(A B \| D C)$ cut at O.
a. Show that the triangles $A O D$ and $B O C$ have the same area;
b. The parallel through O to $A B$ cuts $A D$ and $B C$ in M and N. Show that $\|M O\|=\|O N\|$.

Solution to Problem 17
18. E being the midpoint of the non-parallel side $[A D]$ of the trapezoid $A B C D$, show that $\sigma[A B C D]=2 \sigma[B C E]$.

Solution to Problem 18
19. There are given an angle $(\widehat{B A C})$ and a point D inside the angle. A line through D cuts the sides of the angle in M and N. Determine the line $M N$ such that the area $\triangle A M N$ to be minimal.

Solution to Problem 19
20. Construct a point P inside the triangle $A B C$, such that the triangles $P A B$, $P B C, P C A$ have equal areas.

Solution to Problem 20
21. Decompose a triangular surface in three surfaces with the same area by parallels to one side of the triangle.

Solution to Problem 21
22. Solve the analogous problem for a trapezoid.
23. We extend the radii drawn to the peaks of an equilateral triangle inscribed in a circle $L(O, r)$, until the intersection with the circle passing through the peaks of a square circumscribed to the circle $L(O, r)$. Show that the points thus obtained are the peaks of a triangle with the same area as the hexagon inscribed in $L(O, r)$.

Solution to Problem 23
24. Prove the leg theorem with the help of areas.
25. Consider an equilateral $\triangle A B C$ with $\|A B\|=2 a$. The area of the shaded surface determined by circles $L(A, a), L(B, a), L(A, 3 a)$ is equal to the area of the circle sector determined by the minor arc $\overline{(E F)}$ of the circle $L(C, a)$.

Solution to Problem 25
26. Show that the area of the annulus between circles $L\left(0, r_{2}\right)$ and $L\left(0, r_{2}\right)$ is equal to the area of a disk having as diameter the tangent segment to circle $L\left(O, r_{1}\right)$ with endpoints on the circle $L\left(O, r_{2}\right)$.

Solution to Problem 26
27. Let $[O A],[O B]$ two \perp radii of a circle centered at $[O]$. Take the points C and D on the minor arc $\widehat{A B F}$ such that $\widehat{A C} \equiv \widehat{B D}$ and let E, F be the projections of $C D$ onto $O B$. Show that the area of the surface bounded by $[D F],[F E[E C]]$ and $\operatorname{arc} \widehat{C D}$ is equal to the area of the sector determined by arc $\widehat{C D}$ of the circle $C(0,\|O A\|)$.
28. Find the area of the regular octagon inscribed in a circle of radius r.

Solution to Problem 28
29. Using areas, show that the sum of the distances of a variable point inside the equilateral triangle $A B C$ to its sides is constant.

Solution to Problem 29
30. Consider a given triangle $A B C$ and a variable point $M \in|B C|$. Prove that between the distances $x=d(M, A B)$ and $y=d(M, A C)$ is a relation of $k x+$ $l y=1$ type, where k and l are constant.

Solution to Problem 30
31. Let M and N be the midpoints of sides $[B C]$ and $[A D]$ of the convex quadrilateral $A B C D$ and $\{P\}=A M \cap B N$ and $\{Q\}=C N \cap N D$. Prove that the area of the quadrilateral $P M Q N$ is equal to the sum of the areas of triangles $A B P$ and $C D Q$.

Solution to Problem 31
32. Construct a triangle having the same area as a given pentagon.

Solution to Problem 32
33. Construct a line that divides a convex quadrilateral surface in two parts with equal areas.

Solution to Problem 33
34. In a square of side l, the middle of each side is connected with the ends of the opposite side. Find the area of the interior convex octagon formed in this way.

Solution to Problem 34
35. The diagonal $[B D]$ of parallelogram $A B C D$ is divided by points M, N, in 3 segments. Prove that $A M C N$ is a parallelogram and find the ratio between $\sigma[A M C N]$ and $\sigma[A B C D]$.

Solution to Problem 35
36. There are given the points A, B, C, D, such that $A B \cap C D=\{p\}$. Find the locus of point M such that $\sigma[A B M]=\sigma[C D M]$.
37. Analogous problem for $A B \| C D$.
38. Let $A B C D$ be a convex quadrilateral. Find the locus of point x_{1} inside $A B C D$ such that $\sigma[A B M]+\sigma[C D M]=k, k-a$ constant. For which values of k the desired geometrical locus is not the empty set?

Solution to Problem

Solutions

Solution to Problem 1.

$$
\frac{180(n-2)}{n}=4 \frac{180}{5} \Rightarrow n=10
$$

Solution to Problem 2.

$$
\begin{gathered}
\left.\begin{array}{c}
\text { Let } n=3 \\
x_{1}, x_{2}, x_{3} \Varangle \text { ext }
\end{array} \begin{array}{c}
x_{1}>90^{0} \\
x_{2}>90^{0} \\
x_{3}>90^{\circ}
\end{array}\right\} \Rightarrow x_{1}+x_{2}+x_{3}>270^{\circ} \text {, so } n=3 \text { is possible. } \\
\left.\begin{array}{c}
\text { Let } n=4 \\
x_{1}, x_{2}, x_{3}, x_{4} \Varangle \text { ext }
\end{array} \begin{array}{c}
x_{1}>90^{\circ} \\
\vdots \\
x_{3}>90^{\circ}
\end{array}\right\} \Rightarrow x_{1}+x_{2}+x_{3}+x_{4}>360^{\circ} \text {, so } n=4 \text { is impossible. }
\end{gathered}
$$

Therefore, $n=3$.

Solution to Problem 3.

$$
\begin{gathered}
\mathrm{m}(\widehat{A E B})=\frac{\mathrm{m}(\widehat{D})+\mathrm{m}(\hat{C})}{2} \\
\mathrm{~m}(\hat{A})+\mathrm{m}(\hat{B})+\mathrm{m}(\hat{C})+\mathrm{m}(\widehat{D})=360^{\circ} \\
\frac{\mathrm{m}(\hat{A})+\mathrm{m}(\widehat{B})}{2}=180^{\circ}-\frac{\mathrm{m}(\hat{C})+\mathrm{m}(\widehat{D})}{2} \\
\mathrm{~m}(\widehat{A E B})=180^{\circ}-\frac{\mathrm{m}(\hat{A})}{2}-\frac{\mathrm{m}(\widehat{B})}{2}= \\
=180^{\circ}-180^{\circ}+\frac{\mathrm{m}(\hat{C})+\mathrm{m}(\widehat{D})}{2}=\frac{\mathrm{m}(\hat{C})+(\widehat{D})}{2}
\end{gathered}
$$

Solution to Problem 4.
Let $\widehat{E D C} \Rightarrow A, B \in \operatorname{int} \cdot \widehat{E D C}$. Let $M \in|A B| \Rightarrow M \in$ int. $\widehat{E D C} \Rightarrow \mid D M \subset$ int. $\widehat{E D C},|E A| \cap$ $\mid D M=\varnothing \Rightarrow D E A M$ quadrilateral. The same for $D C B M$.

Solution to Problem 5.

9 vertices;
4 quadrilaterals.

10 vertices;
4 quadrilaterals.

11 vertices;
5 quadrilaterals.

Solution to Problem 6.

We assume that $\widehat{A B C} \equiv \widehat{A^{\prime} B^{\prime} C^{\prime}}$. We construct a function $f \widehat{: A B C} \rightarrow \widehat{A^{\prime} B^{\prime} C^{\prime}}$ such that $\left\{\begin{array}{l}f(\mathrm{~B})=\mathrm{B}^{\prime} \\ \text { if } \mathrm{P} \in \mid \mathrm{BA}, \quad f(\mathrm{P}) \in \mathrm{B}^{\prime} \mathrm{A}^{\prime}\end{array}\right.$
$P \in \mid B C, f(P) \in B^{\prime} C^{\prime}$ such that $\|B P\|=\left\|B^{\prime} P^{\prime}\right\|$ where $P^{\prime}=f(F)$.
The so constructed function is bijective, since for different arguments there are different corresponding values and \forall point from $A^{\prime} B^{\prime} C^{\prime}$ is the image of a single point from $\widehat{A B C}$ (from the axiom of segment construction).

If $P, Q \in$ this ray,
$\left.\begin{array}{l}\|\mathrm{BP}\|=\left\|\mathrm{B}^{\prime} \mathrm{P}^{\prime}\right\| \\ \|\mathrm{BQ}\|=\left\|\mathrm{B}^{\prime} \mathrm{Q}^{\prime}\right\|\end{array}\right\} \Rightarrow\|\mathrm{PQ}\|=\|\mathrm{BQ}\|-\|\mathrm{BP}\|=\left\|\mathrm{B}^{\prime} \mathrm{Q}^{\prime}\right\|-\left\|\mathrm{B}^{\prime} \mathrm{P}^{\prime}\right\|=\left\|\mathrm{P}^{\prime} \mathrm{Q}^{\prime}\right\|=\|f(\mathrm{P}), f(\mathrm{Q})\|$.

If $P, Q \in$ a different ray,
$\left.\|\mathrm{BP}\|=\left\|\mathrm{B}^{\prime} \mathrm{P}^{\prime}\right\|\right)$
$\left.\|\mathrm{BQ}\|=\left\|\mathrm{B}^{\prime} \mathrm{Q}^{\prime}\right\|\right\} \Rightarrow \Delta \mathrm{PBQ}=\Delta \mathrm{P}^{\prime} \mathrm{B}^{\prime} \mathrm{Q}^{\prime} \Rightarrow\|\mathrm{PQ}\|=\left\|\mathrm{P}^{\prime} \mathrm{Q}^{\prime}\right\|=\|f(\mathrm{P}), f(\mathrm{Q})\|$.
$\widehat{\mathrm{PBQ}} \equiv \widehat{\mathrm{P}^{\prime} \mathrm{B}^{\prime} \mathrm{Q}^{\prime}}$

Vice versa.
Let $f: \mathrm{ABC} \rightarrow \mathrm{A}^{\prime} \mathrm{B}^{\prime} \mathrm{C}^{\prime}$ such that f bijective and $\|\mathrm{PQ}\|=\|f(\mathrm{P}), f(\mathrm{Q})\|$.

Let $P, Q \in \mid B A$ and $R S \in \mid B C$.

```
\(\|P Q\|=\left\|P^{\prime} Q^{\prime}\right\|\)
\(\left.\|P S\|=\left\|\mathrm{P}^{\prime} \mathrm{S}^{\prime}\right\|\right\} \Rightarrow \Delta \mathrm{PQS} \equiv \Delta \mathrm{P}^{\prime} \mathrm{Q}^{\prime} \mathrm{S}^{\prime} \Rightarrow \widehat{\mathrm{QPS}} \equiv \widehat{\mathrm{Q}^{\prime} \mathrm{P}^{\prime} \mathrm{S}^{\prime}} \Rightarrow \widehat{\mathrm{BPS}} \equiv \widehat{\mathrm{B}^{\prime} \mathrm{P}^{\prime} \mathrm{S}^{\prime}}\)
\(\|Q S\|=\left\|Q^{\prime} S^{\prime}\right\|\)
\(\|P S\|=\left\|P^{\prime} S^{\prime}\right\|\)
\(\left.\|R P\|=\left\|R^{\prime} P^{\prime}\right\|\right\} \Rightarrow \Delta \mathrm{PRS} \equiv \Delta \mathrm{P}^{\prime} \mathrm{R}^{\prime} \mathrm{S}^{\prime} \Rightarrow \widehat{\mathrm{PSB}} \equiv \widehat{\mathrm{P}^{\prime} \mathrm{S}^{\prime} \mathrm{B}^{\prime}} \quad\) (2).
\(\left.\|P S\|=\left\|P^{\prime} S^{\prime}\right\|\right)\)
```

From (1) and (2) $\Rightarrow \widehat{\mathrm{PBC}} \equiv \widehat{\mathrm{P}^{\prime} \mathrm{B}^{\prime} \mathrm{S}^{\prime}}$ (as diff. at 180°) i.e. $\widehat{\mathrm{ABC}} \equiv \widehat{\mathrm{A}^{\prime} \mathrm{B}^{\prime} \mathrm{C}^{\prime}}$.

Solution to Problem 7.

Let $\triangle A B C \equiv \triangle A^{\prime} B^{\prime} C^{\prime}$.
We construct a function $f: A B C \rightarrow A^{\prime} B^{\prime} C^{\prime}$ such that $f(A)=A^{\prime}, f(B)=B^{\prime}, f(C)=C^{\prime}$
and so $\quad P \in|A B| \rightarrow P^{\prime}=f(P) \in\left|A^{\prime} B^{\prime}\right|$ such that $\|A P\|=\left\|A^{\prime} P^{\prime}\right\|$;
$P \in|B C| \rightarrow P^{\prime}=f(P) \in\left|B^{\prime} C^{\prime}\right|$ such that $\|B P\|=\left\|B^{\prime} P^{\prime}\right\| ;$
$P \in|C A| \rightarrow P^{\prime}=f(P) \in\left|C^{\prime} A^{\prime}\right|$ such that $\|C P\|=\left\|C^{\prime} P^{\prime}\right\|$.
The so constructed function is bijective.
Let $P \in|A B|$ and $a \in|C A| \Rightarrow P^{\prime} \in\left|A^{\prime} B^{\prime}\right|$ and $Q^{\prime} \in\left|C^{\prime} A^{\prime}\right|$.
$\|A P\|=\left\|A^{\prime} P^{\prime}\right\|$
$\left.\|C Q\|=\left\|C^{\prime} Q^{\prime}\right\|\right\} \Rightarrow A Q\|=\| A^{\prime} Q^{\prime}\left\|; A \equiv A^{\prime} \Rightarrow \Delta A P Q \equiv \Delta A^{\prime} P^{\prime} Q^{\prime} \Rightarrow\right\| P Q\|=\| P^{\prime} Q^{\prime} \|$.
$\left.\|C A\|=\left\|C^{\prime} A^{\prime}\right\|\right)$
Similar reasoning for (\forall) point P and Q.

Vice versa.

We assume that \exists a bijective function $f: A B C \rightarrow A^{\prime} B^{\prime} C^{\prime}$ with the stated properties.

We denote $f(A)=A^{\prime \prime}, f(B)=B^{\prime \prime}, f(C)=C^{\prime \prime}$
$\Rightarrow\|A B\|=\left\|A^{\prime \prime} B^{\prime \prime}\right\|,\|B C\|=\left\|B^{\prime \prime} C^{\prime \prime}\right\|,\|A C\|=\left\|A^{\prime \prime} C^{\prime \prime}\right\| \Rightarrow \Delta A B C=\Delta A^{\prime \prime} B^{\prime \prime} C^{\prime \prime}$.
Because $f(\mathrm{ABC})=f([\mathrm{AB}] \cup[\mathrm{BC}] \cup[\mathrm{CA}])=f([\mathrm{AB}]) \cup f([\mathrm{BC}]) \cup f([\mathrm{CA}])$

$$
=\left[\mathrm{A}^{\prime \prime} \mathrm{B}^{\prime \prime}\right] \cup\left[\mathrm{B}^{\prime \prime} \mathrm{C}^{\prime \prime}\right]\left[\mathrm{C}^{\prime \prime} \mathrm{A}^{\prime \prime}\right]=\mathrm{A}^{\prime \prime} \mathrm{B}^{\prime \prime} \mathrm{C}^{\prime \prime} .
$$

But by the hypothesis $f(A B C)=f\left(A^{\prime} B^{\prime} C^{\prime}\right)$, therefore

$$
\mathrm{A}^{\prime \prime} \mathrm{B}^{\prime \prime} \mathrm{C}^{\prime \prime}=\Delta \mathrm{A}^{\prime} \mathrm{B}^{\prime} \mathrm{C}^{\prime} \Rightarrow \Delta \mathrm{ABC} \equiv \Delta \mathrm{~A}^{\prime} \mathrm{B}^{\prime} \mathrm{C}^{\prime}
$$

Solution to Problem 8.

If $\triangle A B C \sim \triangle A^{\prime} B^{\prime} C^{\prime}$ then $(\forall) f: A B C \rightarrow A^{\prime} B^{\prime} C^{\prime}$ and $k>0$ such that:
$\|P Q\|=k\|f(P), f(Q)\|, P, Q \in A B C ;$
$\left.\Delta A B C \sim \Delta A^{\prime} B^{\prime} C^{\prime} \Rightarrow \begin{array}{l}\frac{\|\mathrm{AB}\|}{\left\|\mathrm{A}^{\prime} B^{\prime}\right\|}=\frac{\|\mathrm{BC}\|}{\left\|\mathrm{B} C \mathrm{C}^{\prime}\right\|}=\frac{\|\mathrm{CA}\|}{\left\|\mathrm{C}^{\prime} \mathrm{A}^{\prime}\right\|}=k \\ \widehat{\mathrm{~A}} \equiv \widehat{\mathrm{~A}^{\prime}} ; \widehat{\mathrm{B}} \equiv \widehat{\mathrm{B}^{\prime} ;} ; \widehat{\mathrm{C}} \equiv \widehat{\mathrm{C}}^{\prime}\end{array}\right\} \Rightarrow \begin{aligned} & \|\mathrm{AB}\|=k\left\|\mathrm{~A}^{\prime} \mathrm{B}^{\prime}\right\| \\ & \|\mathrm{BC}\|=k\left\|\mathrm{~B}^{\prime} \mathrm{C}^{\prime}\right\| \\ & \|\mathrm{CA}\|=k\left\|\mathrm{C}^{\prime} \mathrm{A}^{\prime}\right\|\end{aligned}$.
We construct a function $f: A B C \rightarrow A^{\prime} B^{\prime} C^{\prime}$ such that $f(A)=A^{\prime}, f(B)=B^{\prime}, f(C)=C^{\prime}$; if $P \in|B C| \rightarrow P \in\left|B^{\prime} C^{\prime}\right|$ such that $\left\|B P\left|\mid=k\left\|B^{\prime} P^{\prime}\right\| ;\right.\right.$ if $P \in|C A| \rightarrow P \in\left|C^{\prime} A^{\prime}\right|$ such that $\|C P\|=k\left\|C^{\prime} P^{\prime}\right\| ; k$ - similarity constant.

Let $P, Q \in A B$ such that $P \in|B C|, Q \in|A C| \Rightarrow P^{\prime} \in\left|B^{\prime} C^{\prime}\right|$ and $\|B P\|=k\left\|B^{\prime} P^{\prime}\right\|$

$$
\mathrm{Q}^{\prime} \in\left|\mathrm{A}^{\prime} \mathrm{C}^{\prime}\right| \text { and }\|\mathrm{CQ}\|=k\left\|\mathrm{C}^{\prime} \mathrm{Q}^{\prime}\right\|(1)
$$

As $\|\mathrm{BC}\|=k\left\|\mathrm{~B}^{\prime} \mathrm{C}^{\prime}\right\| \Rightarrow\|\mathrm{PC}\|=\|\mathrm{BC}\|-\|\mathrm{BP}\|=k\left\|\mathrm{~B}^{\prime} \mathrm{C}^{\prime}\right\|-k\left\|\mathrm{~B}^{\prime} \mathrm{P}^{\prime}\right\|=$

$$
\begin{gather*}
=k\left(\left\|\mathrm{~B}^{\prime} \mathrm{C}^{\prime}\right\|-\left\|\mathrm{B}^{\prime} \mathrm{P}^{\prime}\right\|\right)=k\left\|\mathrm{P}^{\prime} \mathrm{C}^{\prime}\right\|(2) ; \\
\widehat{\mathrm{C}} \equiv \widehat{\mathrm{C}^{\prime}} \text { (3). } \tag{3}
\end{gather*}
$$

From (1), (2), and (3) $\Rightarrow \Delta \mathrm{PCQ} \sim \Delta \mathrm{P}^{\prime} \mathrm{C}^{\prime} \mathrm{Q}^{\prime} \Rightarrow\|\mathrm{PQ}\|=k\left\|\mathrm{P}^{\prime} \mathrm{Q}^{\prime}\right\|$.
Similar reasoning for $P, Q \in A B C$.
We also extend the bijective function previously constructed to the interiors of the two triangles in the following way:

Let $P \in$ int. $A B C$ and we construct $P^{\prime} \in$ int. $A^{\prime} B^{\prime} C^{\prime}$ such that $\|A P\|=k\left\|A^{\prime} P^{\prime}\right\|$ (1).
Let $Q \in$ int. $A B C \rightarrow Q^{\prime} \in$ int. $A^{\prime} B^{\prime} C^{\prime}$ such that $\widehat{B A Q} \equiv \widehat{B^{\prime} A^{\prime} Q^{\prime}}$ and $\|A Q\|=k\left\|A^{\prime} Q^{\prime}\right\|(2)$.

From (1) and (2),

$$
\frac{\mathrm{AP}}{\mathrm{~A}^{\prime} \mathrm{P}^{\prime}}=\frac{\mathrm{AQ}}{\mathrm{~A}^{\prime} \mathrm{Q}^{\prime}}=k, \widehat{\mathrm{PAQ}} \equiv \widehat{\mathrm{P}^{\prime} \mathrm{A}^{\prime} \mathrm{Q}^{\prime}} \Rightarrow \Delta \mathrm{APQ} \sim \Delta \mathrm{~A}^{\prime} \mathrm{P}^{\prime} \mathrm{Q}^{\prime} \Rightarrow\|\mathrm{PQ}\|=k\left\|\mathrm{P}^{\prime} \mathrm{Q}^{\prime}\right\|,
$$

but $P, Q \in[A B C]$, so $[A B C] \sim\left[A^{\prime} B^{\prime} C^{\prime}\right]$.

Solution to Problem 9.

a. Let $\mid O A$ and $\mid O^{\prime} A^{\prime}$ be two rays:

Let $f:|O A \rightarrow| O^{\prime} A^{\prime}$ such that $f(O)=O^{\prime}$ and $f(P)=P^{\prime}$ with $\|O P\|=\| O^{\prime} P^{\prime} \mid$.
The so constructed point P^{\prime} is unique and so if $P \neq Q \Rightarrow\|O P\| \neq\|O Q\| \Rightarrow$ $\left\|O^{\prime} P^{\prime}\right\| \neq\left\|O^{\prime} Q^{\prime}\right\| \Rightarrow P^{\prime} \neq Q^{\prime}$ and $(\forall) P^{\prime} \in \mid O^{\prime} A^{\prime}(\exists)$ a single point $P \in \mid O A$ such that $\|O P\|=\left\|O^{\prime} P^{\prime}\right\|$.

The constructed function is bijective.
If $P, Q \in|O A, P \in| O Q\left|\rightarrow P^{\prime} Q^{\prime} \in\right| O^{\prime} A^{\prime}$ such that $\|O P\|=\left\|O^{\prime} \mathrm{P}^{\prime}\right\| ;\|\mathrm{OQ}\|=\left\|\mathrm{O}^{\prime} \mathrm{Q}^{\prime}\right\| \Rightarrow$ $\|P Q\|=\|O Q\|-\|O P\|=\left\|O^{\prime} Q^{\prime}\right\|-\left\|\mathrm{O}^{\prime} \mathrm{P}^{\prime}\right\|=\left\|\mathrm{P}^{\prime} \mathrm{Q}^{\prime}\right\|(\forall) \mathrm{P} ; Q \in \mid \mathrm{OA}$ \Rightarrow the two rays are congruent.
b. Let d and d^{\prime} be two lines.

Let $O \in d$ and $O^{\prime} \in d^{\prime}$. We construct a function $f: d \rightarrow d^{\prime}$ such that $f(O)=O^{\prime}$ and $f(\mid O A)=\mid O^{\prime} A^{\prime}$ and $f(\mid O B)=\mid O^{\prime} B^{\prime}$ as at the previous point.

It is proved in the same way that f is bijective and that $\|P Q\|=\left\|P^{\prime} Q^{\prime}\right\|$ when P and Q belong to the same ray.

If P, Q belong to different rays:

$$
\left.\begin{array}{l}
\|O P\|=\left\|O^{\prime} P^{\prime}\right\| \\
\|O Q\|=\left\|O^{\prime} Q^{\prime}\right\|
\end{array}\right\} \Rightarrow\|P Q\|=\|O P\|+\|O Q\|=\left\|O^{\prime} P^{\prime}\right\|+\left\|O^{\prime} Q^{\prime}\right\|=\left\|P^{\prime} Q^{\prime}\right\|
$$

and so the two rays are congruent.

Solution to Problem 10.

We construct a function $f: D \rightarrow D^{\prime}$ such that $f(O)=O^{\prime}, f(A)=A^{\prime}$ and a point $(\forall) P \in D \rightarrow P^{\prime} \in D^{\prime}$ which are considered to be positive.

From the axiom of segment and angle construction \Rightarrow that the so constructed function is bijective, establishing a biunivocal correspondence between the elements of the two sets.

Let $Q \in D \rightarrow Q^{\prime} \in D^{\prime}$ such that $\left\|O Q^{\prime}\right\|=\|O Q\| ; \widehat{A O Q} \equiv A^{\top} O^{\prime} Q^{\prime}$.
As:
$\left.\|O P\|=\left\|O^{\prime} P^{\prime}\right\|\right)$
$\left.\|O Q\|=\left\|O^{\prime} Q^{\prime}\right\|\right\} \Rightarrow \triangle O P Q \equiv \widehat{P^{\prime} O^{\prime} Q^{\prime}} \Rightarrow\|P Q\|=\left\|P^{\prime} Q^{\prime}\right\|,(\forall) P, Q \in D \Rightarrow D \equiv D^{\prime}$.
$\widehat{P O Q} \equiv \widehat{P^{\prime} O^{\prime} Q^{\prime}}$

Solution to Problem 11.

$f: M \rightarrow M^{\prime}$ is an isometry $\Rightarrow f$ is bijective and $(\forall) P, Q \in M$ we have $\|P Q\|=$ $\|f(P), f(Q)\|, f$ - bijective $\Rightarrow f-$ invertible and $f^{-1}-$ bijective.

$$
\left.\begin{array}{c}
\left\|P^{\prime} Q^{\prime}\right\|=\|f(P) ; f(Q)\|=\|P Q\| \\
\left\|f^{-1}\left(P^{\prime}\right) ; f^{-1}\left(Q^{\prime}\right)\right\|=\left\|f^{-1}(f(P)), f^{-1}(f(Q))\right\|=\|P Q\|
\end{array}\right\} \Rightarrow
$$

therefore $f^{-1}: M^{\prime} \rightarrow M$ is an isometry.

Solution to Problem 12.

We construct a function f such that $f\left(P_{i}\right)=P_{i}^{\prime}, i=1,2, \ldots, n$, and if $P \in$ $\left|P_{i}, P_{i+1}\right|$.

The previously constructed function is also extended inside the polygon as follows: Let $O \in$ int. $L \rightarrow O^{\prime} \in$ int. L^{\prime} such that $O \widehat{P_{l} P_{l+1}} \equiv O^{\prime} P^{\prime}{ }_{l}^{P^{\prime}}{ }_{l+1}$ and $\left\|O P_{i}\right\|=$ $\left\|O^{\prime} P^{\prime}{ }_{i}\right\|$. We connect these points with the vertices of the polygon. It can be easily proved that the triangles thus obtained are congruent.

We construct the function $g:[L] \rightarrow\left[L^{\prime}\right]$ such that

$$
g(P)=\left\{\begin{array}{l}
f(P) \text {, if } P \in L \\
O^{\prime} \text {, if } P=0 \\
P^{\prime}, \text { if } P \in\left[P_{i} O P_{i+1}\right] \text { such that } \\
\qquad \widehat{P_{l} O P} \equiv \overline{P_{l}^{\prime} O^{\prime} P^{\prime}}(\forall) i=1,2, \ldots, n-1
\end{array}\right.
$$

The so constructed function is bijective $(\forall) P, Q \in[L]$. It can be proved by the congruence of the triangles $P O Q$ and $P^{\prime} O^{\prime} Q^{\prime}$ that $\|P Q\|=\left\|P^{\prime} Q^{\prime}\right\|$, so $[L]=\left[L^{\prime}\right]$
\Rightarrow if two convex polygons are decomposed in the same number of triangles respectively congruent, they are congruent.

Solution to Problem 13.

$$
L=P_{1} P_{2} \ldots, P_{n} ; L^{\prime}=P_{1}^{\prime} P_{2}^{\prime} \ldots, P_{n}^{\prime}
$$

$$
L \sim L^{\prime} \Rightarrow(\exists) K>0 \text { and } f: L \rightarrow L^{\prime} \text { such that }\|P Q\|=k\|f(P) f(Q)\|(\forall) P, Q \in L_{1}
$$ and $P_{I}^{\prime}=f\left(P_{i}\right)$.

Taking consecutively the peaks in the role of P and Q, we obtain:

$$
\left.\begin{array}{c}
\left\|P_{1} P_{2}\right\|=k\left\|P_{1}^{\prime} P_{2}^{\prime}\right\| \Rightarrow \frac{\left\|P_{1} P_{2}\right\|}{\left\|P_{1}^{\prime} P_{2}^{\prime}\right\|}=k \\
\left\|P_{2} P_{3}\right\|=k\left\|P_{2}^{\prime} P_{3}^{\prime}\right\| \Rightarrow \frac{\left\|P_{2} P_{3}\right\|}{\left\|P_{2}^{\prime} P_{3}^{\prime}\right\|}=k \\
\vdots \\
\left\|P_{n-1} P_{n}\right\|=k\left\|P_{n-1}^{\prime} P_{n}^{\prime}\right\| \Rightarrow \frac{\left\|P_{n-1} P_{n}\right\|}{\left\|P_{n-1}^{\prime} P_{n}^{\prime}\right\|}=k \\
\left\|P_{n} P_{1}\right\|=k\left\|P_{n}^{\prime} P_{1}^{\prime}\right\| \Rightarrow \frac{\left\|P_{n} P_{1}\right\|}{\left\|P_{n}^{\prime} P_{1}^{\prime}\right\|}=k
\end{array}\right\} \Rightarrow
$$

Solution to Problem 14.

$$
\sigma[A D C]=\frac{2 \cdot 7}{2}=7 ; \sigma[A B C D]=2 \cdot 7=14=6\|D F\| \Rightarrow\|D F\|=\frac{14}{6}=\frac{7}{3} .
$$

Solution to Problem 15.

$$
\begin{gathered}
h=b \cdot \sin C \leq b ; \\
\sigma[A B C]=\frac{a \cdot h}{2} \text { is max. when } h \text { is max. } \\
\text { max. } h=b \text { when } \sin C=1 \\
\Rightarrow m(C)=90 \Rightarrow A B C \text { has a right angle at } C .
\end{gathered}
$$

Solution to Problem 16.

$\|M D\|=\|D I\| \Rightarrow M D I-$ an isosceles triangle.

$$
\Rightarrow m(\widehat{D M I})=m(\widehat{M I D})=45^{\circ} ;
$$

The same way, $m(\widehat{F L A})=m(\widehat{A F L})=m(\widehat{B E H})=m(\widehat{E H B})$.
$\|R K\| \Rightarrow\|S P\|=\|P Q\|=\|Q R\|=\|R S\| \Rightarrow S R Q P$ is a square.
$\|A B\|=a,\|A E\|=\frac{2 a}{3},\|M I\|=\sqrt{\frac{4 a^{2}}{9}+\frac{4 a^{2}}{9}}=\frac{2 a \sqrt{2}}{3} ;$
$2\|R I\|^{2}=\frac{a^{2}}{9} \Rightarrow\|R I\|^{2}=\frac{a^{2}}{18} \Rightarrow\|R I\|=\frac{a}{3 \sqrt{2}}=\frac{a \sqrt{2}}{6}$;
$\|S R\|=\frac{2 a \sqrt{2}}{3}-2 \frac{a \sqrt{2}}{6}=\frac{a \sqrt{2}}{3}$;
$\sigma[S R Q P]=\frac{2 a^{2}}{9}=\frac{2}{9} \sigma[A B C D]$.

Solution to Problem 17.

$$
\left.\begin{array}{c}
\sigma[A C D]=\frac{\|D C\| \cdot\|A E\|}{2} \\
\sigma[B C D]=\frac{\|D C\| \cdot\|B F\|}{2} \\
\|A E\|=\|B F\|
\end{array}\right\} \Rightarrow \sigma[A C D]=\sigma[B C D]
$$

$$
\left.\begin{array}{c}
\sigma[A O D]=\sigma[A M O]+\sigma[M O D] \\
\sigma[A M O]=\sigma[M P O]=\frac{\|M O\| \cdot\|O P\|}{2} \\
\sigma[M O D]=\sigma[M O Q]=\frac{\|O M\| \cdot\|O Q\|}{2}
\end{array}\right\} \Rightarrow \sigma[A O D]=\frac{\|O M\|(\|O P\|+\|O Q\|)}{2}=\frac{\|O M\| \cdot h}{2}
$$

The same way,

$$
\sigma[B O C]=\frac{\|O N\| \cdot h}{2}
$$

Therefore,

$$
\sigma[A O D]=\sigma[B O C] \Rightarrow \frac{\|O M\| \cdot h}{2}=\frac{\|O N\| \cdot h}{2} \Rightarrow\|O M\|=\|O N\| .
$$

Solution to Problem 18.

$$
\|A E\|=\|E D\| ;
$$

We draw $M N \perp A B ; D C$;

$$
\begin{aligned}
& \|E N\|=\|E M\|=\frac{h}{2} ; \\
& \sigma[B E C]=\frac{(\|A B\|+\|D C\|) \cdot h}{2}-\frac{\|A B\| \cdot h}{4}-\frac{\|D C\| \cdot h}{4}=\frac{(\|A B\|+\|D C\|) \cdot h}{4}=\frac{1}{2} \sigma[A B C D] ;
\end{aligned}
$$

Therefore, $[A B C D]=2 \sigma[B E C]$.

Solution to Problem 19.
$\sigma\left[A E D N^{\prime}\right]$ is ct. because A, E, D, N^{\prime} are fixed points.
Let a line through D, and we draw $\|$ to sides $N D$ and $D E$.
No matter how we draw a line through $D, \sigma[Q P A]$ is formed of: $\sigma[A E D N]+$ $\sigma[N P O]+\sigma[D E Q]$.

We have $\sigma[A E D N]$ constant in all triangles $P A Q$.

Let's analyse:

$$
\begin{gathered}
\sigma\left[P N^{\prime} D\right]+\sigma[D E Q]=\frac{\left\|N^{\prime} D\right\| \cdot h_{1}}{2}+\frac{\left\|E Q^{\prime}\right\| \cdot h_{2}}{2}=\frac{\left\|N^{\prime} D\right\|}{2}\left(h_{1}+\frac{\|E Q\|}{\|N D\|} \cdot h_{2}\right) \\
=\frac{\left\|N^{\prime} D\right\|}{2} \cdot\left(h_{1}+\frac{h_{2}}{h_{1}} \cdot h_{2}\right)=\frac{\left\|N^{\prime} D\right\|}{2 h_{1}}\left[\left(h_{1}-h_{2}\right)^{2}+2 h_{1} h_{2}\right] .
\end{gathered}
$$

$\triangle A M N$ is minimal when $h_{1}=h_{2} \Rightarrow D$ is in the middle of $|P Q|$. The construction is thus: $\triangle A N M$ where $N M \| E N^{\prime}$. In this case we have $|N D| \equiv|D M|$.

Solution to Problem 20.

Let the median be $|A E|$, and P be the centroid of the triangle.
Let $P D \perp B C . \sigma[B P C]=\frac{\|B C\| \cdot\|P D\|}{2}$.
$\left.\begin{array}{l}A A^{\prime} \perp B C \\ P D \perp B C\end{array}\right\} \Rightarrow A A^{\prime}\left\|P D \Rightarrow \triangle P D E \sim \triangle A A^{\prime} E \Rightarrow \frac{\|P D\|}{\left\|A A^{\prime}\right\|}=\frac{\|P E\|}{\|A E\|}=\frac{1}{3} \Rightarrow\right\| P D \|=\frac{\left\|A A^{\prime}\right\|}{3} \Rightarrow \sigma[B P C]$

$$
=\frac{\|B C\| \cdot \frac{\left\|A A^{\prime}\right\|}{3}}{2}=\frac{1}{3} \frac{\|B C\| \cdot\left\|A A^{\prime}\right\|}{2}=\frac{1}{3} \sigma[A B C] .
$$

We prove in the same way that $\sigma[P A C]=\sigma[P A B]=\frac{1}{3} \sigma[A B C]$, so the specific point is the centroid.

Solution to Problem 21.

Let $M, N \in A B$ such that $M \in|A N|$.
We take $M M^{\prime}\left\|B C, M N^{\prime}\right\| B C$.

$$
\left.\begin{array}{c}
\Delta A M M^{\prime} \sim \triangle A B C \Rightarrow \frac{\sigma\left[A M M^{\prime}\right]}{\sigma[A B C]}=\left(\frac{A M}{A B}\right) \\
\sigma\left[A M M^{\prime}\right]=\frac{1}{3} \sigma,\left(\frac{\|A M\|}{\|A B\|}\right)^{2}=\frac{1}{3},\|A M\|=\frac{\|A B\|}{\sqrt{3}} ; \Delta A N N^{\prime} \sim \Delta A B C \Rightarrow \\
\frac{\sigma\left[A N N^{\prime}\right]}{\sigma[A B C]}=\left(\frac{\|A N\|}{\|A B\|}\right)^{2} \\
\sigma\left[A N N^{\prime}\right]=\frac{2}{3} \sigma[A B C]
\end{array}\right\} \Rightarrow\left(\frac{\|A N\|}{\|A B\|}\right)^{2}=\frac{2}{3} \Rightarrow\|A N\|=\sqrt{\frac{2}{3}\|A B\|} .
$$

Solution to Problem 22.

$$
\begin{align*}
&\|O D\|=a,\|O A\|=b ; \\
& \sigma\left[\Delta C M^{\prime} M\right]=\sigma\left[M M^{\prime} N^{\prime} N\right]=\sigma\left[N N^{\prime} B A\right]=\frac{1}{3} \sigma[A B C D] ; \\
& \Delta O D C \sim \Delta O A B \Rightarrow \frac{\sigma[O D C]}{\sigma[O A B]}=\frac{\|O D\|^{2}}{\|O A\|^{2}}=\frac{a}{b} \Rightarrow \frac{\sigma[O D C]}{\sigma[O A B]-\sigma[O D C]}=\frac{a^{2}}{b^{2}-a^{2}} \Rightarrow \frac{\sigma[O D C]}{\sigma[A B C D]} \\
&=\frac{a^{2}}{b^{2}-a^{2}} \tag{1}
\end{align*}
$$

$$
\begin{align*}
\Delta O D C \sim \triangle O M M^{\prime} & \Rightarrow \frac{\sigma[O D C]}{\sigma\left[O M M^{\prime}\right]}=\left(\frac{\|O D\|}{\|O M\|}\right)^{2} \Rightarrow \frac{\sigma[O D C]}{\sigma\left[O M M^{\prime}\right]-\sigma[O D C]}=\frac{a^{2}}{\|O M\|^{2}} \\
& \Rightarrow \frac{\sigma[O D C]}{\sigma\left[D C M M^{\prime}\right]}=\frac{a^{2}}{\|O M\|^{2}-a^{2}} \Rightarrow \frac{\sigma[O D C]}{\frac{1}{3} \sigma[A B C D]}=\frac{a^{2}}{\|O M\|^{2}-a^{2}} \tag{2}
\end{align*}
$$

$$
\begin{align*}
\Delta O N N^{\prime} \sim \triangle O D C & \Rightarrow \frac{\sigma[O D C]}{\sigma\left[D N N^{\prime}\right]}=\frac{\|O D\|}{\|O N\|}=\frac{a^{2}}{\|O N\|} \Rightarrow \frac{\sigma[I D C]}{\sigma\left[O N N^{\prime}\right]-\sigma[O D C]}=\frac{a^{2}}{\|O N\|^{2}} \\
& \Rightarrow \frac{\sigma[O D C]}{\sigma\left[D C N N^{\prime}\right]}=\frac{a^{2}}{\|O N\|^{2}-a^{2}} \Rightarrow \frac{\sigma[O D C]}{\frac{2}{3} \sigma[A B C D]}=\frac{a^{2}}{\|O N\|^{2}-a^{2}} \tag{3}
\end{align*}
$$

We divide (1) by (3):

$$
\frac{2}{3}=\frac{\|O N\|^{2}-a^{2}}{b^{2}-a^{2}} \Rightarrow 3\|O N\|^{2}-3 a^{2}=2 b^{2}-2 a^{2} \Rightarrow\|O N\|^{2}=\frac{a^{2}+2 b^{2}}{3} .
$$

Solution to Problem 23.

$$
\begin{equation*}
\|O A\|=r \rightarrow\|D E\|=2 r ; \sigma_{\text {hexagon }}=\frac{3 r^{2} \sqrt{2}}{2} \tag{1}
\end{equation*}
$$

$D E F O$ a square inscribed in the circle with radius $R \Rightarrow$

$$
\begin{align*}
& \Rightarrow l_{4}=R \sqrt{2}=\|D E\| \Rightarrow P \sqrt{2}=2 r \Rightarrow R=r \sqrt{2} \\
& \|O M\|=R=r \sqrt{2} \\
& \sigma[O M N]=\frac{\|O M\| \cdot\|O N\| \sin 120}{2}=\frac{r \sqrt{2} \cdot r \sqrt{2} \cdot \frac{\sqrt{3}}{2}}{2}=\frac{r^{2} \sqrt{3}}{2} \\
& \sigma[M N P]=3 \sigma[O M N]=3 \frac{r^{2} \sqrt{3}}{2}=\frac{3 r^{2} \sqrt{2}}{2} \tag{2}
\end{align*}
$$

From (1) and (2) $\Rightarrow \sigma[M N P]=\sigma_{\text {hexagon }}$.

Solution to Problem 24.

$\|A B\|^{2}=\|B C\| \cdot\left\|B A^{\prime}\right\|$
We construct the squares $B C E D$ on the hypotenuse and $A B F G$ on the leg.
We draw $A A^{\prime} \perp B C$.
$\sigma[A B F G]=\|A B\|^{2}$
$\sigma\left[A^{\prime} B D H\right]=\|B D\| \cdot\left\|B A^{\prime}\right\|=\|B C\| \cdot\left\|B A^{\prime}\right\| \ldots$

Solution to Problem 25.

$$
\begin{gather*}
\sigma\left(s_{1}\right)=\sigma[A B C]-3 \sigma[\text { sect. } A D H] \\
\sigma[A B C]=\frac{l^{2} \sqrt{3}}{4}=\frac{(2 a)^{2} \sqrt{3}}{4}=a^{2} \sqrt{3} \\
\sigma[\text { sect. } A D H]=\frac{r^{2}}{2} m(\widehat{D H}) \\
m(\overparen{D H})=\frac{\pi}{180} m(\widehat{D H})=\frac{\pi}{180} \cdot 60^{0}=\frac{\pi}{3} \\
\sigma[\text { sect. } A D H]=\frac{a^{2}}{2} \cdot \frac{\pi}{3}=\frac{\pi a^{2}}{2} \\
\sigma\left(s_{1}\right)=a^{2} \sqrt{3}-3 \frac{\pi a^{2}}{6}=a^{2} \sqrt{3}-\frac{\pi a^{2}}{2} \tag{1}
\end{gather*}
$$

$$
\begin{align*}
& \sigma\left(s_{2}\right)=\sigma[\text { sect. } A E G]-\sigma[\text { sect. } A B C]-\sigma[\text { sect. } E C F]-\sigma[\text { sect. } G B F] \\
&=\frac{(3 a)^{2}}{2} \cdot \frac{\pi}{180} \cdot 60-a^{2} \sqrt{3}-\frac{a^{2}}{2} \cdot \frac{\pi}{180} \cdot 120=\frac{9 a^{2}}{2} \cdot \frac{\pi}{3}-a^{2} \sqrt{3}-\frac{\pi a^{2}}{3}-\frac{\pi a^{2}}{3} \\
&=\frac{3 \pi a^{2}}{2}-\frac{2 \pi a^{2}}{3}-a^{2} \sqrt{3} \text { (2) } \tag{2}
\end{align*}
$$

From (1) and (2)

$$
\Rightarrow \sigma\left(s_{1}\right)+\sigma\left(s_{2}\right)=\frac{3 \pi a^{2}}{2}-\frac{2 \pi a^{2}}{3}-\frac{\pi a^{2}}{2}=\frac{2 \pi a^{2}}{6}=\frac{\pi a^{2}}{3} .
$$

Solution to Problem 26.

From (1) and (2) $\Rightarrow \sigma$ [annulus] $=\sigma$ [disk diameter].

Solution to Problem 27.

$$
\begin{gathered}
\sigma[C D E F]=\frac{\sigma\left[C D D^{\prime} C^{\prime}\right]}{2} \\
\sigma\left[C D D^{\prime} C^{\prime}\right]=\sigma_{\mathrm{seg}}\left[C D B D^{\prime} C^{\prime}\right]-\sigma_{\mathrm{seg}}\left[D B D^{\prime}\right]
\end{gathered}
$$

We denote $m(\widehat{A C})=m(\widehat{B D})=a \Rightarrow m(\widehat{C D})=\frac{\pi}{2}-2 a$

$$
\begin{gather*}
\sigma_{\text {sect. }}=\frac{r^{2}}{2}(\alpha-\sin \alpha) \\
\sigma\left[C D B D^{\prime} C^{\prime}\right]=\frac{r^{2}}{2}[\pi-2 \alpha-\sin (\pi-2 \alpha)]=q \frac{r^{2}}{2}[\pi-2 \alpha-\sin (\pi-2 \alpha)] \\
\sigma_{A}=\frac{r^{2}}{2}(2 \alpha-\sin 2 \alpha) \\
\sigma\left[C D D^{\prime} C^{\prime}\right]=\sigma\left[C D B D^{\prime} C^{\prime}\right]-\sigma\left[D B D^{\prime}\right]=\frac{r^{2}}{2}(\pi-2 \alpha-\sin 2 \alpha)=\frac{r^{2}}{2}(2 \alpha-\sin 2 \alpha) \\
=\frac{r^{2}}{2}(\pi-2 \alpha-\sin 2 \alpha-2 \alpha+\sin 2 \alpha)=\frac{r^{2}}{2}(\pi-4 \alpha) \\
\Rightarrow \sigma[C D E F]=\frac{\sigma\left[C D D^{\prime} C^{\prime}\right]}{2}=\frac{r^{2}}{4}(\pi-4 \alpha)=\frac{r^{2}}{2}\left(\frac{\pi}{2}-2 \alpha\right) \quad \text { (1) } \tag{1}\\
\sigma[\text { sect. } C O D]=\frac{r^{2}}{2} m(\widehat{C D})=\frac{r^{2}}{2}\left(\frac{\pi}{2}-2 \alpha\right) \quad \text { (2) } \tag{2}
\end{gather*}
$$

From (1) and (2) $\Rightarrow \sigma[C D E F]=\sigma[$ sect. $C O D]$.

$$
\begin{gathered}
\left\|O_{1} F\right\|=\|O E\| \\
\sigma[\text { square }]=\|D E\|^{2}=\|O A\|^{2}=\frac{b c}{2}=V[A B C]
\end{gathered}
$$

Solution to Problem 28.

$$
\begin{gathered}
\mu(\widehat{A O B})=\frac{\pi}{4} \\
\sigma[A O B]=\frac{r^{2} \sin \frac{\pi}{4}}{2}=\frac{r^{2} \frac{\sqrt{2}}{2}}{2}=\frac{r^{2} \sqrt{2}}{4} \\
\sigma[\text { orthogon }]=8 \cdot \frac{r^{2} \sqrt{2}}{4}=2 \sqrt{2 r^{2}}
\end{gathered}
$$

Solution to Problem 29.

$$
\begin{aligned}
& \quad \begin{aligned}
& \sigma[A B C]=\sigma[A M B]+\sigma[A M C]+\sigma[M B C] \\
& \Rightarrow a h_{a}=a d_{3}+a d_{2}+a d_{1} \\
& d_{1}+d_{2}+d_{3}=h_{a}(a \text { is the side of equilateral triangle) } \\
&\left.\Rightarrow d_{1}+d_{2}+d_{3}=\frac{a \sqrt{3}}{2} \text { (because } h_{a}=\frac{a \sqrt{3}}{2}\right) .
\end{aligned} \\
& \text { (b) }
\end{aligned}
$$

Solution to Problem 30.

$$
\begin{aligned}
& \qquad A B C-\text { given } \Delta \Longrightarrow a, b, c, h-\text { constant } \\
& \qquad \sigma[A B C]=\frac{a h}{2} \\
& \sigma[A B C]=\sigma[A M B]+\sigma[A M C] \\
& \Rightarrow \frac{a h}{2}=\frac{c x}{2}+\frac{b y}{2} \Rightarrow c x+b y=a b \Rightarrow \frac{c}{a h} x+\frac{b}{a h} y=1 \Rightarrow k x+l y=1, \\
& \text { where } k=\frac{c}{a h} \text { and } l=\frac{b}{a h} .
\end{aligned}
$$

Solution to Problem 31.

We draw $\left.A A^{\prime} \perp B C ; N N^{\prime} \perp B C ; D D^{\prime} \perp B C \Rightarrow \begin{array}{c}A A^{\prime}\left\|N N^{\prime}\right\| D D^{\prime} \\ \|A N\|=\|N D\|\end{array}\right\} \Rightarrow M N^{\prime}$ median line in the trapezoid $A A^{\prime} D^{\prime} D \Rightarrow\left\|N N^{\prime}\right\|=\frac{\left\|A A^{\prime}\right\|+\left\|D D^{\prime}\right\|}{2}, \sigma[B C N]=\frac{\|B C\|+\left\|N N^{\prime}\right\|}{2}$.

$$
\left.\begin{array}{l}
\sigma[B A M]+\sigma[M D C]=\frac{\|B M\| \cdot\left\|A A^{\prime}\right\|}{2}+\frac{\|M C\| \cdot\left\|O D^{\prime}\right\|}{2} \Rightarrow\|B M\|=\|M C\|=\frac{\|B C\|}{2} \Rightarrow \\
\Rightarrow \sigma[B A M]+\sigma[M D C]=\frac{\|B C\|}{2}\left(\frac{\left\|A A^{\prime}\right\|+\left\|D D^{\prime}\right\|}{2}\right)=\frac{\|B C\| \cdot\left\|N N^{\prime}\right\|}{2}=\sigma[B C N] \\
\sigma[B C N]=\sigma[P M Q N]+\sigma[B P M]+\sigma[M Q C] \\
\sigma[B C N]+\sigma[M D C]=\sigma[B A P]+\sigma[B P M]+\sigma[M Q C]+\sigma[C D Q]
\end{array}\right\} \Rightarrow \text {. }
$$

Solution to Problem 32.

First, we construct a quadrilateral with the same area as the given pentagon. We draw through C a parallel to $B D$ and extend $|A B|$ until it intersects the parallel at M.
$\sigma[A B C D E]=\sigma[A B D E]+\sigma[B C D]$,
$\sigma[B C D]=\sigma[B D M]$ (have the vertices on a parallel at the base).
Therefore, $\sigma[A B C D E]=\sigma[A M D E]$.
Then, we consider a triangle with the same area as the quadrilateral $A M D E$.
We draw a parallel to $A D, N$ is an element of the intersection with the same parallel.

$$
\sigma[A M D E]=\sigma[A D E]+\sigma[A D E]=\sigma[A D E]+\sigma[A D N]=\sigma[E D N] .
$$

Solution to Problem 33.

$$
\begin{gathered}
\|A E\|=\|E C\| \\
\|E F\| B D \Rightarrow \sigma[B D F]=\sigma[B D E] \\
\sigma[A B F D]=\sigma[A B E D]
\end{gathered}
$$

$\sigma[A D E]=\sigma[D E C]$ equal bases and the same height;

$$
\begin{gathered}
\sigma[A D E]=\sigma[D E C] \\
\sigma[A B E D]=\sigma[B E D C]
\end{gathered}
$$

$\sigma[D E F]=\sigma[B E F]$ the same base and the vertices on parallel lines at the base;

$$
\begin{equation*}
\sigma[D C F] \neq \sigma[D E C]+\sigma[E C F]+\sigma[D E F] \neq \sigma[D E C]+\sigma[E C F]+\sigma[B E F]=\sigma[B E D C] \tag{3}
\end{equation*}
$$

(1), (2), (3) $\Rightarrow \sigma[A B F D]=\sigma[D C F]$

Solution to Problem 34.

$$
\begin{aligned}
& \left.\begin{array}{l}
\triangle D C F \equiv \triangle C B E \Rightarrow C \widehat{F D} \equiv \widehat{C E B} \\
m(\widehat{C E B})+m(E \widehat{E C B})=90^{\circ}
\end{array}\right\} \Rightarrow m(\widehat{C F} \mathrm{~V})+m(\widehat{E C B})=90^{\circ} \Rightarrow \\
& \Rightarrow m(C \widehat{N} F)=90^{\circ} \Rightarrow C E \perp D F \\
& \left.\begin{array}{l}
|C F| \equiv|E B| \\
m(\widehat{M B} E)=m(\widehat{N C} F) \\
m(\widehat{N E} B)+m(C \widehat{C F N})
\end{array}\right\} \Rightarrow \triangle D C F \equiv \triangle B M E \Rightarrow \begin{array}{l}
|C N| \equiv|M B| \\
|N F| \equiv|M E|
\end{array}
\end{aligned}
$$

It is proved in the same way that:

$$
\left.\begin{array}{rl}
|C N| \equiv|N B| \equiv|A Q| \equiv|D P| \\
|N F| \equiv|M E| \equiv|N Q| \equiv|P E| \\
|C E| \equiv|N B| & \equiv|A G| \equiv|D F|
\end{array}\right\} \Rightarrow
$$

$\Rightarrow M N P Q$ rhombus with right angle $\Rightarrow M N P Q$ is a square.

$$
\left.\begin{array}{c}
|D G| \equiv|F B| \\
\left.\widehat{D I G \equiv \overparen{F I B}} \begin{array}{c}
\widehat{G D I} \equiv \widehat{F B} I
\end{array}\right\} \Rightarrow \triangle D G I \equiv \triangle D F I \Rightarrow|G I| \equiv|I F| \\
\\
|I C| \equiv|C F| \\
\Rightarrow \widehat{G C I} I \equiv \widehat{F C} I \Rightarrow I \in|A C|
\end{array}\right\} \Rightarrow \Delta G I C \equiv \triangle F I C \Rightarrow
$$

It is proved in the same way that all the peaks of the octagon are elements of the axis of symmetry of the square, thus the octagon is regular.

$$
\begin{aligned}
& \|C F\|=\frac{1}{2},\|R F\|=\frac{1}{4},\|C R\|=\sqrt{\frac{1}{4}+\frac{1}{16}}=\frac{\sqrt{5}}{4} \\
& \|N F\| \cdot \frac{\sqrt{5}}{4}=\frac{1}{2} \cdot \frac{1}{4}=\frac{1}{8} \Rightarrow\|N F\|=\frac{1}{8} \cdot \frac{4}{\sqrt{5}}=\frac{1}{2 \sqrt{5}} \\
& \|E C\|=\sqrt{\frac{1}{4}+1}=\frac{\sqrt{5}}{2} \\
& \|B M\| \cdot \frac{\sqrt{5}}{2}=1 \cdot \frac{1}{2} \Rightarrow\|B M\|=\frac{1}{\sqrt{5}} \\
& \|M N\|=\frac{\sqrt{5}}{2}-\frac{1}{2 \sqrt{5}}-\frac{1}{\sqrt{5}}=\frac{5-1-2}{2 \sqrt{5}}=\frac{1}{\sqrt{5}}
\end{aligned}
$$

Consider the square separately.

$$
\begin{aligned}
& 2 l^{2}=2 x^{2} \\
& x=l \sqrt{2} \\
& 2 l+l \sqrt{2}=\frac{1}{\sqrt{5}} \\
& l(2+\sqrt{2})=\frac{1}{\sqrt{5}} \Rightarrow l=\frac{1}{\sqrt{5}(2+\sqrt{2})} \\
& \sigma[Q M N P]=\frac{1}{5}
\end{aligned}
$$

$S_{1}=\frac{x^{2}}{2}$
$S=\sigma[Q M N P]-4 S_{1}=\frac{1}{5}-2 J^{2}=\frac{1}{5}-2 \frac{1}{5(6+4 \sqrt{2})}=\frac{1}{5}-\frac{1}{5(3+2 \sqrt{2})}=$
$=\frac{1}{5} \cdot \frac{3+2 \sqrt{2}-1}{3+2 \sqrt{2}}=\frac{1}{5} \cdot \frac{2(1+\sqrt{2})}{3+2 \sqrt{2}}=\frac{2}{5}-\frac{(1+\sqrt{2})(3-2 \sqrt{2})}{9-8}=\frac{2}{5}(3-2 \sqrt{2}+3 \sqrt{2}-4)=$
$=\frac{2}{5}(\sqrt{2}-1)$.

Solution to Problem 35.

$$
\begin{gathered}
\|O M\|=\|N M\|=\|N B\| \\
\|D C\| ? \Rightarrow \triangle M O C=\Delta N B A \Longrightarrow\|M C\|=\|A N\|
\end{gathered}
$$

It is proved in the same way that $\triangle D A M=\triangle B C N \Rightarrow\|M C\|=\|N C\|$.
Thus ANCM is a parallelogram.

$$
\begin{aligned}
& \sigma[A O B]=\frac{\|O A\| \cdot\|O B\| \sin \alpha}{2} \\
& \sigma[A O D]=\frac{\|O A\| \cdot\|O D\| \sin (\pi-\alpha)}{2} \\
& \sigma[A B C D]=\|O A\| \cdot\|O B\| \sin \alpha+\|O A\| \cdot\|O D\| \sin \alpha=\|O A\| \cdot \sin \alpha(\|O A\|+\|O D\|)= \\
& =\|O A\| \cdot\|D B\| \cdot \sin \alpha \\
& \sigma[A N C M]=\|O A\| \cdot\|M N\| \sin \alpha=\|O A\| \cdot \frac{\|D B\|}{3} \sin \alpha=\frac{\sigma[A B C D]}{3} \Rightarrow \frac{\sigma[A M C N]}{\sigma[A B C D]}=\frac{1}{3}
\end{aligned}
$$

Solution to Problem 36.

To determine the angle α :

$$
\begin{aligned}
& \sin \alpha=\frac{\|E M\|}{\|M P\|}, \sin \beta=\frac{\|M F\|}{P M} \\
& \frac{\sin \alpha}{\sin \beta}=\frac{\|E M\|}{\|M F\|}=k \Rightarrow \sin \alpha=k \sin (a-\alpha) \Rightarrow \\
& \Rightarrow \sin \alpha=k \sin a \cos \alpha+k \cos a \sin \alpha
\end{aligned}
$$

We write

$$
\begin{aligned}
t & =\operatorname{tg} \frac{\alpha}{2} \Rightarrow \frac{2 t}{1+t^{2}}=k \sin a \cdot \frac{1-t^{2}}{1+t^{2}}+k \frac{2 t}{1+t^{2}} \cdot \cos a \Rightarrow k t^{2} \cos a \cdot+2(1-k \cos a) \cdot t- \\
& -k \sin a=0 \Rightarrow t_{1,2}=\frac{k \cos a-1 \pm \sqrt{(k-1)^{2}+2 k(1-\cos a)}}{k \cos a}
\end{aligned}
$$

thus we have established the positions of the lines of the locus.

$$
\begin{aligned}
& \sigma[A B M]=\frac{\|A B\| \cdot\|M E\|}{2} \\
& \sigma[C D M]=\frac{\|C D\| \cdot\|M F\|}{2} \\
& \sigma[A B M]=\sigma[C D M] \Rightarrow\|A B\| \cdot\|M E\|=\|C D\| \cdot\|M F\| \Rightarrow \frac{\|M E\|}{\|M F\|}=\frac{\|C D\|}{\|A B\|}
\end{aligned}
$$

constant for A, B, C, D - fixed points.
We must find the geometrical locus of points M such that the ratio of the distances from this point to two concurrent lines to be constant.

$$
\begin{aligned}
& \frac{\|M E\|}{\|M F\|}=k \text {. Let } M^{\prime} \text { be another point with the same property, namely } \frac{\left\|M^{\prime} E^{\prime}\right\|}{\left\|M^{\prime} F^{\prime}\right\|}=k \text {. } \\
& \left.\left.\begin{array}{l}
\left.\begin{array}{l}
M E \perp A B \\
M^{\prime} E^{\prime} \perp A B
\end{array}\right\} \Rightarrow M E \| M^{\prime} E^{\prime} \\
\left.\begin{array}{l}
M F \perp C D \\
M^{\prime} F^{\prime} \perp C D
\end{array}\right\} \Rightarrow M F \| M^{\prime} F^{\prime}
\end{array}\right\} \Rightarrow \begin{array}{r}
\Rightarrow \widehat{M} F \equiv E^{\prime} \widehat{M^{\prime} F^{\prime}} \\
\left.\begin{array}{l}
\|M F\| \\
\| M
\end{array}\right\} \frac{\left\|M^{\prime} E^{\prime}\right\|}{\left\|M^{\prime} F^{\prime}\right\|}
\end{array}\right\} \Rightarrow \triangle M E F \sim \triangle M^{\prime} E^{\prime} F^{\prime} \Rightarrow \\
& \Rightarrow \widehat{F E M} \equiv F^{\prime} \widehat{E^{\prime}} M^{\prime} \Rightarrow \widehat{P E} F \equiv \widehat{P E^{\prime} F^{\prime}} \\
& \left.\Rightarrow \begin{array}{l}
\frac{\|P E\|}{\left\|P E^{\prime}\right\|}=\frac{\|E F\|}{\left\|E^{\prime} F^{\prime}\right\|} \\
\frac{\|E F\|}{\left\|E^{\prime} F^{\prime}\right\|}=\frac{\|E M\|}{\left\|E^{\prime} M^{\prime}\right\|}
\end{array}\right\} \Rightarrow \\
& \left.\Rightarrow \begin{array}{l}
\frac{\|P E\|}{\left\|P E^{\prime}\right\|}=\frac{\|E M\|}{\| E^{\prime} M^{\prime}} \\
P \widehat{E M} \equiv P \widehat{E^{\prime} M^{\prime}}
\end{array}\right\} \Rightarrow \triangle P E M \sim \triangle P E^{\prime} M^{\prime} \Rightarrow \widehat{E P M} \cong E^{\prime} \widehat{P M} M^{\prime}
\end{aligned}
$$

P, M, M^{\prime} collinear \Rightarrow the locus is a line that passes through P.
When the points are in $\Varangle C P B$ we obtain one more line that passes through P. Thus the locus is formed by two concurrent lines through P, from which we eliminate point P, because the distances from P to both lines are 0 and their ratio is indefinite.

Vice versa, if points N and N^{\prime} are on the same line passing through P, the ratio of their distances to lines $A B$ and $C D$ is constant.

$$
\left.\begin{array}{l}
M E \| M^{\prime} E^{\prime} \Rightarrow \triangle P M E \sim \triangle P M^{\prime} E^{\prime} \Rightarrow \frac{\|E M\|}{\left\|V^{\prime} M^{\prime}\right\|}=\frac{\|P M\|}{\left\|P M^{\prime}\right\|} \\
M F \| M^{\prime} F^{\prime} \Rightarrow \triangle P M F \sim \triangle P M^{\prime} F^{\prime} \Rightarrow \frac{\left\|F M^{\prime}\right\|}{\left\|F^{\prime} M^{\prime}\right\|}=\frac{\|P M\|}{\left\|P M^{\prime}\right\|}
\end{array}\right\} \Rightarrow \frac{\|E M\|}{\left\|E^{\prime} M^{\prime}\right\|}=\frac{\|F M\|}{\left\|F^{\prime} M^{\prime}\right\|} \Rightarrow
$$

Solution to Problem 37.

We show in the same way as in the previous problem that:

$$
\frac{\|M E\|}{\|M F\|}=k \Rightarrow \frac{\|M E\|}{\|M F\|+\|M E\|}=\frac{k}{1-k} \Rightarrow\|M E\|=\frac{k d}{1+k},
$$

and the locus of the points which are located at a constant distance from a given line is a parallel to the respective line, located between the two parallels.

$$
\text { If }\|A B\|>\|C D\| \Rightarrow d(M A E)<d(M C D)
$$

Then, if

$$
\frac{M E}{M F}=k \Rightarrow \frac{M E}{M F-M E}=\frac{k}{1-k} \Rightarrow \frac{M E}{d}=\frac{k}{1-k} \Rightarrow M E=\frac{k d}{1-k},
$$

thus we obtain one more parallel to $A B$.

Solution to Problem 38.

Solution no. 1

We suppose that ABCD is not a parallelogram. Let $\{I\}=A B \cap C D$. We build $E \in$ (IA such that $I E=A B$ and $F \in$ (IC such that $I F=C D$. If M a point that verifies $\sigma[A B M]+\sigma[C D M]=1(1)$, then, because $\sigma[A B M]=\sigma[M I E]$ and $\sigma[C D M]=\sigma[M I F]$, it results that $\sigma[M I E]+\sigma[M I F]=k(2)$.

We obtain that $\sigma[M E I F]=k$.
On the other hand, the points E, F are fixed, therefore $\sigma[I E F]=k^{\prime}=$ const. That is, $\sigma[M E F]=k-k^{\prime}=$ const.

Because $E F=$ const., we have $d(M, E F)=\frac{2\left(k-k^{\prime}\right)}{E F}=$ const., which shows that M belongs to a line that is parallel to $E F$, taken at the distance $\frac{2\left(k-k^{\prime}\right)}{E F}$.

Therefore, the locus points are those on the line parallel to $E F$, located inside the quadrilateral $A B C D$. They belong to the segment $\left[E^{\prime} F^{\prime}\right]$ in Fig. 1.

Reciprocally, if $M \in\left[E^{\prime} F^{\prime}\right]$, then $\sigma[M A B]+\sigma[M C D]=\sigma[M I E]+\sigma[M I F]=$ $\sigma[M E I F]=\sigma[I E F]+\sigma[M E P]=k^{\prime}+\frac{E F \cdot 2\left(k-k^{\prime}\right)}{2 \cdot E F}=k$.

In conclusion, the locus of points M inside the quadrilateral $A B C D$ which occurs for relation (1) where k is a positive constant smaller than $S=\sigma[A B C D]$ is a line segment.

If $A B C D$ is a trapeze having $A B$ and $C D$ as bases, then we reconstruct the reasoning as $A D \cap B C=\{I\}$ and $\sigma[M A D]+\sigma[M B C]=s-k=$ const.

If $A B C D$ is a parallelogram, one shows without difficulty that the locus is a segment parallel to $A B$.

Solution no. 2 (Ion Patrascu)

We prove that the locus of points M which verify the relationship $\sigma[M A B]+$ $\sigma[M C D]=k(1)$ from inside the convex quadrilateral $A B C D$ of area $s(k \subset s)$ is a line segment.

Let's suppose that $A B \cap C D=\{I\}$, see Fig. 2. There is a point P of the locus which belongs to the line $C D$. Therefore, we have $(P ; A B)=\frac{2 k}{A B}$. Also, there is the point $Q \in A B$ such that $d(Q ; C D)=\frac{2 k}{C D}$.

Now, we prove that the points from inside the quadrilateral $A B C D$ that are on the segment $[P Q]$ belong to the locus.

Let $M \in \operatorname{int}[A B C D] \cap[P Q]$. We denote M_{1} and M_{2} the projections of M on $A B$ and $C D$ respectively. Also, let P_{1} be the projection of P on $A B$ and Q_{1} the projection of Q on $C D$. The triangles $P Q Q_{1}$ and $P M M_{2}$ are alike, which means that

$$
\begin{equation*}
\frac{M M_{2}}{Q Q_{1}}=\frac{M P}{P Q} \tag{2}
\end{equation*}
$$

and the triangles $M M_{1} Q$ and $P P_{1} Q$ are alike, which means that

$$
\begin{equation*}
\frac{M M_{1}}{P P_{1}}=\frac{M Q}{P Q} \tag{3}
\end{equation*}
$$

By adding member by member the relations (2) and (3), we obtain

$$
\begin{equation*}
\frac{M M_{2}}{Q Q_{1}}+\frac{M M_{1}}{P P_{1}}=\frac{M P+M Q}{P Q}=1 \tag{4}
\end{equation*}
$$

Substituting in (4), $Q Q_{1}=\frac{2 k}{C D}$ and $P_{1}=\frac{2 k}{A B}$, we get $A B \cdot M M_{1}+C D \cdot M M_{2}=2 k$, that is $\sigma[M A B]+\sigma[M C D]=k$.

We prove now by reductio ad absurdum that there is no point inside the quadrilateral $A B C D$ that is not situated on the segment $[P Q]$, built as shown, to verify the relation (1).

Let a point M^{\prime} inside the quadrilateral $A B C D$ that verifies the relation (1), $M^{\prime} \notin$ [PQ]. We build $M^{\prime} T \cap A B, M^{\prime} U \| C D$, where T and U are situated on [PQ], see Fig. 3.

We denote $M_{1}^{\prime}, T_{1}, U_{1}$ the projections of M_{1}, T, U on $A B$ and $M_{2}^{\prime}, T_{2}, U_{2}$ the projections of the same points on $C D$.

We have the relations:

$$
\begin{gather*}
M^{\prime} M_{1}^{\prime} \cdot A B+M^{\prime} M_{2}^{\prime} \cdot C D=2 k \\
T T_{1} \cdot A B+T T_{2} \cdot C D=2 k \tag{6}
\end{gather*}
$$

Because $M^{\prime} M_{1}^{\prime}=T T_{1}$ and $M^{\prime} M_{2}^{\prime}=U U_{2}$, substituting in (5), we get:

$$
\begin{equation*}
T T_{1} \cdot A B+U U_{2} \cdot C D=2 k \tag{7}
\end{equation*}
$$

From (6) and (7), we get that $T T_{2}=U U_{2}$, which drives us to $P Q \| C D$, false!

Problems in Geometry and Trigonometry

39. Find the locus of the points such that the sum of the distances to two concurrent lines to be constant and equal to l.

Solution to Problem 39
40. Show that in any triangle $A B C$ we have:
a. $b \cos C+c \cos B=a ;$ b. $b \cos B+c \cos C=a \cos (B-C)$.

Solution to Problem 40
41. Show that among the angles of the triangle $A B C$ we have:
a. $b \cos C-c \cos B=\frac{b^{2}-a^{2}}{a}$;
b. $2\left(b c \cos A+a c \cos B+a b \cos C=a^{2}+b^{2}+c^{2}\right.$.

Solution to Problem 41
42. Using the law of cosines prove that $4 m \frac{2}{a}=2\left(b^{2}+c^{2}\right)-a^{2}$, where m_{a} is the length of the median corresponding to the side of a length.

Solution to Problem 42
43. Show that the triangle $A B C$ where $\frac{a+c}{b}=\cot \frac{B}{2}$ is right-angled.

Solution to Problem 43
44. Show that, if in the triangle $A B C$ we have $\cot A+\cot B=2 \cot C \Rightarrow a^{2}+$ $b^{2}=2 c^{2}$.
45. Determine the unknown elements of the triangle $A B C$, given:
a. A, B and p;
b. $a+b=m, A$ and B;
c. $a, A ; b-c=a$.
46. Show that in any triangle $A B C$ we have $\tan \frac{A-B}{2} \tan \frac{C}{2}=\frac{a-b}{a+b}$ (tangents theorem).

Solution to Problem 46
47. In triangle $A B C$ it is given $\hat{A}=60^{\circ}$ and $\frac{b}{c}=2+\sqrt{3}$. Find $\tan \frac{B-C}{2}$ and angles B and C.
48. In a convex quadrilateral $A B C D$, there are given $\|A D\|=7(\sqrt{6}-\sqrt{2}),\|C D\|=$ $13,\|B C\|=15, C=\arccos \frac{33}{65^{\prime}}$ and $D=\frac{\pi}{4}+\arccos \frac{5}{13}$. The other angles of the quadrilateral and $\|A B\|$ are required.

Solution to Problem 48
49. Find the area of $\triangle A B C$ when:
a. $a=17, B=\arcsin \frac{24}{25}, C=\arcsin \frac{12}{13^{\prime}}$.
b. $b=2, \hat{A} \in 135^{\circ}, \hat{C} \in 30^{\circ}$;
c. $a=7, b=5, c=6$;
d. $\hat{A} \in 18^{\circ}, b=4, c=6$.
50. How many distinct triangles from the point of view of symmetry are there such that $a=15, c=13, s=24$?
51. Find the area of $\triangle A B C$ if $a=\sqrt{6}, \hat{A} \in 60^{\circ}, b+c=3+\sqrt{3}$.
52. Find the area of the quadrilateral from problem 48.
53. If S_{n} is the area of the regular polygon with n sides, find:
$S_{3}, S_{4}, S_{6}, S_{8}, S_{12}, S_{20}$ in relation to R, the radius of the circle inscribed in the polygon.

Solution to Problem 53
54. Find the area of the regular polygon $A B C D \ldots M$ inscribed in the circle with radius R, knowing that: $\frac{1}{\|A B\|}=\frac{1}{\|A C\|}+\frac{1}{\|A D\|}$.

Solution to Problem 54
55. Prove that in any triangle $A B C$ we have:
a. $r=(p-a) \tan \frac{A}{2}$;
b. $S=(p-a) \tan \frac{A}{2^{\prime}}$.
c. $\quad p=4 R \cos \frac{A}{2} \cos \frac{B}{2} \cos \frac{C}{2}$;
d. $p-a=4 R \cos \frac{A}{2} \cos \frac{B}{2} \cos \frac{C}{2}$;
e. $m_{a}^{2}=R^{2}\left(\sin ^{2} A+4 \cos A \sin B \sin C\right.$;
f. $h_{a}=2 R \sin B \sin C$.
56. If l is the center of the circle inscribed in triangle $A B C$ show that $\|A I\|=$ $4 R \sin \frac{B}{2} \sin \frac{C}{2}$.

Solution to Problem 56
57. Prove the law of sine using the analytic method.
58. Using the law of sine, show that in a triangle the larger side lies opposite to the larger angle.

Solution to Problem 58
59. Show that in any triangle $A B C$ we have:

$$
\text { a. } \frac{a \cos C-b \cos B}{a \cos B-b \cos A}+\cos C=0, a \neq b ;
$$

b. $\frac{\sin (A-B) \sin C}{1+\cos (A-B) \cos C}=\frac{a^{2}-b^{2}}{a^{2}+b^{2}}$;
c. $(a+c) \cos \frac{B}{4}+a \cos \left(A+\frac{3 B}{4}\right)=2 c \cos \frac{B}{2} \cos \frac{B}{4}$.

Solution to Problem 59
60. In a triangle $A B C, A \in 45^{\circ},\|A B\|=a,\|A C\|=\frac{2 \sqrt{2}}{3} a$. Show that $\tan B=2$.

Solution to Problem 60
61. Let $A^{\prime}, B^{\prime}, C^{\prime}$ be tangent points of the circle inscribed in a triangle $A B C$ with its sides. Show that $\frac{\sigma\left[A^{\prime} B^{\prime} C^{\prime}\right]}{\sigma[A B C]}=\frac{r}{2 R}$.

Solution to Problem 61
62. Show that in any triangle $A B C \sin \frac{A}{2} \leq \frac{a}{2 \sqrt{b c}}$.

Solution to Problem 62
63. Solve the triangle $A B C$, knowing its elements A, B and area S.
64. Solve the triangle $A B C$, knowing $a=13, \arccos \frac{4}{5}$, and the corresponding median for side $a, m_{a}=\frac{1}{2} \sqrt{15 \sqrt{3}}$.

Solution to Problem 64
65. Find the angles of the triangle $A B C$, knowing that $B-C=\frac{2 \pi}{3}$ and $R=8 r$, where R and r are the radii of the circles circumscribed and inscribed in the triangle.

Solution to Problem 65

Solutions

Solution to Problem 39.

Let d_{1} and d_{2} be the two concurrent lines. We draw 2 parallel lines to d_{1} located on its both sides at distance l. These intersect on d_{2} at D and B, which will be points of the locus to be found, because the sum of the distances $d\left(B, d_{1}\right)+$ $d\left(B, d_{2}\right)=l+0$ verifies the condition from the statement.

We draw two parallel lines with d_{2} located at distance l from it, which cut d_{1} in A and C, which are as well points of the locus to be found. The equidistant parallel lines determine on d_{2} congruent segments $\Rightarrow \begin{gathered}|D O| \equiv|O B| \\ |A O| \equiv|O C|^{\prime}\end{gathered}$ in the same way $A B C D$ is a parallelogram.

$$
\left.\Delta B O C, \begin{array}{r}
\left\|C C^{\prime}\right\|=d\left(C, d_{2}\right) \\
\left\|B B^{\prime}\right\|=d\left(B, d_{1}\right)
\end{array}\right\} \Rightarrow\left\|C C^{\prime}\right\|=\left\|B B^{\prime}\right\|
$$

$\Rightarrow \triangle B O C$ is isosceles.
$\Rightarrow\|O C\|=\|O B\| \Rightarrow A B C D$ is a rectangle. Any point M we take on the sides of this rectangle, we have $\left\|R_{1}, d_{1}\right\|+\left\|M, d_{2}\right\|=l$, using the propriety according to which the sum of the distances from a point on the base of an isosceles triangle at the sides is constant and equal to the height that starts from one vertex of the base, namely l. Thus the desired locus is rectangle $A B C D$.

Solution to Problem 40.

$$
\left.\left.\begin{array}{c}
\triangle A B C: \cos B=\frac{\|B D\|}{c} \Rightarrow\|B D\|=c \cos B \\
\triangle A D C: \cos C=\frac{\|D C\|}{b} \Rightarrow\|D C\|=b \cos C \\
a=\|B D\|+\|D C\|=c \cos B+b \cos C
\end{array}\right] \begin{array}{l}
b=m \sin B \\
c=m \sin C
\end{array}\right]=\frac{a}{\sin A}=\frac{c}{\sin C}=m \Rightarrow\left\{\begin{array}{l}
b \cos B+c \cos C=m \sin B \cos B+m \sin C \cos C=\frac{m}{2}(2 \sin B \cos B+2 \sin C \cos C)= \\
=\frac{m}{2}(\sin 2 B+\sin 2 C)=\frac{m}{2} \cdot 2 \sin (B+C) \cos (B-C)=\frac{a}{\sin A} \sin (\pi-A) \cos (B-C)= \\
=a \cos (B-C) .
\end{array}\right.
$$

Solution to Problem 41.
a) $\cos C=\frac{a^{2}+b^{2}-c^{2}}{2 a b}$ sị $\cos B=\frac{a^{2}+b^{2}-c^{2}}{2 a c}$
$b \cos C-c \cos B=b \cdot \frac{a^{2}+b^{2}-c^{2}}{2 a b}-c \cdot \frac{a^{2}+c^{2}-b^{2}}{2 a c}=\frac{a^{2}+b^{2}-c^{2}-a^{2}-c^{2}+b^{2}}{2 a}=$ $=\frac{2 b^{2}-2 c^{2}}{2 a}=\frac{b^{2}-c^{2}}{a}$
b) $\quad 2 b c \cos A+2 a c \cos B+2 a b \cos C=2 b c \frac{b^{2}+c^{2}-a^{2}}{2 b c}+$ $+2 a c \frac{\boldsymbol{a}^{2}+c^{2}-b^{2}}{2 a c}+2 a b \frac{a^{2}+b^{2}-c^{2}}{2 a b}=b^{2}+c^{2}-a^{2}+a^{2}+c^{2}-b^{2}+a^{2}+b^{2}-c^{2}=a^{2}+b^{2}+c^{2}$

Solution to Problem 42.

$$
\begin{aligned}
& m_{a}^{2}=c^{2}+\frac{a^{2}}{4}-2 \frac{a}{2} c \cos B \\
& \begin{aligned}
4 m_{a}^{2}=4 c^{2}+a^{2}-4 a c \cos B=4 c^{2}+a^{2}-4 a c \frac{a^{2}+c^{2}-b^{2}}{2 a c}=4 c^{2}+a^{2}-2 a-2 c^{2}+2 b^{2} \\
\quad=2 c^{2}+2 b^{2}-a^{2}=2\left(b^{2}+c^{2}\right)-a^{2}
\end{aligned}
\end{aligned}
$$

Solution to Problem 43.
Using the sine theorem, $a=m \sin A$.

$$
\begin{aligned}
\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}=m \Rightarrow b & =m \sin B \\
c & =m \sin C
\end{aligned}
$$

$$
\frac{a+c}{b}=\frac{m \sin A+m \sin C}{m \sin B}=\frac{\sin A+\sin C}{\sin B}=\frac{2 \sin \frac{A+C}{2} \cos \frac{A-C}{2}}{2 \sin \frac{B}{2} \cos \frac{B}{2}}=
$$

$$
\left.\begin{array}{c}
\frac{\sin \left(\frac{\pi}{2}-\frac{B}{2}\right) \cos \frac{A-C}{2}}{\sin \frac{B}{2} \cos \frac{B}{2}}=\frac{\cos \frac{B}{2} \cos \frac{A-C}{2}}{\sin \frac{B}{2} \cos \frac{B}{2}}=\frac{\cos \frac{A-C}{2}}{\sin \frac{B}{2}} \\
\operatorname{ctg} \frac{B}{2}=\frac{\cos \frac{B}{2}}{\sin \frac{B}{2}}
\end{array}\right\} \Rightarrow \cos \frac{A-C}{2}=\cos \frac{B}{2} \Rightarrow
$$

$$
\Rightarrow \frac{A-C}{2}=\frac{B}{2}
$$

$$
\frac{A-C}{2}=-\frac{B}{2} \Rightarrow A-B=C \text { or } A-C=B \Rightarrow \begin{array}{ccc}
A=B+C & 2 A=180^{\circ} & A=90^{\circ} \\
\text { or } \Rightarrow & \text { or } \Rightarrow & \text { or } \\
A+B=C & 2 C=180^{\circ} & C=90^{\circ}
\end{array}
$$

Solution to Problem 44.

$$
\begin{gathered}
\operatorname{ctg} A+\operatorname{ctg} B=2 \operatorname{ctg} C \Rightarrow \frac{\cos A}{\sin A}+\frac{\cos B}{\sin B}=2 \frac{\cos C}{\sin C} \\
\cos A=\frac{b^{2}+c^{2}-a^{2}}{2 b c} \\
\cos B=\frac{a^{2}+c^{2}-b^{2}}{2 a c} \\
\cos C=\frac{a^{2}+b^{2}-c^{2}}{2 a b} \\
\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}=m \Rightarrow \sin A=\frac{a}{m}, \sin B=\frac{b}{m}, \sin C=\frac{c}{m} ;
\end{gathered}
$$

By substitution:

$$
2 c^{2}=2\left(a^{2}+b^{2}-c^{2}\right) \Rightarrow 2 c^{2}=a^{2}+b^{2}
$$

Solution to Problem 45.
a. Using the law of sine,

$$
\begin{aligned}
& =\frac{2 p}{\sin A+\sin B+\sin C} \\
& a=\frac{2 p \sin A}{\sin A+\sin B+\sin C} ; b=\frac{\sin B \quad \sin C \quad \sin A+\sin B+\sin C}{\sin A+\sin B+\sin C} c=\frac{2 p \sin C}{\sin A+\sin B+\sin C} \\
& \quad \begin{array}{l}
\text { aar } C=\pi-(A+B)
\end{array}
\end{aligned}
$$

b.

$$
\begin{aligned}
& \frac{a}{\sin A}=\frac{b}{\sin B}=\frac{a+b}{\sin A+\sin B}=\frac{m}{\sin A+\sin B} \Rightarrow a=\frac{m \sin A}{\sin A+\sin B} \\
& \quad b=\frac{m \sin B}{\sin A+\sin B} \Rightarrow \\
& \Rightarrow c=\frac{a \sin C}{\sin A}=\frac{a \sin (A+B)}{\sin A} d a r \frac{a}{\sin A}=\frac{c}{\sin C}
\end{aligned}
$$

c.

$$
\begin{aligned}
& 1 \frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C} ; \frac{b}{\sin B}=\frac{c}{\sin B}=\frac{b-c}{\sin B-\sin C}=\frac{d}{\sin B-\sin C}=\frac{a}{\sin A} \Rightarrow \\
& \Rightarrow \sin B-\sin C=\frac{d \sin A}{a} \Rightarrow \\
& \Rightarrow 2 \sin \frac{B-C}{2} \cos \frac{B+C}{2}=\frac{d \sin A}{a} \\
& B+C=\pi-A \Rightarrow \frac{B+C}{2}=\frac{\pi}{2}-\frac{A}{2} \Rightarrow \cos \frac{B+C}{2}=\sin \frac{A}{2}
\end{aligned}
$$

Therefore,

$$
2 \sin \frac{B-C}{2} \sin \frac{A}{2}=\frac{d}{a} 2 \sin \frac{A}{2} \cos \frac{A}{2} \Rightarrow \sin \frac{B-C}{2}=\frac{d}{a} \cos \frac{A}{2}
$$

We solve the system, and find B and C. Then we find $b=\frac{a \sin B}{\sin A}$ and $c=b-d$.

Solution to Problem 46.

$$
\begin{aligned}
& \frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}=m \Rightarrow \begin{array}{l}
a=m \sin A \\
b=m \sin B
\end{array} \\
& \begin{array}{c}
\frac{a-b}{a+b}=\frac{m \sin A-m \sin B}{m \sin A+m \sin B}=\frac{\sin A-\sin B}{\sin A+\sin B}=\frac{2 \sin \frac{A-B}{2} \cos \frac{A+B}{2}}{2 \sin \frac{A+B}{2} \cos \frac{A-B}{2}}=\tan \frac{A-B}{2} \frac{\sin \frac{C}{2}}{\cos \frac{C}{2}} \\
\quad=\tan \frac{A-B}{2} \tan \frac{C}{2} .
\end{array} . l
\end{aligned}
$$

Solution to Problem 47.
Using tangents' theorem,

$$
\begin{gathered}
\frac{b-c}{b+c}=\operatorname{tg} \frac{B-C}{2} \operatorname{tg} \frac{A}{2} \\
\hat{A} \in 60^{\circ} \Rightarrow m\left(\frac{A}{2}\right)=30^{\circ} \Rightarrow \operatorname{tg} \frac{A}{2}=\frac{\sqrt{3}}{3}=\frac{1}{\sqrt{3}} \\
\frac{b}{c}=\frac{2+\sqrt{3}}{1} \Rightarrow \frac{b-c}{b+c}=\frac{2+\sqrt{3}-1}{2+\sqrt{3}+1}=\frac{1+\sqrt{3}}{3+\sqrt{3}} \\
\operatorname{tg} \frac{B-C}{2}=\frac{1+\sqrt{3}}{3+\sqrt{3}} \cdot \frac{1}{\frac{1}{\sqrt{3}}}=1 \Rightarrow \mu\left(\frac{B-C}{2}\right)=45^{\circ} \Rightarrow\left\{\begin{array}{l}
B-C=90^{\circ} \\
B+C=120^{\circ}
\end{array}\right. \\
2 B=210^{\circ} \Rightarrow \mu(B)=105^{\circ} \Rightarrow \mu(C)=120^{\circ}-105^{\circ}=15^{\circ}
\end{gathered}
$$

So

$$
\mu(C)=\frac{\pi}{12} \text { si } \mu(B)=\frac{7 \pi}{12} .
$$

Solution to Problem 48.

$$
\begin{gathered}
\|B D\|^{2}=13^{2}-15^{2}-2 \cdot 13 \cdot 15 \cos C=13^{3}+15^{2}-2 \cdot 13 \cdot 15 \frac{33}{65}= \\
=13^{2}+15^{2}-2 \cdot 13 \cdot 15 \cdot \frac{3 \cdot 11}{13 \cdot 5}=13^{2}+15^{2}-18 \cdot 11=196 \Rightarrow \\
\Rightarrow\|B D\|=14
\end{gathered}
$$

In $\triangle B D C$ we have

$$
\begin{aligned}
& \frac{14}{\sin C}=\frac{15}{\sin \widehat{B D C}} \Rightarrow \sin \widehat{B D C}=\frac{15 \cdot \sin C}{14} \\
& \sin C=\sqrt{1-\frac{33^{2}}{65^{2}}}=\sqrt{\frac{(65-33)(65+33)}{65^{2}}}=\sqrt{\frac{2^{6} \cdot 7^{2}}{65^{2}}}=\frac{56}{65} \\
& \sin \widehat{B D C}=\frac{15 \cdot \frac{56}{65}}{14}=\frac{15 \cdot 56}{14 \cdot 65}=\frac{3 \cdot 5 \cdot 14 \cdot 4}{14 \cdot 5 \cdot 13}=\frac{12}{13} \\
& \cos 2 \widehat{B D C}=\sqrt{1-\frac{144}{169}}=\sqrt{\frac{169-144}{169}}=\frac{5}{13}
\end{aligned}
$$

$$
\begin{aligned}
& \sin \widehat{B D C}=\arccos \frac{5}{13} \\
& \sin \widehat{A D B}=\frac{\pi}{4}+\arccos \frac{5}{13}-\arccos \frac{5}{13}=\frac{\pi}{4} .
\end{aligned}
$$

In $\triangle A D B$,

$$
\begin{aligned}
& \Rightarrow\|A B\|^{2}=49(\sqrt{6}-\sqrt{2})^{2}+14^{2}-2 \cdot 14 \cdot 7(\sqrt{6}-\sqrt{2}) \frac{\sqrt{2}}{2}=49(6+2-2 \sqrt{2})+ \\
& +196-93(\sqrt{2}-2)=98(4-\sqrt{12})-98(\sqrt{12}-2)+196=98(4-\sqrt{12}-\sqrt{12}+2)+196= \\
& =196(3-\sqrt{12})+196=196(4-2 \sqrt{3})=196(\sqrt{3}-1)^{2} \\
& \|A B\|=14(\sqrt{3}-1)
\end{aligned}
$$

In $\triangle A D B$ we apply sine's theorem:

$$
\begin{gathered}
\frac{\|A D\|}{\sin A \widehat{B D}}=\frac{\|A B\|}{\sin \frac{\pi}{4}} \Rightarrow \frac{7(\sqrt{6}-\sqrt{2})}{\sin A \widehat{B D}}=\frac{14(\sqrt{3}-1)}{\frac{\sqrt{2}}{2}}=\frac{28(\sqrt{3}-1)}{\sqrt{2}} \\
\sin A B D=\frac{7(\sqrt{1}-2)}{28(\sqrt{3}-1)}=\frac{14(\sqrt{3}-1)}{28(\sqrt{3}-1)}=\frac{1}{2}=\mu(\widehat{A B D})=\frac{\pi}{6} \\
\mu(A)=A-\frac{\pi}{6}-\frac{\pi}{4}=\frac{12 \pi-2 \pi-3 \pi}{12}=\frac{7 \pi}{12} \\
\mu(D)=2 \pi-\frac{7 \pi}{12}-\frac{\pi}{4}-\arccos \frac{5}{13}-\arccos \frac{33}{65}=\frac{14 \pi}{12}-(\underbrace{\arccos \frac{5}{13}}_{\alpha}+\underbrace{\arccos \frac{33}{65}}_{\beta}) \\
\cos \alpha=\frac{5}{15} \Rightarrow \sin \alpha=\frac{12}{13} \\
\cos \beta=\frac{33}{65} \Rightarrow \sin \beta=\frac{56}{65} \\
\cos (\alpha+\beta)=\cos \alpha \cos \beta-\sin \alpha \sin \beta=\frac{5}{13} \cdot \frac{33}{65}-\frac{12}{13} \frac{56}{65}=-\frac{507}{13 \cdot 65}=-\frac{3 \cdot 13^{2}}{13 \cdot 13 \cdot 5}=-\frac{3}{5} \\
\alpha+\beta=\pi-\arccos \frac{3}{5} \\
\mu(D)=\frac{14 \pi}{12}-\pi+\arccos \frac{3}{5}=\frac{2 \pi}{12}+\arccos 35=\frac{\pi}{6}+\arccos 35
\end{gathered}
$$

Or we find $\mu(\widehat{D B C})$ and we add it to $\frac{\pi}{6}$.

Solution to Problem 49.
a) $B=\arcsin \frac{24}{25} \Rightarrow \sin B=\frac{24}{25} \Rightarrow \cos B=\frac{7}{25}$
$C=\arcsin \frac{12}{13} \Rightarrow \sin C=\frac{12}{13} \Rightarrow \cos C=\frac{5}{13}$
$\sin A=\sin [\pi-(B+C)]=\sin (B+C)=\sin B \cos C+\sin C \cos B=\frac{24}{25} \cdot \frac{5}{13}+\frac{12}{13} \cdot \frac{7}{25}=$
$=\frac{120+84}{325}=\frac{204}{325}$

$$
S=\frac{a^{2} \sin B \sin C}{2 \sin A}=\frac{289 \cdot \frac{24}{25} \frac{12}{13}}{2 \cdot \frac{204}{325}}
$$

b) $b=2, \widehat{A} \in 135^{\circ}, \widehat{C} \in 30^{\circ} \Rightarrow \hat{B} \in 15^{\circ}$
$\sin A=\sin 45=\frac{\sqrt{2}}{2}$
$\sin C=\frac{1}{2}$
$\sin B=\sin \frac{30^{\circ}}{2}=\sqrt{\frac{1-\cos 30^{\circ}}{2}}=\sqrt{\frac{1-\frac{\sqrt{3}}{2}}{2}}=\sqrt{\frac{2-\sqrt{3}}{2}}=\frac{1}{2}\left(\sqrt{\frac{2+1}{2}}-\sqrt{\frac{2-1}{2}}\right)=$
$=\frac{1}{2}\left(\frac{\sqrt{3}}{2}-\sqrt{\frac{1}{2}}\right)=\frac{\sqrt{3}-1}{2 \sqrt{2}}$
$S=\frac{b^{2} \sin A \sin C}{2 \sin B}=\frac{4 \frac{\sqrt{2}}{2} \cdot \frac{1}{2}}{2 \frac{\sqrt{3}-1}{2 \sqrt{2}}}=\frac{\sqrt{2}}{\sqrt{3}-1}=\frac{\sqrt{2}(\sqrt{3}+1)}{2}$
d) $\widehat{A} \in 18^{\circ}, b=4, c=6$

$$
\begin{aligned}
& \mu(A)=\frac{\pi}{10} 0 \\
& 2 \hat{A}=36^{\circ}, 3 \hat{A} \in 54^{\circ} \\
& \sin \alpha=\cos \left(90^{\circ}-\alpha\right)
\end{aligned}
$$

$\sin 30^{\circ}=\cos 54^{\circ} \Rightarrow \sin 2 A=\cos 3 A \Rightarrow 2 \sin A \cos A=\cos \left(4 \cos ^{2} A-3\right) \Rightarrow$
$\Rightarrow 4 \sin ^{2} A+2 \sin A-1=0$

$$
\sin A=\frac{-2 \pm \sqrt{20}}{8}=\frac{-2 \pm 2 \sqrt{5}}{8}=\frac{-1 \pm \sqrt{5}}{4}
$$

$\sin A=\frac{-1+\sqrt{5}}{4}$, because $m(A)<180^{\circ}$ and $\sin A>0$.

Solution to Problem 50.

$$
\begin{aligned}
& \frac{a c \sin B}{2}=24 \Rightarrow \sin B=\frac{48}{15 \cdot 13}=\frac{16}{65} \\
& \cos B=\sqrt{1-\frac{16^{2}}{65^{2}}}=\sqrt{\frac{(65-16)(65-16)}{65^{2}}}= \\
& =\sqrt{\frac{49 \cdot 81}{65^{2}}}=\frac{7 \cdot 9}{65}=\frac{63}{65} \\
& b^{2}=13^{2}+15^{2}-2 \cdot 13 \cdot 15 \cdot \frac{7 \cdot 9}{13 \cdot 5}=13^{2}+15^{2}-376=394-378=16, \\
& \quad b=4 \\
& b^{2}=13^{2}+15^{2}+2 \cdot 13 \cdot 15 \cdot \frac{7 \cdot 9}{13 \cdot 5}=394+378=772=4 \cdot 193 \\
& b=2 \sqrt{193} .
\end{aligned}
$$

Solution to Problem 51.

$$
\begin{aligned}
& \left.\begin{array}{l}
a^{2}=b^{2}+c^{2}-2 b c \cos A \Rightarrow 6=b^{2}+c^{2}-2 b c \frac{1}{2} \\
\begin{array}{r}
6=(b+c)^{2}-2 b c-b c=(b+c)^{2}-3 b c \\
b+c=3+\sqrt{3}
\end{array}
\end{array}\right\} \Rightarrow(3+\sqrt{3})^{2}-3 b c=6
\end{aligned} \begin{array}{r}
\begin{array}{r}
9+6 \sqrt{3}+3-3 b c=6 \Rightarrow 2(1+\sqrt{3})=b c
\end{array} \\
\begin{array}{r}
\left.\begin{array}{r}
b+c=3+\sqrt{3} \\
b c=2+2 \sqrt{3}
\end{array}\right\} \Rightarrow x^{2}-5 x+p=0 \Rightarrow x^{2}-(3+\sqrt{3}) x+2+2 \sqrt{3}=0 \Rightarrow \\
\Rightarrow x_{1,2}=\frac{3+\sqrt{3} \pm \sqrt{4-2 \sqrt{3}}}{2}=\frac{3+\sqrt{3} \pm \sqrt{\sqrt{(3-1)^{2}}}}{2}=\frac{3+\sqrt{3} \pm(\sqrt{3-1})}{2} \Rightarrow \\
\quad \begin{array}{r}
x_{1}=1+\sqrt{3} \\
x_{2}=2
\end{array} \\
\quad b=1+\sqrt{3} \text { si } c=2 \text { sau } b=2 \text { si } c=1+\sqrt{3} \\
2 p=\sqrt{6}+1+\sqrt{3}+2=3+\sqrt{3}+2=3+\sqrt{3}+\sqrt{6} \Rightarrow p=\frac{3+\sqrt{3}+\sqrt{6}}{2} \\
S=\sqrt{p(p-c)(p-b)(p-c) .}
\end{array}
\end{array}
$$

Solution to Problem 52.

At problem 9 we've found that

$$
\|B D\|=14,\|A B\|=14(\sqrt{3}-1)
$$

With Heron's formula, we find the area of each triangle and we add them up.

$$
\sigma[A B C D]=\sigma[A B D]+\sigma[B D C]
$$

Solution to Problem 53.
The formula for the area of a regular polygon:

$$
\begin{aligned}
& S_{n}=\frac{n}{2} R^{2} \sin \frac{2 \pi}{n} \\
& n=3 \Rightarrow S_{3}=\frac{3}{2} R^{2} \sin \frac{2 \pi}{3}=\frac{3 \sqrt{3} R^{2}}{4} \\
& n=4 \Rightarrow S_{4}=\frac{4}{2} R^{2} \sin \frac{2 \pi}{4}=2 R^{2} \\
& n=6 \Rightarrow S_{6}=\frac{6}{2} R^{2} \sin \frac{2 \pi}{6}=\frac{3 \sqrt{3} R^{2}}{2} \\
& n=8 \Rightarrow S_{8}=\frac{8}{2} R^{2} \sin \frac{2 \pi}{8}=2 \sqrt{2} R^{2} \\
& n=12 \Rightarrow S_{12}=\frac{12}{2} R^{2} \sin \frac{2 \pi}{12}=3 R^{2} \\
& n=20 \Rightarrow S_{2} 0=\frac{20}{2} R^{2} \sin \frac{2 \pi}{20}=10 R^{2} \frac{\sqrt{5}-1}{4}=\frac{5}{2}(\sqrt{5}-1) R^{2}
\end{aligned}
$$

Solution to Problem 54.

$$
m(\widehat{A B})=2 d \Rightarrow m(\widehat{A O B})=2 d
$$

In $\triangle B O M$:

$$
\sin \alpha=\frac{\|B M\|}{\|B O\|} \Rightarrow \begin{align*}
& \|B M\|=R \sin \alpha \tag{1}\\
& \|A B\|=2 R \sin \alpha
\end{align*}
$$

In $\triangle N O C$:
$\sin 2 \alpha=\frac{\|N C\|}{\|O C\|} \Rightarrow\|N C\|=R \sin 2 \alpha \Rightarrow\|A C\|=2 R \alpha$
In $\triangle P O D$:
$\sin 3 \alpha=\frac{\|D P\|}{\|O \bar{D}\|} \Rightarrow\|D P\|=R \sin 3 \alpha$

$$
\begin{equation*}
\|A D\|=2 R \sin 3 \alpha \tag{3}
\end{equation*}
$$

Substituting (1), (2), (3) in the given relation:

$$
\begin{gathered}
\frac{1}{2 R \sin \alpha}=\frac{1}{2 R \sin 2 \alpha}=\frac{1}{2 R \sin 3 \alpha} \Rightarrow \frac{1}{\sin \alpha}=\frac{1}{\sin 2 \alpha}=\frac{1}{\sin 3 \alpha} \\
\frac{1}{\sin 2 \alpha}=\frac{1}{\sin \alpha}=\frac{1}{\sin 3 \alpha} \Rightarrow \frac{1}{\sin 2 \alpha}=\frac{\sin 3 \alpha-\sin \alpha}{\sin \alpha \cdot \sin 3 \alpha}=\frac{2 \sin \alpha \cdot \cos 2 \alpha}{\sin \alpha \cdot \sin 3 \alpha} \Rightarrow 2 \sin 2 \alpha \cos 2 \alpha= \\
=\sin 3 \alpha \Rightarrow \sin 4 \alpha=\sin 3 \alpha \Rightarrow \sin 4 \alpha-\sin 3 \alpha=0 \Rightarrow 2 \sin \frac{\alpha}{2} \cos \frac{7 \alpha}{2}=0 \Leftrightarrow \sin \frac{\alpha}{2}=0
\end{gathered}
$$

or

$$
\begin{aligned}
& \cos \frac{7 \alpha}{2}=0 \\
& \sin \frac{\alpha}{2} \Rightarrow \frac{\alpha}{2}=0
\end{aligned}
$$

which is impossible.

$$
\begin{aligned}
& \cos \frac{7 \alpha}{2}=0 \Rightarrow \frac{7 \alpha}{0}=\frac{\pi}{2} \Rightarrow \alpha=\frac{\pi}{7} \Rightarrow m(\widehat{A B})=\frac{2 \pi}{7} \\
& n=\frac{m(\text { complete circle })}{m(\widehat{A B})}=\frac{2 \pi}{\frac{2 \pi}{7}}=7 .
\end{aligned}
$$

Thus the polygon has 7 sides.

$$
S_{7}=\frac{7}{2} R^{2} \sin \frac{2 \pi}{7}
$$

Solution to Problem 55.

$$
\begin{aligned}
& \text { a) } \sin \frac{A}{2}=\sqrt{\frac{(p-b)(p-c)}{b c}}, \cos \frac{A}{2}=\sqrt{\frac{p(p-a)}{b c}} \Rightarrow \operatorname{tg} \frac{A}{2}=\sqrt{\frac{(p-b)(p-c)}{p(p-a)}} \\
& (p-a) \operatorname{tg} \frac{A}{2}=(p-a) \sqrt{\frac{(p-b)(p-c)}{p(p-a)}}=\sqrt{\frac{(p-a)^{2}(p-b)(p-c)}{p(p-a)}}= \\
& =\sqrt{\frac{p(p-a)(p-b)(p-c)}{p^{2}}}=\frac{9}{p}=r
\end{aligned}
$$

b) $\frac{S}{p}=(p-a) \operatorname{tg} \frac{A}{2} \Rightarrow S=p(p-a) \operatorname{tg} \frac{A}{2}$
c) $\cos \frac{A}{2}=\sqrt{\frac{p(p-a)}{b c}}, \cos \frac{B}{2}=\sqrt{\frac{p(p-b)}{a c}}, \cos \frac{C}{2}=\sqrt{\frac{p(p-c)}{a b}}, R=\frac{a b c}{4 S} \Rightarrow 4 R=\frac{a b c}{S}$
$4 R \cos \frac{A}{2} \cos \frac{B}{2} \cos \frac{C}{2}=\frac{a b c}{S} \cdot \sqrt{\frac{p^{3}(p-a)(p-b)(p-c)}{a^{2} b^{2} c^{2}}}=\frac{a b c}{S} \frac{\sqrt{p^{3}() p-a(p-b)(p-c)}}{a b c}=\frac{a b c}{S}$

$$
\frac{p S}{a b c}=p
$$

d) $4 R \cos \frac{A}{2} \cos \frac{B}{2} \cos \frac{C}{2}=\frac{a b c}{S} \cdot \sqrt{\frac{p(p-a)^{3}(p-b)(p-c)}{b c a c a b}}=\frac{a b c}{S} \cdot \frac{p-a}{a b c}$

$$
S=p-a
$$

$\sin A=\frac{a}{2 R}, \sin B=\frac{b}{2 R}, \sin C \neq \frac{c}{2 R}$
$\cos A=\frac{b^{2}+c^{2}-a^{2}}{2 b c}$
$R^{2}\left(\sin ^{2} A+4 \cos A \sin B \sin C\right)=R^{2}\left(\frac{a^{2}}{4 R^{2}}+4 \frac{b^{2}+c^{2}-a^{2}}{2 b c} \cdot \frac{b}{2 R} \cdot \frac{c}{2 R}\right)=$
$=R^{2} \frac{a^{2}+2 b^{2}+2 c^{2}-2 a^{2}}{4 R^{2}}=\frac{2\left(b^{2}+c^{2}\right)-a^{2}}{4}=\mu_{a}{ }^{2}$
f) $S=\frac{a h_{z}}{2} \Rightarrow h_{a}=\frac{2 S}{a}, R=\frac{a b c}{4 S}, \frac{b}{2 R}=\sin B, \frac{c}{2 a}=\sin C$
$2 R \sin B \sin C=2 R \cdot \frac{b}{2 R} \cdot \frac{c}{2 R}=\frac{b c}{2 R}=\frac{b c}{2 \cdot \frac{a b c}{4 S}}=\frac{2 b c S}{a b c}=\frac{2 S}{a}=h_{a}$

Solution to Problem 56.

We apply the law of sine in $\triangle A B I$:

$$
\begin{aligned}
& \frac{A I H}{\sin \frac{B}{2}}=\frac{\| B I}{\sin \frac{A}{2}}=\frac{\| A B}{\sin \widehat{B I A}} \\
& m(\widehat{B I A})=180^{\circ}-\frac{A+B}{2}=180^{\circ}-90^{\circ}+\frac{c}{2}=90^{\circ}+\frac{c}{2} \\
& \sin \widehat{B I A}=\sin \left(90^{\circ}+\frac{c}{2}\right)=\sin \left(180^{\circ}-90^{\circ}-\frac{c}{2}\right)=\sin \left(90^{\circ}-\frac{c}{2}\right)=\cos \frac{c}{2}
\end{aligned}
$$

The law of sine applied in $\triangle A B C$:

$$
\begin{aligned}
& \frac{A B}{\sin C}=2 R \Rightarrow A B \|=2 R \sin C=4 R \sin \frac{C}{2} \cos \frac{C}{2} \sin \frac{B}{2} \\
& \frac{1}{\cos \frac{C}{2}}=4 R \sin \frac{B}{2} \sin \frac{C}{2}
\end{aligned}
$$

Solution to Problem 57.

In $\triangle A C C^{\prime}: \sin \left(180^{\circ}-A\right)=\frac{\left\|C C^{\prime}\right\|}{b} \Rightarrow\left\|C C^{\prime}\right\|=b \sin A ; \cos \left(180^{\circ}-A\right)=b \cos A$.
So the coordinates of C are $(-b \cos A, b \sin A)$.
The center of the inscribed circle is at the intersection of the perpendicular lines drawn through the midpoints of sides $A B$ and $A C$.

$$
\begin{aligned}
& m_{E O}=-\frac{1}{m_{A C}}=\frac{1}{\operatorname{tg} A}=\operatorname{ctg} A \\
& E\left(\frac{O-b \cos A}{2}, \frac{O+b \sin A}{2}\right)=E\left(-\frac{b \cos A}{2}, \frac{b \sin A}{2}\right)
\end{aligned}
$$

The equation of the line $E O$:

$$
\begin{aligned}
& y-y_{0}=m\left(\lambda-x_{0}\right) \Rightarrow y-\frac{b \sin A}{2}=\operatorname{ctg} A\left(x+\frac{b \cos A}{2}\right) \\
& R=\|O A\|=\sqrt{\left(\frac{c}{2}\right)^{2}+\left(\frac{b}{2 \sin A}+\frac{c \cos A}{2 \sin A}\right)^{2}}= \\
& =\sqrt{\frac{c^{2}}{4}+\frac{b^{2}}{4} \cdot \frac{1}{\sin ^{2} A}+2 \cdot \frac{b c \cos A}{4 \sin ^{2} A}+\frac{c^{2}}{4} \cdot \frac{\cos ^{2} A}{\sin ^{2} A}}=
\end{aligned}
$$

$$
\begin{gathered}
=\sqrt{\frac{c^{2}}{4}\left(1+\frac{\cos ^{2} A}{\sin ^{2} A}\right)+\frac{1}{4 \sin ^{2} A}\left(b^{2}+2 b c \cos A\right)}= \\
=\sqrt{\frac{1}{4 \sin ^{2} A}\left(c^{2}+b^{2}+2 b c \cos A\right)}=\sqrt{\frac{a^{2}}{4 \sin ^{2} A}} \\
=\frac{a}{2 \sin A} \Rightarrow R=\frac{a}{2 \sin A}
\end{gathered}
$$

If we redo the calculus for the same draw, we have the following result: $(b \cos A, b \sin A)$.

$$
m_{A C}=\operatorname{tg} A \Rightarrow m_{O E}=-\frac{1}{\operatorname{tg} A}
$$

$(O E): 2 \sin A=-2 x \cos A+B$

$$
O\left(\frac{c}{2}, \frac{-c \cos A+b}{2 \sin A}\right) \text { si }\|O A\|=R=
$$

$$
=\sqrt{\frac{c^{2}}{4}+\frac{b^{2}+c^{2} \cos A-2 b c \cos A}{4 \sin ^{2} A}}=
$$

$$
=\sqrt{\frac{1}{4 \sin ^{2} A} \cdot\left(c^{2} \sin ^{2} A+c^{2} \cos ^{2} A+b^{2}-2 b c \cos A\right)}=\frac{a}{2 \sin A},
$$

using the law of cosine.

Solution to Problem 58.

$$
\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}=2 R .
$$

We suppose that $a>b$. Let's prove that $A>B$.

$$
\begin{aligned}
& \frac{a}{\sin A}=\frac{b}{\sin B} \Rightarrow \frac{a}{b}=\frac{\sin A}{\sin B} \\
&\left.\begin{array}{rl}
a>b \Rightarrow & \frac{a}{b}>1
\end{array}\right\} \Rightarrow \frac{\sin A}{\sin B}>1 \Rightarrow A, B, C \in(0, \pi) \Rightarrow \sin B>0 \Rightarrow \sin A>\sin B \\
& \Rightarrow \sin A-\sin B>0 \Rightarrow 2 \sin \frac{A-B}{2} \cos \frac{A+B}{2}>0 \Rightarrow \frac{A+B}{2}=\frac{180^{\circ}-C}{2} \\
&=90^{\circ}-\frac{C}{2} .
\end{aligned}
$$

$$
\begin{aligned}
& \quad \cos \frac{A+B}{2}=\cos \left(90^{\operatorname{circ}}-\frac{C}{2}\right)=\sin \frac{C}{2}>0, \text { therefore } \frac{A-B}{2}>0 \Longrightarrow A>B \\
& \left(-\frac{\pi}{2}<\frac{A-B}{2}<\frac{\pi}{2}\right)
\end{aligned}
$$

Solution to Problem 59.
a) $a=2 R \sin A, b=2 R \sin B$

$$
\begin{aligned}
& \frac{2 R \sin A \cos A-2 R \sin B \cos B}{2 R \sin A \cos B-2 R \sin B \cos A}+\cos C=\cos C+\frac{\sin A \cos A-\sin B \cos B}{\sin A \cos B-\sin B \cos A}= \\
& =\frac{\frac{1}{2} \sin 2 A-\frac{1}{2} \sin 2 B}{\sin (A-B)}+\cos C=\frac{1}{2} \cdot \frac{2 \sin (A-B) \cos (A+B)}{\sin (A-B)}+\cos C= \\
& \cos (A+B)+\cos C=\cos \left(180^{\circ}-C\right)+\cos C=-\cos C+\cos C=0
\end{aligned}
$$

b. We transform the product into a sum:

$$
\sin (A-B) \sin C=\frac{\cos (A-B-C)-\cos (A-B+C)}{2} \doteq \frac{1}{2}[-\cos 2 A+\cos 2 B]=
$$

$$
\left(B+C=180^{\circ}-A, \quad A+C=180^{\circ}-B\right)
$$

$$
\begin{equation*}
=\frac{a^{2}-b^{2}}{4 R^{2}} \tag{1}
\end{equation*}
$$

$1+\cos (A-B) \cos C=1+\frac{\cos (A-B+C)+\cos (A-B+C)}{2} \doteq$

$$
=\frac{2+\cos (180-2 B)+\cos (2 A-180)}{2}
$$

$$
\left(A+B=180^{\circ}-B, \quad B+C=180^{\circ}-A\right)
$$

$\pm \frac{2-\cos 2 B-\cos 2 A}{2}=\frac{2-1+2 \sin ^{2} B-1+2 \sin ^{2} A}{2}=\sin ^{2} A+\sin ^{2} B=\left(\frac{a}{2 R}\right)^{2}+$
$+\left(\frac{b}{2 R}\right)^{2}=\frac{a^{2}+b^{2}}{4 R^{2}}$
From (1) and (2) \Rightarrow

$$
\begin{aligned}
& \frac{a^{2}-b^{2}}{\frac{4 R^{2}}{a^{2}+b^{2}}} \frac{4 R^{2}}{4} \\
& =\frac{a^{2}-b^{2}}{a^{2}+b^{2}} \\
& c)(a+c) \cos \frac{B}{4}+b \cos \left(A+\frac{3 B}{4}\right)=a \cos \frac{B}{4}+b \cos \frac{B}{4}+b \cos \left(A+\frac{3 B}{4}\right)=c \cos \frac{B}{4}+ \\
& \quad+a \cos \left(B-\frac{3 B}{4}\right)+b \cos \left(A+\frac{3 B}{4}\right)
\end{aligned}
$$

We consider the last two terms:

$$
\begin{aligned}
& a \cos \left(B-\frac{3 B}{4}\right)+b \cos \left(A+\frac{3 B}{4}\right)=2 R \sin A \cos \left(B-\frac{3 B}{4}\right)+2 R \sin B \cos \left(A-\frac{3 B}{4}\right)= \\
= & 2 R\left(\frac{\sin \left(A+B-\frac{3 B}{4}\right)+\sin \left(A-B+\frac{3 B}{4}\right)}{2}+\frac{\sin \left(A+B-\frac{3 B}{4}\right)+\sin \left(A-B+\frac{3 B}{4}\right)}{2}\right)= \\
= & R\left[\sin \left(A+B-\frac{3 B}{4}\right)+\sin \left(A+B+\frac{3 B}{4}\right)+\sin \left(A-B+\frac{3 B}{4}\right)+\sin \left(A-B+\frac{3 B}{4}\right)\right]= \\
= & 2 R \sin (A+B) \cos \frac{3 B}{4}-2 R \sin (\pi-C) \cos \frac{3 B}{4}+2 R \sin c \cos \frac{3 B}{4}=c \cos \frac{3 B}{4}+c \cos \frac{3 B}{4}= \\
= & c\left(\cos \frac{B}{4}+\cos \frac{3 B}{4}\right)=2 c \cos \frac{B}{4}+\cos 3 B 4=2 c \cos \frac{B}{2} \cos \frac{B}{2}
\end{aligned}
$$

Solution to Problem 60.
We apply the law of cosines in triangle ABC :

$$
\|B C\|^{2}=a^{2}+\frac{8}{9} a^{2}-2 a \cdot \frac{2 \sqrt{3}}{3} \cdot a \cdot \frac{\sqrt{2}}{2}=a^{2}+\frac{8 a^{2}}{9}-\frac{4 a^{2}}{3}=\frac{5 a^{2}}{9}
$$

$$
\|B C\|=\frac{a \sqrt{5}}{3}
$$

$$
\|A C\|^{2}=\|A B\|^{2}+\|B C\|^{2}-2\|A B\| B C \| \cos B \Rightarrow \frac{8 a^{2}}{9}=a^{2}+\frac{5 a^{2}}{9}-2 a \cdot \frac{a \sqrt{5}}{3} \cdot \cos B
$$

$$
\Rightarrow \frac{2 a^{2} \sqrt{5} \cos B}{2}=a^{2}+\frac{5 a^{2}}{9}-\frac{8 a^{2}}{9}=\frac{6 a^{2}}{9} \Rightarrow \cos B=\frac{6 a^{2}}{9} \cdot \frac{3}{2 a^{2}} \sqrt{5}=\frac{1}{\sqrt{5}}=\frac{\sqrt{5}}{5}
$$

$$
\sin B=\sqrt{1-\cos ^{2} B}=\sqrt{1-\frac{5}{25}}=\frac{2 \sqrt{5}}{5}
$$

$$
\operatorname{tg} B=\frac{\sin B}{\cos B}=\frac{2 \sqrt{5}}{5} \cdot \frac{5}{\sqrt{5}}=2
$$

Solution to Problem 61.

$$
\begin{gathered}
\|I A\|=\|I B\|=\|I C\|=r \\
I C^{\prime} \perp A B \\
I A^{\prime} \perp B C \\
m\left(A^{\prime} I C^{\prime}\right)=180-\hat{B} \Rightarrow \sin \left(\widehat{A^{\prime} I C^{\prime}}\right)=\sin \hat{B} \text { inscribable quadrilateral } \\
\text { Similarly, } \widehat{A^{\prime} I B^{\prime}}=\sin C \text { and } \widehat{C^{\prime} I B^{\prime}}=\sin A .
\end{gathered}
$$

$$
\begin{aligned}
& \sigma\left[B^{\prime} C^{\prime} I\right]=\frac{r^{2} \sin A}{2} \\
& \frac{a}{\sin A}=2 R \Rightarrow \sin A=\frac{a}{2 R} \\
& \sigma\left[B^{\prime} C^{\prime} I\right]=\frac{r^{2} \frac{a}{2 R}}{2}=\frac{r^{2} a}{4 R}
\end{aligned}
$$

In the same way,

$$
\begin{aligned}
& \sigma\left[A^{\prime} B^{\prime} I\right]=\frac{r^{2}}{4 R}(a+b+c) \\
& \sigma[A B C]=s=r p \\
& \frac{\sigma\left[A^{\prime} B^{\prime} C^{\prime}\right]}{\sigma[A B C]}=\frac{r^{2}(a+b+c)}{4 R} \Rightarrow \frac{1}{r p}=\frac{r}{2 R}
\end{aligned}
$$

Solution to Problem 62.

$$
\begin{aligned}
& 0<A \Rightarrow<\frac{A}{2}<\frac{\pi}{2} \Rightarrow \sin \frac{A}{2}>0 ; \\
& \left.\sin \frac{A}{2}=\sqrt{\frac{1-\cos A}{2}} \Rightarrow \begin{array}{r}
\sin ^{2} \frac{A}{2}=\frac{1-\cos A}{2} \\
\cos A=\frac{b^{2}+c^{2}-a^{2}}{2 b c}
\end{array}\right\} \\
& \Rightarrow \sin ^{2} \frac{A}{2}=\frac{1-\frac{b^{2}-a^{2}+c^{2}}{2 b c}}{2}=\frac{a^{2}-(b-c)^{2}}{4 b c} \leq \frac{a^{2}}{4 b c} \Rightarrow \sin \frac{A}{2} \leq \frac{a}{2 \sqrt{b c}} .
\end{aligned}
$$

Solution to Problem 63.

$$
\begin{aligned}
& C=\pi-(A+B) \\
& \left.\begin{array}{l}
S=\frac{a^{2} \sin B \sin C}{2 \sin A} \\
A, B, C \text { are known }
\end{array}\right\} \Rightarrow \text { We find } a .
\end{aligned}
$$

$$
\frac{a}{\sin a}=\frac{b}{\sin b} \Rightarrow b=\frac{a \sin B}{\sin A} \text {. In the same way, we find } c .
$$

Solution to Problem 64.

$$
\begin{aligned}
& A=\arccos \frac{4}{5} \Rightarrow \cos A=\frac{4}{5} \Rightarrow \sin A=\sqrt{1-\frac{16}{25}}=\frac{3}{5} \\
& a^{2}+b^{2}+c^{2}-2 b c \cos A \Rightarrow 169=841-2 b c \frac{4}{5} \Rightarrow \frac{8 b c}{5}=841-169 \Rightarrow \\
& \Rightarrow b c=420
\end{aligned}
$$

$$
\left.\begin{array}{c}
b^{2}+c^{2}=841 \\
b c=420
\end{array}\right\} \Rightarrow\left\{\begin{array} { l }
{ b = 2 1 } \\
{ c = 2 0 }
\end{array} \text { or } \left\{\begin{array}{l}
b=20 \\
c=21
\end{array}, \begin{array}{l}
\frac{a}{\sin A}=\frac{b}{\sin B} \Rightarrow \sin B=\frac{b \sin A}{a}
\end{array}\right.\right.
$$

We find B.

$$
\begin{aligned}
& C=180^{\circ}-(A+B) \\
& \sin B=\frac{21 \cdot \frac{3}{5}}{13}=\frac{63}{65} \Rightarrow B=\arcsin \frac{63}{65} \\
& C=180^{\circ}-\left(\arccos \frac{4}{5}+\arcsin \frac{63}{65}\right)=180^{\circ}-\left(\arcsin \frac{3}{5}+\arcsin \frac{63}{65}\right)
\end{aligned}
$$

We find the sum.
Or
$\sin B=\frac{20 \cdot \frac{3}{5}}{13}=\frac{12}{13} \Rightarrow B=\arcsin \frac{12}{13}$
$C=180^{\circ}-(\underbrace{\arcsin \frac{3}{5}}_{\alpha}+\underbrace{\arcsin \frac{12}{13}}_{\beta})$
$\sin (\alpha+\beta)=\sin \alpha \cos \beta+\sin \beta \cos \alpha=\frac{3}{5} \cdot \frac{5}{13}+\frac{12}{13} \cdot \frac{4}{5}=\frac{63}{65} \Rightarrow \alpha+\beta=\arcsin \frac{63}{65}$
$C=180^{\circ}-\arcsin \frac{63}{65}$

Solution to Problem 65.

$$
R=8 r \Rightarrow \frac{r}{R}=\frac{1}{8}
$$

We already know that
$\frac{r}{R}=4 \sin \frac{A}{2} \sin \frac{B}{2} \sin \frac{C}{2}$
$\frac{1}{8}=4 \sin \frac{A}{2} \frac{\cos \frac{B-C}{2}-\cos \frac{B+C}{2}}{2} \Rightarrow$
$\Rightarrow \frac{1}{8}=2 \sin \frac{A}{2}\left(\cos \frac{2 \pi}{6}-\cos \frac{180^{\circ}-A}{2}\right) \Rightarrow \frac{1}{8}=\sin \frac{A}{2}\left(\cos \frac{\pi}{3}-\sin \frac{A}{2}\right) \Rightarrow$
$\Rightarrow \frac{1}{8}=2 \sin \frac{A}{2}\left(\frac{1}{2}-\sin \frac{A}{2}\right)$
We write $\sin \frac{A}{2}=t$. We have

$$
\frac{1}{8}=2 t\left(\frac{1}{2}-t\right)=t-2 t^{2}
$$

$1=8 t-16 t^{2} \Rightarrow 16 t^{2}-8 t+1=0 \Rightarrow$
$4 t-1^{2}=0 \Rightarrow t=\frac{1}{4}$
$\sin \frac{A}{2}=\frac{1}{4} ; \cos \frac{A}{2}=\sqrt{1-\frac{1}{16}}=\frac{\sqrt{15}}{4}$
$\sin A=2 \sin \frac{A}{2} \cos \frac{A}{2}=\frac{\sqrt{15}}{8} \Rightarrow A=\arcsin \frac{\sqrt{15}}{8}$
$\left\{\begin{array}{l}B+C=\pi-\arcsin \frac{\sqrt{15}}{8} \\ B-C=\frac{2 \pi}{3}\end{array}\right.$
From this system we find B and C.
$2 B=\frac{5 \pi}{3}-\arcsin \frac{\sqrt{15}}{8}$
$B=\frac{5 \pi}{6}-\frac{1}{2} \arcsin \frac{\sqrt{15}}{8}$
$C=B-\frac{2 \pi}{3}=\frac{5 \pi}{6}-\frac{2 \pi}{3}-\frac{1}{2} \arcsin \sqrt{158}=\frac{\pi}{6}-\frac{1}{2} \arcsin \frac{\sqrt{15}}{8}$

Other Problems in Geometry and Trigonometry (10 ${ }^{\text {th }}$ grade)

66. Show that a convex polygon can't have more than three acute angles.
67. Let $A B C$ be a triangle. Find the locus of points $M \in(A B C)$, for which $\sigma[A B M]=\sigma[A C M]$.

Solution to Problem 67
68. A convex quadrilateral $A B C D$ is given. Find the locus of points $M \in$ int. $A B C D$, for which $\sigma[M B C D]=\sigma[M B A D]$.

Solution to Problem 68
69. Determine a line $M N$, parallel to the bases of a trapezoid $A B C D(M \in$ $|A D|, N \in|B C|)$ such that the difference of the areas of [ABNM] and [MNCD] to be equal to a given number.

Solution to Problem 69
70. On the sides of $\triangle A B C$ we take the points D, E, F such that $\frac{B D}{D C}=\frac{C E}{E A}=\frac{A F}{F B}=2$. Find the ratio of the areas of triangles $D E F$ and $A B C$.

Solution to Problem 70
71. Consider the equilateral triangle $A B C$ and the disk $\left[C\left(O, \frac{a}{3}\right)\right]$, where O is the orthocenter of the triangle and $a=\|A B\|$. Determine the area $[A B C]-$ $\left[C\left(0, \frac{a}{3}\right)\right]$.
72. Show that in any triangle $A B C$ we have:
a. $1+\cos A \cos (B-C)=\frac{b^{2}+c^{2}}{4 R^{2}}$;
b. $\left(b^{2}+c^{2}=a^{2}\right) \tan A=4 S$;
c. $\frac{b+c}{2 c \cos \frac{A}{2}}=\frac{\sin \left(\frac{A}{2}+C\right)}{\sin (A+B)^{\prime}}$;
d. $p=r\left(\cot \frac{A}{2}+\cot \frac{B}{2}+\cot C 2\right)$;
e. $\cot \frac{A}{2}+\cot \frac{B}{2}+\cot \frac{C}{2}=\frac{p}{r}$.
73. If H is the orthocenter of triangle $A B C$, show that:
a. $\|A H\|=2 R \cos A$;
b. $a\|A H\|+b\|B H\|+c\|C H\|=4 S$.
74. If O is the orthocenter of the circumscribed circle of triangle $A B C$ and I is the center of the inscribed circle, show that $\|O I\|^{2}=R(R-2 r)$.

Solution to Problem 74
75. Show that in any triangle $A B C$ we have: $\cos ^{2} \frac{B-C}{2} \geq \frac{2 r}{R}$.

Solution to Problem 75
76. Find $z^{n}+\frac{1}{z^{n}}$ knowing that $z+\frac{1}{z}=2 \sin \alpha$.

Solution to Problem 76
77. Solve the equation: $(z+1)^{n}-(z-1)^{n}=0$.

Solution to Problem 77
78. Prove that if $z<\frac{1}{2}$ then $\left|(1+i) z^{3}+i z\right| \leq \frac{3}{4}$.
79. One gives the lines d and d^{\prime}. Show that through each point in the space passes a perpendicular line to d and d^{\prime}.

Solution to Problem 79
80. There are given the lines d and d^{\prime}, which are not in the same plane, and the points $A \in d, B \in d^{\prime}$. Find the locus of points M for which $\operatorname{pr}_{d} M=A$ and $\mathrm{pr}_{d^{\prime}} M=B$.

Solution to Problem 80
81. Find the locus of the points inside a trihedral angle $\widehat{a b c}$ equally distant from the edges of a, b, c.

Solution to Problem 81
82. Construct a line which intersects two given lines and which is perpendicular to another given line.

Solution to Problem 82
83. One gives the points A and B located on the same side of a plane; find in this plane the point for which the sum of its distances to A and B is minimal.

Solution to Problem 83
84. Through a line draw a plane onto which the projections of two lines to be parallel.

Solution to Problem 84
85. Consider a tetrahedron $[A B C D]$ and centroids L, M, N of triangles $B C D, C A D, A B D$.
a. Show that $(A B C) \|(L M N)$;
b. Find the ratio $\frac{\sigma[A B C]}{\sigma[L M N]}$.
86. Consider a cube $\left[A B C D A^{\prime} B^{\prime} C^{\prime} D^{\prime}\right]$. The point A is projected onto $A^{\prime} B, A^{\prime} C, A^{\prime} D$ respectively in A_{1}, A_{2}, A_{3}. Show that:
a. $A^{\prime} C \perp\left(A_{1} A_{2} A_{3}\right)$;
b. $A A_{1} \perp A_{1} A_{2}, A A_{3} \perp A_{3} A_{2}$;
c. $A A_{1} A_{2} A_{3}$ is an inscribable quadrilateral.

Solution to Problem 86
87. Consider the right triangles $B A C$ and $A B D(m(\widehat{B A C}))=m\left((\widehat{A B D})=90^{\circ}\right)$ located on perpendicular planes M and N, being midpoints of segments $[A B],[C D]$. Show that $M N \perp C D$.

Solution to Problem 87
88. Prove that the bisector half-plane of a dihedral angle inside a tetrahedron divides the opposite edge in proportional segments with the areas of the adjacent faces.

Solution to Problem 88
89. Let A be a vertex of a regular tetrahedron and P, Q two points on its surface. Show that $m(\widehat{P A Q}) \leq 60^{\circ}$.
90. Show that the sum of the measures of the dihedral angles of a tetrahedron is bigger than 360°.

Solution to Problem 90
91. Consider lines d_{1}, d_{2} contained in a plane α and a line $A B$ which intersects plane α at point C. A variable line, included in α and passing through C all d_{1}, d_{2} respectively at $M N$. Find the locus of the intersection $A M \cap B N$. In which case is the locus an empty set?

Solution to Problem 91
92. A plane α intersects sides $[A B],[B C],[C D],[D A]$ of a tetrahedron $[A B C D]$ at points L, M, N, P. Prove that $\|A L\| \cdot\|B M\| \cdot\|C N\| \cdot\|P D\|=\|B L\| \cdot\|C M\| \cdot$ $\|D N\| \cdot\|A P\|$.
93. From a point A located outside a plane α, we draw the perpendicular line $A O, O \in \alpha$, and we take $B, C \in \alpha$. Let H, H_{1} be the orthocenters of triangles $A B C, O B C ; A D$ and $B E$ heights in triangle $A B C$; and $B E_{1}$ height in triangle $O B C$. Show that:
a. $H H_{1} \perp(A B C)$;
b. $\left\|\frac{O A}{A D}\right\| \cdot\left\|\frac{D H_{1}}{H_{1} B}\right\| \cdot\left\|\frac{B E}{E E_{1}}\right\|=1$.
94. Being given a tetrahedron $[A B C D]$ where $A B \perp C D$ and $A C \perp B D$, show that:
a. $\|A B\|^{2}+\|C D\|^{2}=\|B C\|^{2}+\|A D\|^{2}=\|C A\|^{2}+\|B D\|^{2}$;
b. The midpoints of the 6 edges are located on a sphere.

Solution to Problem 94
95. It is given a triangular prism $\left[A B C A^{\prime} B^{\prime} C^{\prime}\right]$ which has square lateral faces. Let M be a mobile point $\left[A B^{\prime}\right], N$ the projection of M onto $\left(B C C^{\prime}\right)$ and A " the midpoint of $\left[B^{\prime} C^{\prime \prime}\right]$. Show that $A^{\prime} N$ and $M A^{\prime \prime}$ intersect in a point P and find the locus of P.

Solution to Problem 95
96. We have the tetrahedron $[A B C D]$ and let G be the centroid of triangle $B C D$. Show that if $M \in A G$ then $v[M G B C]=v[M G C D]=v[M G D B]$.

Solution to Problem 96
97. Consider point $M \in$ the interior of a trirectangular tetrahedron with its vertex in O. Draw through M a plane which intersects the edges of the
respective tetrahedron in points A, B, C so that M is the orthocenter of $\triangle A B C$.
98. A pile of sand has as bases two rectangles located in parallel planes and trapezoid side faces. Find the volume of the pile, knowing the dimensions a^{\prime}, b^{\prime} of the small base, a, b of the larger base, and h the distance between the two bases.

Solution to Problem 98
99. A pyramid frustum is given, with its height h and the areas of the bases B and b. Unite any point σ of the larger base with the vertices $A, B, A^{\prime}, B^{\prime}$ of a side face. Show that $v\left[O A^{\prime} B^{\prime} A\right]=\frac{\sqrt{6}}{\sqrt{B}} v\left[O A B B^{\prime}\right]$.
100. A triangular prism is circumscribed to a circle of radius R. Find the area and the volume of the prism.

Solution to Problem 100
101. A right triangle, with its legs b and c and the hypotenuse a, revolves by turns around the hypotenuse and the two legs, $V_{1}, V_{2}, V_{3} ; S_{1}, S_{2}, S_{3}$ being the volumes, respectively the lateral areas of the three formed shapes, show that:
a. $\frac{1}{V_{1}^{2}}=\frac{1}{V_{2}^{2}}=\frac{1}{V_{3}^{2}}$;
b. $\frac{S_{2}}{S_{3}}+\frac{S_{3}}{S_{2}}=\frac{S_{2}+S_{3}}{S_{1}}$.
102. A factory chimney has the shape of a cone frustum and 10 m height, the bases of the cone frustum have external lengths of $3,14 m$ and $1,57 m$ and the wall is 18 cm thick. Calculate the volume of the chimney.
103. A regular pyramid, with its base a square and the angle from the peak of a side face of measure α is inscribed in a sphere of radius R. Find:
a. the volume of the inscribed pyramid;
b. the lateral and total area of the pyramid;
c. the value α when the height of the pyramid is equal to the radius of the sphere.

Solutions

Solution to Problem 66.

Let $A_{1}, A_{2} \ldots A_{n}$ the vertices of the convex polygon. Let's assume that it has four acute angles. The vertices of these angles form a convex quadrilateral $A_{l} A_{k} A_{m} A_{n}$. Due to the fact that the polygon is convex, the segments $\left|A_{l} A_{k}\right|,\left|A_{k} A_{m}\right|,\left|A_{m} A_{n}\right|$, $\left|A_{n} A_{l}\right|$ are inside the initial polygon. We find that the angles of the quadrilateral are acute, which is absurd, because their sum is 360°.

Another solution: We assume that $A_{l} A_{k} A_{m} A_{n}$ is a convex polygon with all its angles acute \Rightarrow the sum of the external angles is bigger than 360°, which is absurd (the sum of the measures of the external angles of a convex polygon is 360°).

Solution to Problem 67.

Let $\left|A A^{\prime}\right|$ be the median from A and $C Q \perp A A^{\prime}, B P \perp A A^{\prime}$.
$\triangle B A^{\prime} P \equiv C A^{\prime} Q$ because:

$$
\left\{\begin{array}{cc}
\widehat{P B C} \equiv \widehat{B C Q} & \text { alternate interior } \\
\widehat{P A^{\prime} B} \equiv \widehat{C A^{\prime} Q} & \text { vertical angles } \\
B A^{\prime} \equiv A^{\prime} C &
\end{array}\right.
$$

$\Rightarrow\|B P\|=\|Q C\|$ and by its construction $B P \perp A A^{\prime}, C Q \perp A A^{\prime}$.
The desired locus is median $\left|A A^{\prime}\right|$. Indeed, for any $M \in\left|A A^{\prime}\right|$ we have $\sigma[A B M]=$ $\sigma[A C M]$, because triangles $A B M$ and $A C M$ have a common side $|A M|$ and its corresponding height equal $\|B P\|=\|Q C\|$.

Vice-versa. If $\sigma[A B M]=\sigma\left[A C^{\prime} M\right]$, let's prove that $M \in\left|A A^{\prime}\right|$.
Indeed: $\sigma[A B M] \sigma[A C M] \Rightarrow d(B, A M)=d(C, A M)$, because $|A M|$ is a common side, $d(B, A M)=\|B P\|$ and $d(C, A M)=\|C Q\|$ and both are perpendicular to $A M \Rightarrow$ $P B Q C$ is a parallelogram, the points P, M, Q are collinear (P, Q the feet of the perpendicular lines from B and C to $A M$).

In parallelogram $P B Q C$ we have $|P Q|$ and $|B C|$ diagonals $\Rightarrow A M$ passes through the middle of $|B C|$, so $M \in\left|A A^{\prime}\right|$, the median from A.

Solution to Problem 68.

Let O be the midpoint of diagonal $|A C| \Rightarrow\|A O\|=\|O C\|$.
$\sigma[A O D]=\sigma[C O D]$ (1)
Because $\left\{\begin{array}{c}\|A O\|=\|O C\| \\ \left\|O D^{\prime}\right\| \text { common height }\end{array}\right.$
$\sigma[A O B]=\sigma[C O B](2)$
the same reasons; we add up (1) and (2) \Rightarrow
$\sigma[A D O B]=\sigma[D C B O]$ (3),
so O is a point of the desired locus.
We construct through O a parallel to $B D$ until it cuts sides $|B C|$ and $|D C|$ at P respectively Q. The desired locus is $|P Q|$.

Indeed $(\forall) M \in|P Q|$ we have:

$$
\sigma[M B A D]=\sigma[A B D]+\sigma[B D M]=\sigma[A B D]+\sigma[B O D]=\sigma[A B O D]
$$

$\sigma[B D O]=\sigma[B D M]$ because M and Q belongs to a parallel to $B D$.

```
    \(\sigma[B C D M]=\sigma[P Q C]+\sigma[P M B]+\sigma[M Q D]=\sigma[P Q C]+\sigma[P B O]+\sigma[O M B]+\)
\(\sigma[M Q D] \doteq\)
    \(\sigma[O M B]=\sigma[O M D]\)
    \(\stackrel{*}{=} \sigma[P Q C]+\sigma[P B O]+\sigma[O M D]+\sigma[M Q D]=\sigma[O B C D]\)
```

$B, D \in$ a parallel to $O M$.

$$
\sigma[M B A D]=\sigma[A B O D]
$$

$\left.\begin{array}{c}\text { So and } \sigma[B C D M]=\sigma[O B C D] \\ \text { and from (3) }\end{array}\right\} \Rightarrow \sigma[M B A D]=\sigma[B C D M]$.
Vice-versa: If $\sigma[M B C D]=\sigma[M B A D]$, let's prove that $M \in$ parallel line through O to $B D$. Indeed:
$\left.\begin{array}{c}\sigma[B C D M]=\sigma[M B A D] \\ \text { and because } \sigma[B C D M]+\sigma[M B A D]=\sigma[A B C D]\end{array}\right\} \Rightarrow \sigma[M B C D]=\sigma[M B A D]=\frac{\sigma[A B C D]}{2}(2)$.
So, from (1) and (2) $\Rightarrow \sigma[M B A D]=\sigma[A B O D] \Rightarrow \sigma[A B D]+\sigma[B D O]=\sigma[A B D]+$ $\sigma[B D M] \Rightarrow \sigma[B D M] \Rightarrow M$ and O are on a parallel to $B D$.

Solution to Problem 69.

We write $\|E A\|=a$ and $\|E D\|=b,\|E M\|=x$.

$$
\begin{align*}
& \frac{\sigma[E M N]}{\sigma[E D C]}=\frac{x^{2}}{b^{2}} \Rightarrow \frac{[M N C D]}{\sigma[E D C]}=\frac{x^{2}-b^{2}}{b^{2}} \tag{2}\\
& \frac{\sigma[E A B]}{\sigma[E D C]}=\frac{a^{2}}{b^{2}} \Rightarrow \frac{[A B C D]}{\sigma[E D C]}=\frac{a^{2}-b^{2}}{b^{2}} \tag{3}
\end{align*}
$$

We subtract (2) from (3)

$$
\begin{array}{r}
\Rightarrow \frac{\sigma[A B C D]-\sigma[M N C D]}{\sigma[E C D]}= \\
=\frac{a^{2}-x^{2}}{b^{2}} \Rightarrow \frac{\sigma[A B N M]}{\sigma[E C D]}=\frac{a^{2}-x^{2}}{b^{2}} \tag{4}
\end{array}
$$

We subtract (2) from (4)
$\left.\begin{array}{l}\Rightarrow \frac{\sigma[A B N M]-\sigma[M N C D]}{\sigma[E D C]}=\frac{a^{2}-x^{2}-x^{2}-b^{2}}{b^{2}} \\ \text { from the hypothesis } \sigma[A B N M]-\sigma[M N C D]=k\end{array}\right\} \Rightarrow \frac{k}{\sigma[E D C]}=$

$$
=\frac{a^{2}+b^{2}-2 x^{2}}{b^{2}} \Rightarrow \Rightarrow \frac{k b^{2}}{\sigma[E C D]}-a^{2}-b^{2}=-2 x^{2} \Rightarrow x^{2}=\frac{\left(a^{2}+b^{2}\right) \sigma[E C D]-k b^{2}}{\sigma[E C D]}
$$

From the relation (3), by writing $[A B C D]-S \Rightarrow \sigma[E C D]=\frac{S b^{2}}{a^{2}-b^{2}}$.
We substitute this in the relation of x^{2} and we obtain:

$$
\begin{aligned}
& x^{2}=a^{2}+b^{2}-k b^{2} \frac{a^{2}-b^{2}}{S b^{2}} \Rightarrow x^{2}=\frac{\left(a^{2}+b^{2}\right) s-k\left(a^{2}-b^{2}\right)}{S} \Rightarrow \\
& \left.\Rightarrow \begin{array}{l}
x^{2}=\frac{(s-k) a^{2}+(s+k) b^{2}}{S} \\
x=\| E M
\end{array}\right\} \Rightarrow\|E M\|=\sqrt{\frac{(s-k) a^{2}+(s+k) b^{2}}{S}}
\end{aligned}
$$

and taking into consideration that $\|E M\|=\|D M\|+b$, we have

$$
\|D M\|=\sqrt{\frac{(s-k) a^{2}+(s+k) b^{2}}{S}}
$$

so we have the position of point M on the segment $|D A|$ (but it was sufficient to find the distance $\|E M\|)$.

Solution to Problem 70.

We remark from its construction that $E Q\|A B\| R D$, more than that, they are equidistant parallel lines. Similarly, $E Q, P D, A C$ and $A B, E Q, R D$ are also equidistant parallel lines.

$$
\begin{aligned}
& (\|A P\|=\|P F\|=\|F B\| ;\|A E\|=\|E R\|=\|R C\|, \\
& \|B Q\|=\|Q D\|=\|D C\|) .
\end{aligned}
$$

We write $\sigma[B F Q]=S$.
Based on the following properties:

- two triangles have equal areas if they have equal bases and the same height;
- two triangles have equal areas if they have the same base and the third peak on a parallel line to the base,
we have:

$$
\left.\begin{array}{l}
\sigma[A B C]=\sigma[A F E]+\sigma[F E R]+\sigma[F B O]+\sigma[F R D]+\sigma[D R C]=9 S \\
\sigma[F E L]=\sigma[F E R]-\sigma[E L R]=2 S-\sigma[E L R] \\
\sigma[F D L]=\sigma[F R D]-\sigma[R L D]=2 S-\sigma[R L D]
\end{array}\right\}
$$

by addition
$\Rightarrow \sigma[D E F]=4 S-(\sigma[E L R]+\sigma[R L D])=4 S-S=3 S$.
So $\frac{\sigma[D E F]}{\sigma[A B C]}=\frac{3 S}{9 S}=\frac{1}{3}$.
(If necessary the areas S can be arranged).

Solution to Problem 71.

$\|O B\|=\frac{a \sqrt{3}}{6} \quad\left(B B^{\prime}\right.$ median $)$
In $\triangle M O B^{\prime}$:

$$
\cos \widehat{M O B^{\prime}}=\frac{\frac{a \sqrt{3}}{6}}{\frac{6}{3}}=\frac{\sqrt{3}}{2} \Rightarrow \mu\left(\widehat{M O B^{\prime}}=\frac{\pi}{6} .\right.
$$

So $(\widehat{M O N})=\frac{\pi}{3}$.
We mark with Σ the disk surface bordered by a side of the triangle outside the triangle.
$\sigma[\Sigma]=\sigma[$ circle sector $M O N]-\sigma[M O N]$

$$
=\frac{\pi a^{2}}{9 \cdot 6}-\frac{a^{2}}{9 \cdot 2} \sin 60^{0}=\frac{\pi a^{2}}{9 \cdot 6}-\frac{a^{2} \sqrt{3}}{4 \cdot 9}=\frac{a^{2}}{18} \cdot\left(\frac{\pi}{3}-\frac{\sqrt{3}}{2}\right) .
$$

If through the disk area we subtract three times $\sigma[\Sigma]$, we will find the area of the disk fraction from the interior of $A B C$. So the area of the disk surface inside $A B C$ is:

$$
\frac{\pi a^{2}}{9}-3 \frac{a^{2}}{18}\left(\frac{\pi}{3}-\frac{\sqrt{3}}{2}\right)=\frac{\pi a^{2}}{9}-\frac{\pi a^{2}}{18}+\frac{a^{2} \sqrt{3}}{12}=\frac{\pi a^{2}}{18}+\frac{a^{2} \sqrt{3}}{12}
$$

The desired area is obtained by subtracting the calculated area form $\sigma[A B C]$.
So:

$$
\frac{a^{2} \sqrt{3}}{4}-\frac{\pi a^{2}}{18}-\frac{2 a^{2} \sqrt{3}}{12}=\frac{2 a^{2} \sqrt{3}}{12}-\frac{\pi a^{2}}{18}=\frac{a^{2} \sqrt{3}}{6}-\frac{\pi a^{2}}{18}=\frac{a^{2}}{18}(3 \sqrt{3}-\pi) .
$$

Solution to Problem 72.
a. $1+\cos A \cdot \cos (B-C)=\frac{b^{2}+c^{2}}{4 R^{2}}$

$$
\begin{aligned}
& 1+\cos A \cos (B-C)=1+\cos [\pi-(C+B)] \cos (B-C)=1-\cos (B+C) \cdot \cos (B-C)= \\
& 1-\frac{1}{2}[\cos 2 B+\cos 2 C]=1-\frac{1}{2}\left[2 \cos ^{2} B-1+2 \cos ^{2} C-1\right]=2-\cos ^{2} B-\cos ^{2} C=\sin ^{2} B+ \\
& +\sin ^{2} C^{\operatorname{din} \underline{T}}=\sin \frac{b^{2}}{4 R^{2}}+\frac{C^{2}}{4 R^{2}}=\frac{b^{2}+c^{2}}{4 R^{2}} .
\end{aligned}
$$

b. We prove that $\tan A=\frac{4 S}{b^{2}+c^{2}-a^{2}}$.

$$
\begin{aligned}
& \operatorname{tg} A=\frac{\sin A}{\cos A}=\frac{2 \sin \frac{A}{2} \cos \frac{A}{2}}{2 \cos ^{2} \frac{A}{2}-1}=\frac{2 \sqrt{\frac{p(p-a)(p-b)(p-c)}{(b c)^{2}}}}{2 \frac{p(p-a)}{b c}-1}=\frac{2 S}{b c\left(\frac{2 p(p-a)-b c}{b c}\right)}= \\
& =\frac{2 S}{b c\left(\frac{2 p(p-a)-b c}{b c}\right)}=\frac{2 S}{2 \frac{a+b+c}{2} \cdot \frac{b+c-a}{2}-b c}= \\
& \frac{4 S}{a b+a c-a^{2}+b^{2}+b c-b a+b c+c^{2}-a c-2 b c}=\frac{4 S}{b^{2}+c^{2}-a^{2}} .
\end{aligned}
$$

$$
\text { c) } \frac{b+c}{2 c \cos \frac{A}{2}}=\frac{\sin \left(\frac{A}{2}+C\right)}{\sin (A+B)} \stackrel{A+B=-c}{\Longrightarrow} \frac{b+c}{2 c \cos \frac{A}{2}}=\frac{\sin \left(\frac{A}{2}+C\right)}{\sin C} \Longrightarrow
$$

$$
\Longrightarrow \frac{b+c}{2 c \cos \frac{A}{2}}=\frac{\sin A 2 \cos C+\sin C \cos \frac{A}{2}}{\sin C} \Longrightarrow(b+c) \sin C=2 C \sin \frac{A}{2} \cos \frac{A}{2} \cos C+
$$

$$
2 c \sin C \cos ^{2} \frac{A}{2} \Longrightarrow(b+c) \sin C=c \sin A \cos C+2 c \sin C \cos ^{2} \frac{A}{2}
$$

$$
\begin{gathered}
\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}=2 R \Longrightarrow(b+c) \frac{a c}{2 k} \cos C=\frac{2 c^{2} \cos ^{2} \frac{A}{2}}{2 R} \Longrightarrow \\
\Longrightarrow b+c=a \cos C+2 \cos ^{2} \frac{A}{2} \Longrightarrow b+c=a \frac{a^{2}+b^{2}-c^{2}}{2 a b}+2 c \frac{p(p-a)}{b c} \Longrightarrow b+c= \\
=\frac{a^{2}+b^{2}-c^{2}}{2 b}+\frac{2 p(p-a)}{b} \Longrightarrow 2 b^{2}+2 b c=a^{2}+b^{2}-c^{2}+(a+b+c)(c+b-a) \Longrightarrow \\
\Longrightarrow \quad \text { All terms reduce. }
\end{gathered}
$$

d. Let's prove that $\cot \frac{A}{2}+\cot \frac{B}{2}+\cot C 2=\frac{p}{r}$.

Indeed

$$
\begin{aligned}
& \operatorname{ctg} \frac{A}{2}+\operatorname{ctg} \frac{B}{2}+\operatorname{ctg} \frac{C}{2}=\operatorname{ctg} \frac{A}{2} \cdot \operatorname{ctg} \frac{B}{2} \cdot \operatorname{ctg} \frac{C}{2}=\sqrt{\frac{p(p-a)}{(p-b)(p-c)}}
\end{aligned} .
$$

We now have to prove that:

$$
\begin{gathered}
\operatorname{ctg} \frac{A}{2}+\operatorname{ctg} \frac{B}{2}+\operatorname{ctg} \frac{C}{2}=\operatorname{ctg} \frac{A}{2} \cdot \operatorname{ctg} \frac{B}{2} \cdot \operatorname{ctg} \frac{C}{2} \Longleftrightarrow \\
\frac{1}{\operatorname{tg} \frac{A}{2}}+\frac{1}{\operatorname{tg} \frac{B}{2}}+\operatorname{tg} \frac{A+B}{2}=\frac{1}{\operatorname{tg} \frac{A}{2} \cdot \operatorname{tg} \frac{B}{2}} \cdot \operatorname{tg} \frac{A+B}{2} \Leftrightarrow \frac{\operatorname{tg} \frac{A}{2}+\operatorname{tg} \frac{B}{2}}{\operatorname{tg} \frac{A}{2} \cdot \operatorname{tg} \frac{B}{2}}+ \\
+\frac{\operatorname{tg} \frac{A}{2}+\operatorname{tg} \frac{B}{2}}{1-\operatorname{tg} \frac{A}{2} \cdot \operatorname{tg} \frac{B}{2}}=\frac{1}{\operatorname{tg} \frac{A}{2} \cdot \operatorname{tg} \frac{B}{2}} \cdot \frac{\operatorname{tg} \frac{A}{2}+\operatorname{tg} \frac{B}{2}}{1-\operatorname{tg} \frac{A}{2} \cdot \operatorname{tg} \frac{B}{2}} \Longleftrightarrow \frac{1}{\operatorname{tg} \frac{A}{2} \cdot \operatorname{tg} \frac{B}{2}}+\frac{1}{1-\operatorname{tg} \frac{A}{2} \cdot \operatorname{tg} \frac{B}{2}}= \\
\frac{1}{\operatorname{tg} \frac{A}{2} \cdot \operatorname{tg} \frac{B}{2} \cdot\left(1-\operatorname{tg} \frac{A}{2} \cdot \operatorname{tg} \frac{B}{2}\right)} \Longleftrightarrow \frac{1-\operatorname{tg} \frac{A}{2} \cdot \operatorname{tg} \frac{B}{2}+\operatorname{tg} \frac{A}{2} \cdot \operatorname{tg} \frac{B}{2}}{\operatorname{tg} \frac{A}{2} \cdot \operatorname{tg} \frac{B}{2} \cdot\left(1-\operatorname{tg} \frac{A}{2} \cdot \operatorname{tg} \frac{B}{2}\right)}= \\
=\frac{1}{\operatorname{tg} \frac{A}{2} \cdot \operatorname{tg} \frac{B}{2} \cdot\left(1-\operatorname{tg} \frac{A}{2} \cdot \operatorname{tg} \frac{B}{2}\right)} \quad(a)
\end{gathered}
$$

q.e.d.

Solution to Problem 73.

a. In triangle $A B B^{\prime}:\left\|A B^{\prime}\right\|=c \cos A$

In triangle $A H B^{\prime}$:

$$
\begin{aligned}
& \quad \cos \widehat{H A B^{\prime}}=\left\|A B^{\prime}\right\|:\|A H\| \Rightarrow\|A H\|= \\
& =\frac{\| A B^{\prime}}{\cos \widehat{H A B^{\prime}}}=\frac{\left\|A B^{\prime}\right\|}{\cos \left(\frac{\pi}{2}-c\right)}=\frac{c \cos A}{\sin C} \tau \cdot \sin \frac{c \cos A}{\frac{c}{2 R}}= \\
& =2 R \cos A \Rightarrow\|A H\|=2 R \cos A .
\end{aligned}
$$

b) $a\|A H\|+b\|B H\|+c\|C H\|=2 R(a \cos A+b \cos B+c \cos C) \stackrel{T \cdot \sin }{=} 4 R^{2}(\sin A \cos A+$
$+\sin B \cos B+\sin C \cos C)=2 R^{2}(\sin 2 A+\sin 2 B+\sin 2 C)$.
We used:

$$
\sin 2 A+\sin 2 B+\sin 2 C=4 \sin A \sin B \sin C
$$

$\sin 2 A+\sin 2 B+\sin 2 C=\underbrace{2 \sin (A+B)}_{\sin C} \cos (A-B)+2 \sin C \cos C=$
$=2 \sin C[\cos (A-B)-\cos (A+B)]=2 \sin C \cdot 2 \sin A \sin B=4 \sin A \sin B \sin C$.

Solution to Problem 74.

Using the power of point I in relation to circle $C(O, R)$

$$
\begin{aligned}
& \Rightarrow\|I G\| \cdot\|I F\|=\|A I\| \cdot\|I D\| \quad \text { (1) } \\
& \quad\|I G\| \cdot\|I F\|=(R-\|O I\|)(\|R+\| O I \|) \Rightarrow \\
& \|I G\| \cdot\|I F\|=R^{2}-\|O I\|^{2} .
\end{aligned}
$$

Taking into consideration (1), we have $\|I A\| \cdot\|I D\|=R^{2}-\|O I\|^{2}$.
We now find the distances ||IA || and ||ID\|
In triangle $\triangle I A P$,

$$
\begin{equation*}
\| I A=\frac{r}{\sin \frac{A}{2}} \tag{2}
\end{equation*}
$$

We also find $\|I D\|: \mu(\widehat{B I D})=\mu(\widehat{D B} I)$ have the same measure, more exactly:

$$
\begin{align*}
& \mu(\widehat{B I D})=\frac{m(\widehat{B D})+m(\widehat{A Q})}{2}=\frac{m(\widehat{A})+m(\widehat{B})}{2} \\
& m\left(\frac{\widehat{D C Q}}{2}\right)=m(\widehat{D B} I) \text { Deci }\|I D\|=\|B D\| . \tag{3}
\end{align*}
$$

In $\triangle A B D$ according to the law of sine, we have:

$$
\frac{\|B D\|}{\sin \frac{A}{2}}=2 R \Rightarrow\|B D\|=2 R \sin \frac{A}{2} .
$$

So taking into consideration (3),

$$
\begin{equation*}
\|I D\|=2 R \sin \frac{A}{2} . \tag{4}
\end{equation*}
$$

Returning to the relation $\|I A\| \cdot\|I D\|=R^{2}-\|O I\|^{2}$. with (2) and (4) we have:

$$
\begin{gathered}
\frac{r}{\sin \frac{A}{2}} \cdot 2 R \sin \frac{A}{2}= \\
R^{2}-\|I O\|^{2} \Rightarrow\|I O\|^{2}=R^{2}-2 R r \Rightarrow\|I O\|^{2}=R(R-2 r) .
\end{gathered}
$$

Solution to Problem 75.

$$
\begin{aligned}
& r=4 R \sin \frac{A}{2} \sin \frac{B}{2} \sin \frac{C}{2} \Rightarrow r=2 R \sin \frac{A}{2}(\cos \frac{B-C}{2}-\underbrace{\cos \frac{B+C}{2}}_{\sin \frac{A}{2}}) \Rightarrow \\
& r=2 R \sin \frac{A}{2} \cos \frac{B-C}{2}-2 R \sin ^{2} \frac{A}{2} \Rightarrow 2 R \sin ^{2} \frac{A}{2}-2 R \sin \frac{B}{2} \cdot \cos \frac{B-C}{2}+r \geq 0 \Rightarrow \\
& \Rightarrow \Delta \geq 0 \Rightarrow 4 R^{2} \cos ^{2} \frac{B-C}{2}-8 R r \geq 0 \Rightarrow R^{2} \cos ^{2} \frac{B-C}{2}-2 R r \geq 0 \Rightarrow \cos ^{2} \frac{B-C}{2} \geq \frac{2 r}{R}
\end{aligned}
$$

Note. We will have to show that

$$
\sin \frac{A}{2} \sin \frac{B}{2} \sin \frac{C}{2}=\frac{r}{4 R} .
$$

Indeed:

$$
\begin{array}{r}
\sin \frac{A}{2} \sin \frac{B}{2} \sin \frac{C}{2}=\sqrt{\frac{(p-b)(p-c)}{b c} \cdot \frac{(p-a)(p-c)}{a c} \cdot \frac{(p-a)(p-b)}{a b}}= \\
=\frac{p(p-a)(p-b)(p-c)}{p a b c}=\frac{S^{2}}{p 4 R S}=\frac{p r}{p 4 R}=\frac{r}{4 R}
\end{array}
$$

(by Heron's formula).

Solution to Problem 76.

$$
\begin{aligned}
& z+\frac{1}{z}=2 \sin a \Rightarrow z^{2}-2(\sin a) z+1=0 \Rightarrow z_{1,2}=\frac{\sin \pm \sqrt{\sin ^{2} a-1}}{1} \\
& \Rightarrow z_{1,2}=\sin a \pm \sqrt{-\cos ^{2} a} \Rightarrow z_{1,2}=\sin a \pm i \cos a
\end{aligned}
$$

So:

$$
\begin{aligned}
& z_{1}=\sin a+i \cos a \\
& z_{2}=\sin a-i \cos a=\overline{z_{1}}
\end{aligned}
$$

We calculate for z_{1} and z_{2} :

$$
z_{1}^{n}+\frac{1}{z_{1}^{n}}=z_{1}^{n}+\left(\frac{1}{z_{1}}\right)^{n}=z_{1}^{n}+z_{2}^{n}, \quad z^{n}+\frac{1}{z^{n}}
$$

so $z^{n}+\frac{1}{z^{n}}$ takes the same value for z_{1} and for z_{2} and it is enough if we calculate it for z_{1}.

$$
\begin{aligned}
& z_{1}^{n}+\frac{1}{z_{1}^{n}}=(\sin a+i \cos a)^{n}+\frac{1}{(\sin a+i \cos a)}=\left[\cos \left(\frac{\pi}{2}-a\right)+i \sin \left(\frac{\pi}{2}-a\right)\right]+ \\
& +\frac{1}{\left[\cos \left(\frac{\pi}{2}-a\right)+i \sin \left(\frac{\pi}{2}-a\right)\right]^{n}}=\cos \left[n\left(\frac{\pi}{2}-a\right)\right]+i \sin \left[n\left(\frac{\pi}{2}-a\right)\right]+ \\
& +\cos \left[n\left(\frac{\pi}{2}-a\right)\right]-i \sin \left[n\left(\frac{\pi}{2}-a\right)\right]=2 \cos \left[n\left(\frac{\pi}{2}-a\right)\right] \stackrel{\cos . p a r}{=} 2 \cos \left(n a-\frac{a \pi}{2}\right) .
\end{aligned}
$$

Analogously:

$$
z_{2}^{n}+\bar{x}_{2}^{n}=2 \cos \left[n\left(a-\frac{\pi}{2}\right)\right] .
$$

Solution to Problem 77.

$$
\begin{aligned}
& (z+1)^{n}-(z-1)^{n}=a \Rightarrow(z+1)^{n}=(z-1)^{n} \Rightarrow\left(\frac{z+1}{z-1}\right)^{n}=1 \Rightarrow \\
& \Rightarrow \frac{z+1}{z-1}=\sqrt[n]{1} \Rightarrow \frac{z+1}{z-1}=\cos \frac{2 k \pi}{n}+i \sin \frac{2 k \pi}{n} \Rightarrow \\
& \Rightarrow z+1=\left(\cos \frac{2 k \pi}{n}+i \sin \frac{2 k \pi}{n}\right) z-\left(\cos \frac{2 k \pi}{n}+i \sin \frac{2 k \pi}{n}\right) \Rightarrow \\
& \Rightarrow\left(\cos \frac{2 k \pi}{n}+i \sin \frac{2 k \pi}{n}-1\right) z=\left(1+\cos \frac{2 k \pi}{n}+i \sin \frac{2 k \pi}{n}\right) \Rightarrow \\
& \Rightarrow\left(-2 \sin ^{2} \frac{k \pi}{n}+2 i \sin \frac{k \pi}{n} \cos \frac{k \pi}{n}\right) z=2 \cos ^{2} \frac{k \pi}{n}+2 i \sin \frac{k \pi}{n} \cos \frac{k \pi}{n} \Rightarrow \\
& \Rightarrow z=\frac{2 \cos \frac{k \pi}{n}\left(\cos \frac{k \pi}{n}+i \sin \frac{k \pi}{n}\right)}{-2 \sin ^{2} \frac{k \pi}{n}+2 i \sin \frac{k \pi}{n} \cos \frac{k \pi}{n}}=
\end{aligned}
$$

(we substitute -1 with i^{2} at denominator)

$$
=\frac{2 \cos \frac{k \pi}{n}\left(\cos \frac{k \pi}{n}+i \sin \frac{k \pi}{n}\right)}{2 i \sin \frac{k \pi}{n}\left(\cos \frac{k \pi}{n}+i \sin \frac{k \pi}{n}\right)}=\frac{\cos k \pi}{i \sin \frac{k \pi}{n}}=\frac{i}{i^{2}} \operatorname{ctg} \frac{k \pi}{n}=-i \operatorname{ctg} \frac{k \pi}{n} .
$$

Solution to Problem 78.

$$
\begin{aligned}
& \left|(1+i) z^{3}+i z\right| \leq \quad:(1+i) z^{3}|+|i z| \quad=\quad| 1+i|\cdot| z^{3}|+|i| \cdot| z \mid= \\
& \stackrel{\substack{|1+i|=2 \\
|=|=1}}{=} 2\left|z^{3}\right|+|z| \stackrel{i p .}{\leq} 2 \cdot \frac{1}{8}+\frac{1}{2}=\frac{1}{4}+\frac{1}{2}=\frac{3}{4} \Rightarrow\left|(1+i) z^{3}+i z\right| \leq \frac{3}{4} \text {. }
\end{aligned}
$$

Solution to Problem 79.

We construct $\alpha \perp d$ and $A \in \alpha$. The so constructed plane is unique. Similarly we construct $\beta \perp d^{\prime}$ and $A \perp \beta, \alpha \cap \beta=a \ni A$.

From $\left.\begin{array}{c}\alpha \perp d \Rightarrow d \perp a \\ \beta \perp d^{\prime} \Rightarrow d^{\prime} \perp a\end{array}\right\} \Rightarrow a$ is a line which passes through A and is perpendicular to d and d^{\prime}. The line a is unique, because α and β constructed as above are unique.

Solution to Problem 80.

We construct plane α such that $A \in \alpha$ and $d \perp \alpha$. We construct plane β such that $B \in \beta$ and $d^{\prime} \perp \beta$.

The so constructed planes α and β are unique.
Let $a=\alpha \cap \beta \Rightarrow a \subset \alpha$ so $(\forall) M \in a$ has the property $\operatorname{pr}_{d} M=A$.
$\alpha \subset \beta \Rightarrow(\forall) M \in a$ has the property $p r_{d^{\prime}} M=B$.

Vice-versa. If there is a point M in space such that $\mathrm{pr}_{d} M=A$ and $p r_{d^{\prime}} M=B \Rightarrow$ $M \in a$ and $M \in \beta \Rightarrow M \in \alpha \cap \beta \Rightarrow M \in a$ (α and β previously constructed).

Solution to Problem 81.

Let $A \in a, B \in b, C \in c$ such that $\|O A\|=\|O B\|=\|O C\|$. Triangles $O A B, O B C, O A C$ are isosceles. The mediator planes of segments $\|A B\|,\|A C\|,\|B C\|$ pass through O and O^{\prime} (the center of the circumscribed circle of triangle $A B C$). Ray $\left|O O^{\prime}\right|$ is the desired locus.

Indeed $(\forall) M \in\left|O O^{\prime}\right| \Rightarrow M \in$ mediator plane of segments $|A B|,|A C|$ and $|B C| \Rightarrow$ M is equally distant from a, b and c.

Vice-versa: $(\forall) M$ with the property: $d(M, a)=d(M, b)=d(M, c) \Rightarrow M \in$ mediator plan, mediator planes of segments $|A B|,|A C|$ and $|B C| \Rightarrow M \in$ the intersection of these planes $\Rightarrow M \in\left|O O^{\prime}\right|$.

Solution to Problem 82.

Let a, b, c be the 3 lines in space.
I. We assume $a \pm c$ and $b \pm c$. Let α be a plane such that:

$$
\begin{aligned}
& \alpha \cap c=\{C\} \\
& \alpha \cap a=\{A\} \text { si } \alpha \perp c \\
& \alpha \cap b=\{B\}
\end{aligned}
$$

The construction is possible because $\pm c$ and $b \pm c$. Line $A B$ meets a on p and it is perpendicular to c, because $A B \subset \alpha$ and $c \perp \alpha$.
II. If $a \perp c$ or $b \perp c$, the construction is not always possible, only if plane $p(a, b)$ is perpendicular to c.

III. If $a \perp c$ and $b \pm c$, we construct plane $a \perp c$ so that $a \subset \alpha$ and $b \subset \alpha \neq \emptyset$. Any point on line a connected with point $b \cap \alpha$ is a desired line.

Solution to Problem 83.

We construct A^{\prime} the symmetrical point of A in relation to $\alpha \cdot A^{\prime}$ and B are on different half-spaces, $\alpha \cap\left|A^{\prime} B\right|=0$.

O is the desired point, because $\|O A\|+\|O B\|=\left\|O A^{\prime}\right\|+\|O B\|$ is minimal when $O \in\left|A^{\prime} B\right|$, thus the desired point is $O=\left|A^{\prime} B\right| \cap \alpha$.

Solution to Problem 84.

Let a, b, d be the 3 given lines and through d we construct a plane in which a and b to be projected after parallel lines.

Let A be an arbitrary point on a. Through A we construct line $b^{\prime} \| b$. It results from the figure $b \| \alpha, \alpha=p\left(a, b^{\prime}\right)$.
Let β such that $d \subset \beta$ and $\beta \perp \alpha$.
Lines a and b^{\prime} are projected onto β after the same line c. Line b is projected onto β after b_{1} and $b_{1} \| c$.

If $b_{1} \sharp c$,
$b_{1} \forall c \Rightarrow s \cap b_{1}=\{N\} \Rightarrow \alpha \cap p\left(b, b_{1}\right) \neq \varnothing \Rightarrow b \cap \alpha \neq \varnothing$,
absurd because $b \| \alpha\left(b \| b^{\prime}\right)$.

Solution to Problem 85.

M is the centroid in $\triangle A C D \Rightarrow$

$$
\begin{equation*}
\Rightarrow \frac{|M D|}{|M P|}=2 \tag{1}
\end{equation*}
$$

N is the centroid in $\triangle A B D \Rightarrow$

$$
\begin{equation*}
\Rightarrow \frac{|N D|}{|N Q|}=2 \tag{2}
\end{equation*}
$$

L is the centroid in $\triangle B C D \Rightarrow$

$$
\begin{equation*}
\Rightarrow \frac{|L D|}{|L S|}=2 \tag{3}
\end{equation*}
$$

From 1 and 2,
and from 2 and 3

$$
\left.\begin{array}{l}
\Rightarrow M N \| P Q \\
\Rightarrow M L \| Q S
\end{array}\right\} \Rightarrow(L M N)\|(P Q S)=(A B C) \Rightarrow(L M N)\|(A B C) .
$$

because:

$$
\sigma[A Q P]=\sigma[P Q S]=\sigma[Q B S]=\sigma[P S C]=s
$$

So

$$
\frac{\sigma[A B C]}{\sigma[L M N]}=\frac{4}{1} \cdot \frac{9}{4}=9
$$

Solution to Problem 86.

$B D \perp\left(A A^{\prime} C\right)$ from the hypothesis $A B C D A^{\prime} B^{\prime} C^{\prime} D^{\prime}$ cube (1).
A_{1} midpoint of segment $\left|B A^{\prime}\right|$
$\left.\begin{array}{c}\left(A B A^{\prime}\right) \text { isosceles and } A A_{1} \perp B A^{\prime} \\ A_{3} \text { midpoint of }\left|A^{\prime} D\right|\end{array}\right\}\left|A_{1} A_{3}\right|$ mid-side in $\triangle A^{\prime} B D \Rightarrow A_{1} A_{3} \| B D$ (2)
From (1) and (2) $\Rightarrow A_{1} A_{3} \|\left(A A^{\prime} C\right) \Rightarrow A^{\prime} C \perp A_{1} A_{3}$ (3)

From $\triangle A C A^{\prime}$:

$$
\left\|A A_{2}\right\|=\frac{\|A C\| \cdot\left\|A A^{\prime}\right\|}{\left\|A^{\prime} C\right\|}=\frac{a \sqrt{2 \cdot a}}{a \sqrt{3}}=\frac{a \sqrt{6}}{3} .
$$

From $\triangle A B A^{\prime}$:
$\left\|A A_{1}\right\|=\frac{a^{2}}{a \sqrt{2}}=\frac{a^{2} \sqrt{2}}{2} ;$
Similarly
$\left\|A A_{3}\right\|=\frac{a \sqrt{2}}{2} \|$.
In $\triangle A C A^{\prime}$:

$$
\left\|A A^{\prime}\right\|^{2}=\left\|A^{\prime} A_{2}\right\| \cdot\left\|A^{\prime} C\right\| \Rightarrow a^{2}=\left\|A^{\prime} A_{2}\right\| \cdot a \sqrt{3} \Rightarrow\left\|A^{\prime} A_{2}\right\|=\frac{a \sqrt{3}}{3}
$$

and

$$
\begin{aligned}
& \left\|A^{\prime} A_{1}\right\|=\left\|\frac{a \sqrt{2}}{2}\right\| . \\
& \left(\cos \alpha=\frac{a \sqrt{2}}{a \sqrt{3}}=\frac{\sqrt{2}}{\sqrt{3}}\left(\triangle A^{\prime} B C\right)\right) \\
& \left\|A_{1} A_{2}\right\|^{2}=\frac{a^{2}}{2}+\frac{a^{2}}{3}-2 \frac{a^{2}}{\sqrt{6}} \cdot \frac{\sqrt{2}}{\sqrt{3}}=\frac{5 a^{2}}{6}-\frac{2 a^{2}}{3}=\frac{a^{2}}{6} . \\
& \left\|A A_{2}\right\|^{2}=\left\|a_{1} A_{2}\right\|^{2}+\|A A-1\|^{2} \Rightarrow \frac{a^{2} 6}{9}=\frac{a^{2}}{6}+\frac{a^{2}}{2} \Rightarrow \frac{2 a^{2}}{3}=\frac{2 a^{2}}{3} \stackrel{\operatorname{pct.(B)}}{\Rightarrow} A A_{1} \perp A_{1} A_{2} p c t .(B)
\end{aligned}
$$

$A A_{3} \perp A_{2} A_{3}$.

$A_{1} A_{2} A^{\prime}$ right with $m\left(A^{\prime} A_{2} A_{1}\right)=90$ because

$$
\begin{gather*}
\left\|A^{\prime} A_{1}\right\|^{2}=\left\|A^{\prime} A_{2}\right\|^{2}+\left\|A_{1} A_{2}\right\|^{2} \Leftrightarrow \frac{a^{2}}{2}= \\
=\frac{a^{2}}{3}+\frac{a^{2}}{6} \Leftrightarrow \frac{a^{2}}{2}=\frac{3 a^{2}}{6}(a) \Rightarrow A^{\prime} C \perp A_{1} A_{2} \tag{4}
\end{gather*}
$$

From (4) and (3) $\Rightarrow A^{\prime} C \perp\left(A_{1} A_{2} A_{3}\right)$.
As $\left.\begin{array}{c}A^{\prime} C \perp\left(A_{1} A_{2} A_{3}\right) \\ A^{\prime} C \perp A_{2} A \text { (by construction) }\end{array}\right\} \Rightarrow A_{1} A_{2} A_{3} A$ coplanar $\Rightarrow A_{1} A_{2} A_{3} A$ quadrilateral with opposite angles A_{1} and A_{3} right $\Rightarrow A_{1} A_{2} A_{3} A$ inscribable quadrilateral.

Solution to Problem 87.
The conclusion is true only if $\|B D\|=\|A C\|$ that is $b=c$.

$$
\|N C\|=\frac{\sqrt{a^{2}+b^{2}+c^{2}}}{2} ;\|M C\|=\sqrt{b^{2}+\frac{a^{2}}{4}} ;\|M N\|=\frac{b^{2}+c^{2}}{3}
$$

$M N \perp D C$ if

$$
\|M C\|^{2}=\|M N\|^{2}+\|N C\|^{2} \Leftrightarrow \frac{a^{2}+b^{2}+c^{2}}{4}+\frac{b^{2}+c^{2}}{4}=b^{2}+\frac{a^{2}}{4} \Rightarrow a^{2}+2 b^{2}+
$$

$$
+2 c^{2}=4 b^{2}+a^{2} \Rightarrow c^{2}=b^{2} \Rightarrow b=c .
$$

Solution to Problem 88.

bisector plane

$$
\left.\left.\begin{array}{l}
\left.\begin{array}{l}
D D^{\prime} \perp(A B E)=b \\
D D_{1} \perp A B
\end{array}\right\} \Rightarrow D^{\prime} D_{1} \perp A B \\
C C^{\prime} \perp(A B E) \\
C C_{1} \perp A B
\end{array}\right\} \Rightarrow C^{\prime} C_{1} \perp A B \quad C^{\prime}, C_{1}, D^{\prime}, D_{1}\right\} \Rightarrow D_{1} D^{\prime}\left\|C_{1} C^{\prime}\right\| .
$$

(b bisector half-plane)
In triangle $D D_{1} D^{\prime}$:

$$
\left.\left.\begin{array}{l}
\sin x=\frac{\left\|D D^{\prime}\right\|}{\left\|D D_{1}\right\|} \\
\sin x=\frac{\left\|C C^{\prime}\right\|}{\left\|C C_{1}\right\|}
\end{array}\right\} \Rightarrow \frac{\left\|D D^{\prime}\right\|}{\left\|D D_{1}\right\|}=\frac{\left\|C C^{\prime}\right\|}{\left\|C C_{1}\right\|} \Rightarrow \frac{\left\|D D^{\prime}\right\|}{\left\|C C^{\prime}\right\|}=\frac{\left\|D D_{1}\right\|}{\left\|C C_{1}\right\|} \Rightarrow{ }^{\Rightarrow} \begin{array}{l}
\left\|D D^{\prime}\right\| \\
\left\|C C^{\prime}\right\|
\end{array}=\frac{\sigma[A B D]}{\sigma[A B C]} \quad \text { (1) } \quad \begin{array}{l}
v[A B E D]=\frac{\sigma[A B E] \cdot\left\|D D^{\prime}\right\|}{3} \tag{2}\\
v[A B E C]=\frac{\sigma[A B E] \cdot\left\|C C^{\prime}\right\|}{3} \\
\text { But }
\end{array}\right\} \Rightarrow \frac{\left\|D D^{\prime}\right\|}{\left\|C C^{\prime}\right\|}=\frac{v[A B E D}{v[A B E C]}
$$

$$
\left.\begin{array}{l}
v[A B E D]=\frac{\sigma[D E C] \cdot d(A,(D E C))}{3} \\
v[A B E C]=\frac{\sigma[B E C] \cdot d(A,(D B C))}{3} \tag{3}
\end{array}\right\} \Rightarrow \frac{v[A B E D]}{v[A B E C]}=\frac{\sigma[B D E]}{\sigma[B E C]}=\frac{\|D E\| \cdot d(B, D C)}{\|E C\| \cdot d(B, D C)}=
$$

From 1, 2, $3 \Rightarrow \frac{\sigma[A B D]}{\sigma[A B C]}=\frac{\|D E\|}{\|E C\|}$ q.e.d.

Solution to Problem 89.

Because the tetrahedron is regular $A B=\ldots=$
$\|B D\|=l$
$\left\|C P^{\prime}\right\|=l_{1}$
$\left\|C Q^{\prime}\right\|=l_{2}$
$\cos \widehat{Q A P}=\cos \left(\widehat{Q^{\prime} A P^{\prime}}\right)=\frac{\left\|A Q^{\prime}\right\|^{2}+\left\|A P^{\prime}\right\|^{2}-\left\|Q^{\prime} P^{\prime}\right\|^{2}}{2\left\|A Q^{\prime}\right\| \cdot\left\|A P^{\prime}\right\|} \geq$
we increase the denominator

$$
\begin{gathered}
\geq \frac{l^{2}+l_{2}^{2}-l l_{2}+l^{2}-l_{1}-l_{1}^{2}-l_{2}^{2}+l_{1} l_{2}}{2 l^{2}}=\frac{l^{2}+l^{2}-l l_{1}-l l_{2}+l_{1} l_{2}}{2 l^{2}}=\frac{1}{2}+\frac{\left(l-l_{1}\right)\left(l-l_{2}\right)}{2 l^{2}} \geq \frac{1}{2} \Rightarrow \\
\Rightarrow \cos \widehat{Q A P} \geq \frac{1}{2} \Rightarrow m(\widehat{Q A P}) \leq 60^{\circ} .
\end{gathered}
$$

If one of the points P or Q is on face $C B D$ the problem is explicit.

Solution to Problem 90.

We consider tetrahedron $O x y z$, and prove that the sum of the measures of the dihedral angles of this trihedron is bigger than 360°. Indeed: let 100^{\prime} be the internal bisector of trihedron $O x y z$ (1000^{\prime} the intersection of the bisector planes of the 3 dihedral angles) of the trihedron in A, B, C.

The size of each dihedron with edges $o x, o y, o z$ is bigger than the size of the corresponding angles of $A B C$, the sum of the measures of the dihedral angles of trihedron $O x y z$ is bigger than 180°.
Let (a, b) be a plane \perp to $o z$ at $C ; a \perp o z, b \perp o z$, but $\mid C A$ and $\mid C B$ are on the same half-space in relation to $(a b) \Rightarrow m(\hat{C})<m(\widehat{a b})$.

In tetrahedron $A B C D$, let $a_{1}, a_{2}, a_{3}, a_{4}, a_{5}$ and a_{6} be the 6 dihedral angles formed by the faces of the tetrahedron.

$$
\left.\begin{array}{l}
m\left(\alpha_{1}+\alpha_{2}+\alpha_{3}\right)>180 \\
m\left(\alpha_{1}\right)+m\left(\alpha_{3}\right)+m\left(\alpha_{6}\right)>180 \\
m\left(\alpha_{2}\right)+m\left(\alpha_{4}\right)+m\left(\alpha_{5}\right)>180 \\
m\left(\alpha_{4}\right)+m\left(\alpha_{5}\right)+m\left(\alpha_{6}\right)>180
\end{array}\right)
$$

according to the inequality previously established.

$$
2\left(m\left(\alpha_{1}\right)+m\left(\alpha_{2}\right)+\ldots+m\left(\alpha_{6}\right)\right)>4 \cdot 180 \Rightarrow m\left(\alpha_{1}\right)+\ldots+m\left(\alpha_{6}\right)>360^{\circ} .
$$

Solution to Problem 91.

We mark with a the intersection of planes $\left(A, d_{1}\right)$ and $\left(B, d_{2}\right)$. So

$$
\left(A, d_{1}\right) \cap\left(B, d_{2}\right)=a
$$

Let b be a variable line that passes through C and contained in α, which cuts d_{1} and d_{2} at M respectively N. We have: $M A \subset\left(A, d_{1}\right), M A \cap N B=P(M A$ and $N B$ intersect because they are contained in the plane determined by $(A M, b))$.
Thus $P \in\left(A, d_{1}\right)$ and $P \in\left(B, d_{2}\right), \Rightarrow P \in a$, so P describes line a the intersection of planes (A, d_{1}) and (B, d_{2}).

Vice-versa: let $Q \in a$.
In the plane $\left(A, d_{1}\right): Q A \cap d_{1}=M^{\prime}$
In the plane $\left(B, d_{2}\right): Q B \cap d_{2}=N^{\prime}$

Lines $N^{\prime} M^{\prime}$ and $A B$ are coplanar (both are on plane (Q, A, B)). But because $N^{\prime} M^{\prime} \subset$ α and $A B$ has only point C in common with $\alpha \Rightarrow M^{\prime} N^{\prime} \cap A B=C$.
So $M^{\prime} N^{\prime}$ passes through C. If planes $\left(A, d_{1}\right)$ and $\left(B, d_{2}\right)$ are parallel, the locus is the empty set.

Solution to Problem 92.

Remember the theorem: If a plane γ intersects two planes α and β such that $\sigma\|\alpha \Rightarrow(\gamma \cap \alpha)\|(\gamma \cap \beta)$. If plane (LMNP)\|BD we have:

$$
\left.\begin{array}{c}
L P\|M N\| B D \Rightarrow \frac{\|L A\|}{\|A P\|}=\frac{\|L B\|}{\|P D\|} \Rightarrow\|L A\| \cdot\|P D\|=\|A P\| \cdot\|L B\| \\
M N\left\|B D \Rightarrow \frac{\|N C\|}{\|M C\|}=\frac{\|N D\|}{\|M B\|} \Rightarrow\right\| B M\|\cdot\| N C\|=\| N D\|\cdot\| M C \|
\end{array}\right\} \Rightarrow
$$

If ($L M N P$) \|AC we have:
$L M\|P N\| A C \Rightarrow \frac{\|P D\|}{\|D N\|}$ si $\frac{\|A L\|}{\|M C\|}=\frac{\|L B\|}{\|B M\|} \Rightarrow$
$\Rightarrow\left\{\begin{array}{l}\|C N\| \cdot\|D P\|=\|D N\| \cdot\|A P\| \\ \|A L\| \cdot\|B M\|=\|B L\| \cdot\|C M\|\end{array}\right.$
\Rightarrow relation a.

Solution:

Let $A^{\prime}, B^{\prime}, C^{\prime}, D^{\prime}$ the projections of points A, B, C, D onto plane ($M N P L$).
For ex. points $B^{\prime}, L, A^{\prime}$ are collinear on plane ($L P M N$) because they are on the projection of line $A B$ onto this plane.

$$
\triangle A L A^{\prime} \sim \triangle B L B^{\prime}(U, U) \Rightarrow \frac{\|A L\|}{\|L B\|}=\frac{\left\|A A^{\prime}\right\|}{B B^{\prime}} .
$$

Similarly we obtain:
$\frac{\|P D\|}{\|A P\|}=\frac{\left\|D D^{\prime}\right\|}{\left\|A A^{\prime}\right\|} ; \frac{\|C N\|}{\|N D\|}=\frac{\left\|C C^{\prime}\right\|}{\left\|D D^{\prime}\right\|} ; \frac{\|B M\|}{\|M C\|}=\frac{\left\|B B^{\prime}\right\|}{\left\|C C^{\prime}\right\|}$.

By multiplying the 4 relations,

$$
\begin{aligned}
& \frac{\|A L\| \cdot\|P D\| \cdot\|C N\| \cdot\|B M\|}{\|L B\| \cdot\|A P\| \cdot\|D N\| \cdot\|M C\|}=1 \Rightarrow \\
& \Rightarrow \text { relation (a) from } d .
\end{aligned}
$$

Solution to Problem 93.

M - Midpoint of $|B C|$.

Solution to Problem 94.

(1) $A B \perp C D$ (hypothesis)

$$
\begin{equation*}
D H \perp(A B C) \Rightarrow D H \perp A b \Rightarrow A B \perp D H \tag{2}
\end{equation*}
$$

From 1 and 2
$\Rightarrow A B \perp(C D H) \Rightarrow A B \perp C H \Rightarrow C H$
height in $\triangle A B C$ a
$A C \perp B D \quad$ (3)
$D H \perp(A B C) \Rightarrow D H \perp A C \Rightarrow A C \perp D H$
From 3 and $4 A C \perp(B D H) \Rightarrow A C \perp B H \Rightarrow B H$ height in $\triangle A B C \quad b$
From a and $b \Rightarrow H$ orthocenter $\triangle A B C$. Let C_{1} be the diametrical opposite point to C in circle $C(A B C) C C_{1}$ diameter $m\left(\widehat{C_{1} B C}\right)=90^{\circ}$ but $A H \perp B C \Rightarrow A H \| B C_{1}$. Similarly $B H \| C_{1} A$, so $A H B C_{1}$ parallelogram, we have:

$$
\|A H\|^{2}+\|B C\|^{2}=\left\|B C_{1}\right\|^{2}+\|B C\|^{2}=\left\|C C_{1}\right\|^{2}=(2 R)^{2}
$$

similarly

$$
\|B H\|^{2}+\|A C\|^{2}=(2 R)^{2}\left(\|B H\|=\left\|A B_{1}\right\|\right) B_{1}
$$

diametrical opposite to B

$$
\|C H\|^{2}+\|A B\|^{2}=(2 R)^{2}\left(\|C H\|=\left\|B A_{1}\right\|\right)
$$

but

$$
\left.D H \perp(A B C) \Rightarrow \begin{array}{l}
\|A H\|^{2}=\|A D\|^{2}-\|D H\|^{2} \\
\|B H\|^{2}=\|B D\|^{2}-\|D H\|^{2} \\
\|C H\|^{2}=\|D C\|^{2}-\|D H\|^{2}
\end{array}\right\}
$$

by substituting above, we have:

$$
\begin{aligned}
& \|A D\|^{2}+\|B C\|^{2}=(2 R)^{2}+\|D H\|^{2} \\
& \|B D\|^{2}+\|A C\|^{2}=(2 R)^{2}+\|D H\|^{2} \\
& \|D C\|^{2}+\|A B\|^{2}=(2 R)^{2}+\|D H\|^{2}
\end{aligned}
$$

Let N, M, Q, P, S, R midpoints of the edges of the quadrilateral $N M P Q$ because:
$N M\|C D\| P Q$ (median lines), $Q M\|A B\| P N$ (median lines), but $C D \perp A B \Rightarrow M N Q P$ rectangle $|N Q| \cap|P M|=\{0\}$.
Similarly $M S P R$ rectangle with $|M P|$ common diagonal with a, the first rectangle, so the 6 points are equally distant from " 0 " the midpoint of diagonals in the two rectangles \Rightarrow the 6 points are on a sphere.

Solution to Problem 95.

M arbitrary point on $\left|A B^{\prime}\right|$
$N=\boldsymbol{p r}_{\left(B C C^{\prime}\right)} M$
$A^{\prime \prime}$ midpoint of segment $\left[B^{\prime} C^{\prime}\right]$
When $M=B^{\prime}$, point P is in the position B^{\prime}.

When $M=A$, point P is in the position $\left\{P_{1}\right\}=\left[A^{\prime} A_{1}\right] \cap\left[A A^{\prime \prime}\right]$
($A^{\prime} A^{\prime \prime} A_{1} A$ rectangle, so P_{1} is the intersection of the diagonals of the rectangle)
[The locus is [$\left.B^{\prime} P_{1}\right]$].
Let M be arbitrary point $M \in\left|A B^{\prime}\right|$.

$$
N=p r_{\left(B C C^{\prime}\right)} M \in\left|A_{1} B^{\prime}\right|
$$

because:
$\left(B^{\prime} A A_{1}\right) \perp\left(B^{\prime} C C^{\prime}\right)$.
By the way it was constructed

$$
A A_{1} \perp B C, A A_{1} \perp C C^{\prime} \Rightarrow A A_{1} \perp\left(B^{\prime} C^{\prime} C\right) \Rightarrow
$$

$\Rightarrow(\forall)$ plane that contains $A A_{1}$ is perpendicular to $\left(B^{\prime} C C^{\prime \prime}\right)$, particularly to $\left(B^{\prime} A A_{1}\right) \perp$ $\left(B^{\prime} C^{\prime} C\right)$.
(1) $\left[B^{\prime} P_{1}\right] \subset\left(B^{\prime} A^{\prime \prime} A\right)$
because $B^{\prime}, P \in\left(B^{\prime} A A^{\prime \prime}\right)$
(2) $\left[B^{\prime} P_{1}\right] \subset\left(A^{\prime} B^{\prime} A_{1}\right)$
from this reason $B^{\prime}, P_{1} \in\left(A^{\prime} B^{\prime} A_{1}\right)$.
From 1 and 2
$\Rightarrow B^{\prime} P_{1}=\left(A^{\prime} B^{\prime} A_{1}\right) \cap\left(B^{\prime} A^{\prime \prime} A\right)$
Let

$$
\left.\begin{array}{r}
\{P\}=\left|M A^{\prime \prime}\right| \cap\left|A^{\prime} N\right| \\
\left|M A^{\prime \prime}\right| \subset\left(B^{\prime} A^{\prime \prime} A\right) \text { ş } \\
A^{\prime} N \mid \subset\left(A^{\prime} B^{\prime} A_{1}\right)
\end{array}\right\} \Rightarrow P \in\left(B^{\prime} A^{\prime \prime} A\right) \cap\left(A^{\prime} B^{\prime} A_{1}\right) \Rightarrow P \in\left|B^{\prime} P_{1}\right| N=p_{\left(B^{\prime} C^{\prime} O\right)} M
$$

So $(\forall) M \in\left|B^{\prime} A\right|$
and we have
$\left|M A^{\prime \prime}\right| \cap\left|A^{\prime} N\right| \in\left|B^{\prime} P_{1}\right|$.
Vice-versa. Let P arbitrary point, $P \in\left|B^{\prime} P_{1}\right|$ and
In plane
$\left(B^{\prime} A^{\prime \prime} A\right):\{M\}=\left|B^{\prime} A\right| \cap\left|A^{\prime \prime} P\right|$
In plane
$\left(B^{\prime} A^{\prime} A_{1}\right):\{N\}=\left|B^{\prime} A_{1}\right| \cap\left|A^{\prime} P\right|$
Indeed: $A^{\prime} A^{\prime \prime} \|\left(B^{\prime} A A_{1}\right)$ thus any plane which passes through $A^{\prime} A^{\prime \prime}$ will intersect
$\left(B^{\prime} A A_{1}\right)$ after a parallel line to $A^{\prime} A^{\prime \prime}$. Deci $M N \| A^{\prime} A^{\prime \prime}$ or $M N \| A A_{1}$ as $M \in\left(B^{\prime} A A_{1}\right) \Rightarrow$ $M N \perp\left(B^{\prime} C C^{\prime \prime}\right)$.
We've proved
(\forall) $M \in\left|B^{\prime} A\right|$
and
$N=p r_{\left(B^{\prime} C C^{\prime}\right)}$
we have
$\{P\}=\left|M A^{\prime \prime}\right| \cap\left|A^{\prime} N\right|$
describes $\left|B^{\prime} P_{1}\right|$ and vice-versa,
$(\forall) P \in\left[B^{\prime} P_{1}\right]$
there is $M\left|B^{\prime} A\right|$ and $N\left|B^{\prime} A_{1}\right|$ such that
$N=p r_{\left(B^{\prime} C^{\prime} C\right)} M$
and P is the intersection of the diagonals of the quadrilateral $A^{\prime} N M A^{\prime \prime}$.

Solution to Problem 96.

$$
\sigma[C D G]=\sigma[B D G]=\sigma[B C G]=\frac{\sigma[B C D]}{3}
$$

known result

$$
\left\{\begin{aligned}
v[M G C D] & =\frac{\sigma[G C D] d(M,(B C D))}{3} \\
v[M G D B] & =\frac{\sigma[B D G] d(M,(B C D))}{3} \\
v[M G B C] & =\frac{\sigma[B C G] d(M,(B C D))}{3}
\end{aligned}\right.
$$

From 1 and 3
$\Rightarrow v[M G C D]=v[M G D B]=v[M B C]$.

Solution to Problem 97.
From the hypothesis:
$O A \perp O B \perp O C \perp O A$
We assume the problem is solved.
Let M be the orthocenter of triangle $A B C$.

But $\left.C C^{\prime} \perp A B \Rightarrow \begin{array}{l}A B \perp\left(O C C^{\prime}\right) \\ M O \perp\left(C O C^{\prime}\right)\end{array}\right\} \Rightarrow A B \perp O M \Rightarrow M O \perp A B$ (1)
$A O \perp(C O B) \Rightarrow A O \perp B C$, but $\left.A A^{\prime} \perp B C \Rightarrow \begin{array}{l}B C \perp\left(A O A^{\prime}\right) \\ M O \subset\left(A O A^{\prime}\right)\end{array}\right\} \Rightarrow B C \perp M O \Rightarrow M O \perp B C$ (2)
From (1) and (2) $\Rightarrow M O \perp(A B C)$
So the plane $(A B C)$ that needs to be drawn must be perpendicular to $O M$ at M.

Solution to Problem 98.

$$
\begin{aligned}
& A^{\prime} N \perp A D, B^{\prime} M \perp B C \\
& \|B M\|=\frac{a-a{ }^{\prime}}{2},\|P M\|=\frac{b-b^{\prime}}{2} \\
& v\left[B M P S B^{\prime}\right]=\frac{a-a^{\prime}}{2} \cdot \frac{b-b^{\prime}}{2} \cdot \frac{h}{3} \\
& v\left[S P W R A^{\prime} B^{\prime}\right]=\frac{\sigma\left[S P B^{\prime}\right] \cdot\left\|B^{\prime} A^{\prime}\right\|}{3}=\frac{a-a^{\prime}}{2} \cdot \frac{h}{2} \cdot b^{\prime} \\
& v\left[B^{\prime} A^{\prime} N M C^{\prime} D^{\prime} D_{1} C_{1}\right]=\frac{\left(b+b^{\prime}\right) h}{2} \cdot a^{\prime} \\
& v\left[A B A^{\prime} B^{\prime} C D C^{\prime} D^{\prime}\right]=2\left[2 \cdot \frac{a-a^{\prime}}{2} \cdot \frac{b-b^{\prime}}{2} \cdot \frac{h}{3}+\frac{a-a^{\prime}}{2} \cdot \frac{h}{2} \cdot b^{\prime}\right]+\left(\frac{\left(b+b^{\prime}\right) h}{2}\right) \cdot a^{\prime}= \\
& \frac{h}{6}\left(2 a b-2 a b^{\prime}-2 a^{\prime} b^{\prime}+3 a b^{\prime}-3 a^{\prime} b^{\prime}+3 a^{\prime} b+3 a^{\prime} b^{\prime}\right)=\frac{h}{6}\left[a b+a^{\prime} b^{\prime}+\right. \\
& \left.\left(a+a^{\prime}\right)\left(b+b^{\prime}\right)\right] .
\end{aligned}
$$

Solution to Problem 99.

$$
\begin{aligned}
& \qquad v\left[O A B B^{\prime}\right]=\frac{B \cdot h}{2} \\
& v\left[O A^{\prime} B^{\prime} A\right]=v\left[A B O O^{\prime} A^{\prime} B^{\prime}\right]-v\left[A B B^{\prime} O\right]-v\left[A^{\prime} B^{\prime} O^{\prime} O\right]=\frac{h}{3}(B+b+\sqrt{B b})-\frac{B h}{3}-\frac{b h}{3}= \\
& \frac{h}{3} \sqrt{b B} \text {. } \\
& \text { So: }
\end{aligned}
$$

$$
\frac{v\left[O A^{\prime} B^{\prime} A\right]}{v\left[D A B B^{\prime}\right]}=\frac{\frac{h}{3} \sqrt{B b} \cdot \sqrt{B b}}{\frac{B h}{3} \cdot B}=\frac{\sqrt{b}}{\sqrt{B}} \Rightarrow v\left[O A^{\prime} B^{\prime} A\right]=\frac{\sqrt{b}}{\sqrt{B}} \cdot v\left[O A B B^{\prime}\right]
$$

For the relation above, determine the formula of the volume of the pyramid frustum.

Solution to Problem 100.

$d\left(G G^{\prime}\right)=h=2 R$
Let $l=\|A C\| \Rightarrow\|A D\|=\frac{l \sqrt{3}}{2} \Rightarrow\|G D\|=\frac{l \sqrt{3}}{6}$
Figure $G D M O$ rectangle $\Rightarrow\|G D\|=\|O M\| \Rightarrow \frac{l \sqrt{3}}{6}=R=2 \sqrt{3} R$

So, the lateral area is $S_{l}=3 \cdot 2 \sqrt{3} R \cdot R=12 \sqrt{3} R^{2}$.
$\nu\left[A B C A^{\prime} B^{\prime} C^{\prime}\right]=\sigma[A B C] \cdot 2 R=2 \sqrt{3} R \cdot \frac{2 \sqrt{3} R \sqrt{3}}{4} \cdot 2 R=6 \sqrt{3} R^{2}$.
The total area:
$S_{t}=S_{l}+2 \sigma[A B C]=12 \sqrt{3} R^{2}+2 \cdot 3 R \sqrt{3} R^{2}=18 \sqrt{3} R^{2}$

Solution to Problem 101.

Let V_{1} and S_{1} be the volume, respectively the area obtained revolving around a.
V_{2} and S_{2} be the volume, respectively the area obtained after revolving around b.
V_{3} and S_{3} be the volume, respectively the area obtained after revolving around c .
So:

$$
\begin{gathered}
V_{1}=\frac{\pi \cdot i^{2}(\|C D\|+\|D B\|)}{3}=\frac{\pi \cdot i^{2} \cdot a}{3} \\
S_{1}=\pi \cdot i \cdot c+\pi \cdot i \cdot b=\pi \cdot i \cdot(b+c) \\
V_{2}=\frac{\pi c^{2} b}{3}=\frac{\pi c^{2} b^{2}}{3 b}=\frac{\pi b^{2} c^{2} a}{3 a^{2}} \\
S_{2}=\pi \cdot c \cdot a \\
V_{3}=\frac{\pi b^{2} c}{3}=\frac{\pi b^{2} c^{2}}{3 c}=\frac{\pi b^{2} c^{2}}{3 a} \\
S_{3}=\pi \cdot b \cdot a
\end{gathered}
$$

Therefore:

$$
\begin{gathered}
\frac{1}{V_{1}^{2}}=\frac{1}{V_{2}^{2}}+\frac{1}{V_{3}^{2}} \Leftrightarrow \frac{9 a^{2}}{\left(\pi b^{2} c^{2}\right)^{2}}=\frac{9 c^{2}}{\left(\pi b^{2} c^{2}\right)^{2}}+\frac{9 c^{2}}{\left(\pi b^{2} c^{2}\right)^{2}} \\
\frac{S_{2}}{S_{3}}+\frac{S_{3}}{S_{2}}=\frac{S_{2}+S_{3}}{S_{1}} \Leftrightarrow \frac{c}{b}+\frac{b}{c}=\frac{\pi a(b+c)}{\pi i(b+c)} \Leftrightarrow \frac{c^{2}+b^{2}}{b \cdot c}=\frac{a}{i}
\end{gathered}
$$

But $i \cdot a=b \cdot c \Rightarrow \frac{c^{2}+b^{2}}{b c}=\frac{a^{2}}{b c},\|A D\|=i$.

Solution to Problem 102.

$$
\begin{gathered}
r=\|O A\|=25 \mathrm{~cm} \\
R=\left\|O^{\prime} B\right\|=50 \mathrm{~cm} \\
2 \pi r=1,57 \Rightarrow r=0,25 \mathrm{~m} \\
2 \pi R=3,14 \Rightarrow R=0,50 \mathrm{~m} \\
\|C N\|=18 \mathrm{~cm}=0,18 \mathrm{~m} \\
\left\|A^{\prime} B\right\|=25 \mathrm{~cm} \\
\|A B\|=\sqrt{100+0,0625}=10,003125 \\
\left\|A^{\prime} M\right\|=\frac{\left\|A A^{\prime}\right\| \cdot\left\|A^{\prime} B\right\|}{\|A B\|}=\frac{10 \cdot 0,25}{10,003125} \approx 0,25 \\
\frac{\|C N\|}{\left\|A^{\prime} M\right\|}=\frac{\|C B\|}{\left\|B A^{\prime}\right\|} \Rightarrow \frac{0,18}{0,25}=\frac{\|C B\|}{0,25} \Rightarrow\|C B\|=0,18 \\
\left\|O^{\prime} C\right\|=R^{\prime}=0,50-0,18=0,32 \\
\|O P\|=r^{\prime}=0,25-0,18=0,07 \\
V=\frac{\pi 10}{3}\left(0,50^{2}+0,25^{2}+0,50 \cdot 0,25-0,32^{2}-0,07^{2}-0,32 \cdot 0,07\right) \\
=\frac{\pi 10}{3}(0,4375-0,1297)=1,026 \pi m^{3}
\end{gathered}
$$

Solution to Problem 103.

$$
\|V P\|=\frac{a}{2 \sin \frac{\alpha}{2}} \cos \frac{\alpha}{2}
$$

In $\triangle V A P:\|V A\|=\frac{A}{2 \sin \frac{\alpha}{2}}$.

In $\triangle V A O^{\prime}:\left\|V O^{\prime}\right\|^{2}=\frac{a^{2}}{4 \sin ^{2} \frac{\alpha}{2}}-\frac{a^{2}}{2}$.

$$
\left\|V O^{\prime}\right\|=\frac{a \sqrt{\cos \alpha}}{2 \sin \frac{\alpha}{2}}
$$

In $\triangle V O O^{\prime}:\left\|O O^{\prime}\right\|=\frac{a \sqrt{\cos \alpha}}{2 \sin \frac{\alpha}{2}}-R$.

$$
\begin{gathered}
R^{2}=\frac{a^{2}}{2}+\left(\frac{a \sqrt{\cos \alpha}}{2 \sin \frac{\alpha}{2}}-R\right)^{2} \Rightarrow \frac{a^{2}}{2}+\frac{a^{2} \cos \alpha}{4 \sin ^{2} \frac{\alpha}{2}}-\frac{2 a R \sqrt{\cos \alpha}}{2 \sin \frac{\alpha}{2}} \Rightarrow a=\frac{4 R \sqrt{\cos \alpha} \sin ^{2} \frac{\alpha}{2}}{\sin \frac{\alpha}{2}\left(2 \cos ^{2} \frac{\alpha}{2}+\cos \alpha\right)} \\
\Rightarrow a=4 R \sqrt{\cos \alpha} \cdot \sin \frac{\alpha}{2}
\end{gathered}
$$

$A_{l}=4 \frac{a^{2} \cos \frac{\alpha}{2}}{2 \cdot 2 \sin \frac{\alpha}{2}}=\frac{a^{2} \cos \frac{\alpha}{2}}{\sin \frac{\alpha}{2}}=16 R^{2} \cos \alpha \sin ^{2} \frac{\alpha}{2} \cdot \frac{\cos \frac{\alpha}{2}}{\sin \frac{\alpha}{2}}=8 R^{2} \cos \alpha \sin \alpha=4 R^{2} \sin 2 \alpha$

$$
A_{t}=A_{l}+a^{2}=4 R^{2} \sin 2 \alpha+16 R^{2} \cos \alpha \sin ^{2} \frac{\alpha}{2}
$$

$\left\|V O^{\prime}\right\|=R \Rightarrow R=\frac{a \sqrt{\cos \alpha}}{2 \sin \frac{a}{2}} \Rightarrow R=4 R \sqrt{\cos \alpha} \sin \frac{\alpha}{2} \cdot \frac{\sqrt{\cos \alpha}}{2 \sin \frac{\alpha}{2}} \Rightarrow 2 \cos \alpha=1 \Rightarrow \alpha=60^{\circ}$.

Various Problems

104. Determine the set of points in the plane, with affine coordinates z that satisfy:
a. $|z|=1$;
b. $\pi<\arg z \leq \frac{3 \pi}{2} ; z \neq 0$;
c. $\arg z>\frac{4 \pi}{3}, z \neq 0$;
d. $|z+i| \leq 2$.
105. Prove that the n roots of the unit are equal to the power of the particular root ε_{1}.

Solution to Problem 105
106. Knowing that complex number z verifies the equation $z^{n}=n$, show that numbers $2,-i z$ and $i z$ verify this equation.

Application: Find $(1-2 i)^{4}$ and deduct the roots of order 4 of the number $-7+24 i$.

Solution to Problem 106
107. Show that if natural numbers m and n are coprime, then the equations $z^{m}-1=0$ and $z^{n}-1=0$ have a single common root.

Solution to Problem 107
108. Solve the following binomial equation: $(2-3 i) z^{6}+1+5 i=0$.

Solution to Problem 108
109. Solve the equations:

```
a) \(z^{6}-9 z^{3}+8=0\)
    \(z^{3}=y\)
b) \(z^{8}-2 z^{4}+2=0\)
    \(z^{4}=y\)
c) \(z^{4}+6(1+i) z^{2}+5+6 i=0\)
        \(z^{2}=y\)
```

110. Solve the equation $\bar{z}=z^{n-1}, n \in N$, where \bar{z} the conjugate of z.
111. The midpoints of the sides of a quadrilateral are the vertices of a parallelogram.
112. Let $M_{1} M_{2} M_{3} M_{4}$ and $N_{1} N_{2} N_{3} N_{4}$ two parallelograms and P_{i} the midpoints of segments $\left[M_{i} N_{i}\right], i \in\{1,2,3,4\}$. Show that $P_{1} P_{2} P_{3} P_{4}$ is a parallelogram or a degenerate parallelogram.
113. Let the function $f: C \rightarrow C, f(z)=a z+b ;(a, b, c \in C, a \neq 0)$. If M_{1} and M_{2} are of affixes z_{1} and z_{2}, and M_{1}^{\prime} and M_{2}^{\prime} are of affixes $f\left(z_{1}\right), f\left(z_{2}\right)$, show that $\left\|M_{1}^{\prime} M_{2}^{\prime}\right\|=|a| \cdot\left\|M_{1} M_{2}\right\|$. We have $\left\|M_{1}^{\prime} M_{2}^{\prime}\right\|=\left\|M_{1} M_{2}\right\| \Leftrightarrow|a|=1$.
114. Prove that the function $\mathrm{z} \rightarrow \overline{\mathrm{z}}, \mathrm{z} \in \mathrm{C}$ defines an isometry.
115. Let $M_{1} M_{2}$ be of affixes $z_{1}, z_{2} \neq 0$ and $z_{2}=\alpha z_{1}$. Show that rays $\left|O M_{1},\right| O M_{2}$ coincide (respectively are opposed) $\Leftrightarrow \alpha>0$ (respectively $\alpha<0$).
116. Consider the points $M_{1} M_{2} M_{3}$ of affixes $z_{1} z_{2} z_{3}$ and $M_{1} \neq M_{2}$. Show that:
a. $M_{3} \in \left\lvert\, M_{1} M_{2} \Leftrightarrow \frac{z_{3}-z_{1}}{z_{2}-z_{1}}>0\right.$;
b. $M_{3} \in M_{1} M_{2} \Leftrightarrow \frac{z_{3}-z_{1}}{z_{2}-z_{1}} \in R$.
117. Prove Pompeiu's theorem. If the point M from the plane of the equilateral triangle $M_{1} M_{2} M_{3} \notin$ the circumscribed circle $\Delta M_{1} M_{2} M_{3} \Rightarrow$ there exists a triangle having sides of length $\left\|M M_{1}\right\|,\left\|M M_{2}\right\|,\left\|M M_{3}\right\|$.

Solutions

Solution to Problem 104.

a. $\left.\begin{array}{c}|z|=1 \\ |z|=\sqrt{x^{2}+y^{2}}\end{array}\right\} \Rightarrow x^{2}+y^{2}=1$, so the desired set is the circle $C_{(0,1)}$.
b. $\pi<\arg z \leq \frac{3 \pi}{2}$.

The desired set is given by all the points of quadrant III, to which ray $\mid O y$ is added, so all the points with $x<0, y<0$.
c. $\left.\begin{array}{c}\arg z>\frac{4 \pi}{3}, z \neq 0 \\ \arg z \in[0,2 \pi]\end{array}\right\} \Rightarrow \frac{4 \pi}{2}<\arg z<2 \pi$
$\left.\begin{array}{l}\arg z>\frac{4 \pi}{3}, z \neq 0 \\ \arg z \in[0,2 \pi]\end{array}\right\} \Rightarrow \frac{4 \pi}{3}<\arg z<2 \pi$

$$
\begin{aligned}
& x_{B}=\cos \frac{4 \pi}{3}=\cos \left(\pi+\frac{\pi}{3}\right)=-\cos \frac{\pi}{3}=-\frac{1}{2} \\
& y_{B}=\sin \frac{4 \pi}{3}=-\sin \frac{\pi}{3}=-\frac{\sqrt{3}}{2} \\
& m_{O B}=\frac{-\frac{\sqrt{3}}{2}}{-\frac{1}{2}}=\sqrt{3} \Rightarrow O B: y=\sqrt{3} x
\end{aligned}
$$

The desired set is that of the internal points of the angle with its sides positive semi-axis and ray $\mid O B$.
d. $|z+i| \leq 2 ; z=x+y i$, its geometric image M.

$$
\begin{aligned}
& z+i=x+y i+i=x+(y+1) i \\
& |z+i|=\sqrt{x^{2}+(y+1)^{2}} \leq 2 \Rightarrow\left\|O^{\prime} M\right\| \leq 2 \Rightarrow x^{2}+(y+1)^{1} \leq 4 \Rightarrow\left\|O^{\prime} M\right\|^{2} \leq 4
\end{aligned}
$$

where $O^{\prime}(0,-1)$.
Thus, the desired set is the disk centered at $O_{(0,-1)}^{\prime}$ and radius 2 .

Solution to Problem 105.

$$
\begin{aligned}
& \varepsilon_{k}=\cos \frac{2 k \pi}{n}+i \sin \frac{2 k \pi}{n}, \quad k=0,1, \ldots, n-1 \\
& \varepsilon_{1}=\cos \frac{2 \pi}{n}+i \sin \frac{2 \pi}{n} \\
& \varepsilon_{k}=\cos k \frac{2 \pi}{n}+i \sin k \frac{2 \pi}{n}=\left(\cos \frac{2 \pi}{n}+i \sin \frac{2 \pi}{n}\right)^{k}=\varepsilon_{1}^{k}, \quad k=2,3, \ldots, n-1
\end{aligned}
$$

Solution to Problem 106.
Let the equation $z^{4}=n$. If $z^{4}=4\left(z\right.$ is the solution) then: $(-z)^{4}=(-1)^{4} z^{4}=1 \cdot n=$ n, so $-z$ is also a solution.
$(i z)^{4}=i^{4} z^{4}=1 \cdot n=n$
$\Rightarrow i z$ is the solution;
$(-i z)^{4}=(-i)^{4} z^{4}=1 \cdot n=n$
$\Rightarrow-i z$ is the solution;

$$
(1-2 i)^{4}=\left[(1-2 i)^{2}\right]^{2}=\left(1-4 i+4 i^{2}\right)^{2}=(1-4-4 i)^{2}=(-3+4 i)^{2}=9+24 i-16=
$$

$=-7+24 i \Rightarrow z=1-2 i$
\Rightarrow is the solution of the equation $z^{4}=-7+24 i$.

The solutions of this equation are:
$z_{k}=\sqrt[4]{-7+24 i}, \quad k=0,1,2,3$
but based on the first part, if $z-1-2 i$ is a root, then
$-z=-1+2 i, i z=2+i,-i z=-2-i$
are solutions of the given equation.

Solution to Problem 107.

$$
\begin{aligned}
& z^{m}-1=0 \Rightarrow z=\sqrt[m]{1} \Rightarrow z_{k}=\cos \frac{2 k \pi}{m}+i \sin \frac{2 k \pi}{m}, k=0, \ldots, m-1 \\
& z^{n}-1=0 \Rightarrow z=\sqrt[n]{1} \Rightarrow z_{k}=\cos \frac{2 k \pi}{n}+i \sin \frac{2 k \pi}{n}, k=0, \ldots, n-1
\end{aligned}
$$

If there exist k and k^{\prime} with $z_{k}=z_{k^{\prime \prime}}$, then

$$
\frac{2 k \pi}{m}-\frac{2 k^{\prime} \pi}{n}=2 p \pi=m n\left|k^{\prime} m-k n \Rightarrow n\right| k^{\prime}, m \mid k,
$$

because $(m, n)=1$. Because $k^{\prime}<n, k<m$, we have $k^{\prime}=0, k=0$.
Thus the common root is z_{0}.

Solution to Problem 108.

$$
\begin{aligned}
& (2-3 i) z^{6}+1+5 i=0 \Rightarrow z^{6}=\frac{-1-5 i}{2-3 i}=1-i \\
& r=\sqrt{2} \\
& \operatorname{tg} t=-1, t \in\left(\frac{3 \pi}{2}, 2 \pi\right) \Rightarrow t=2 \pi-\frac{\pi}{4}=\frac{7 \pi}{4} \\
& z_{k}=\sqrt[\downarrow]{2}\left(\cos \frac{\frac{7 \pi}{4}+2 k \pi}{6}+i \sin \frac{\frac{7 \pi}{4}+2 k \pi}{6}\right) ; k \in 0, \ldots, 5
\end{aligned}
$$

Solution to Problem 109.

$$
\left.\begin{array}{c}
\left.\begin{array}{c}
\text { a) } z^{6}-9 z^{3}+8=0 \\
z^{3}=y
\end{array}\right\} \Rightarrow y^{2}-9 y+8=0 \Rightarrow\left\{\begin{array}{l}
z^{3}=8 \\
z^{3}=1
\end{array}\right. \text { etc. } \\
\text { b) } z^{8}-2 z^{4}+2=0 \\
z^{4}=y
\end{array}\right\} \Rightarrow y^{2}-2 y+2=0 \Rightarrow\left\{\begin{array}{l}
z^{4}=1+i \\
z^{4}=1-i
\end{array} \text { etc. } \quad \begin{array}{c}
z^{2}=y \\
\text { c) } z^{4}+6(1+i) z^{2}+5+6 i=0 \\
y_{1,2}=\frac{-6(1+i) \pm \sqrt{-20+48 i}}{2}=\frac{-6(1+i) \pm \sqrt{(4+6 i) 2}}{2} \text { etc. }
\end{array}\right.
$$

Solution to Problem 110.

$$
\left.\begin{array}{l}
z=x+i y \Rightarrow|z|=\sqrt{x^{2}+y^{2}} \\
\bar{z}=x-i y \Rightarrow|\bar{z}|=\sqrt{x^{2}+y^{2}}
\end{array}\right\} \Rightarrow|z|=|\bar{z}|
$$

As:

$$
\left.\begin{array}{r}
\bar{z}=z^{n-1} \Rightarrow|\bar{z}|=|z|^{n-2} \\
|z|=|\bar{z}|
\end{array}\right\} \Rightarrow|z|=|z|^{n-1} \Rightarrow|z| \cdot\left(1-|z|^{n-2}\right)=0 \Rightarrow\left[\begin{array}{l}
\mid z_{i}^{\prime}=0 \\
|z|^{n-2}-1=0
\end{array}\right.
$$

From:

$$
\begin{aligned}
& |z|=0 \Rightarrow \sqrt{x^{2}+y^{2}}=0 \Rightarrow x^{2}+y^{2}=0 \Rightarrow x=0 \text { şi } y=0 \Rightarrow z=0+0 i \\
& |z|^{n-2}-1=0 \Rightarrow(|z|-1)(\underbrace{|z|^{n-3}+|z|^{n-4}+\ldots+1}_{\text {positive }})=0 \Rightarrow|z|=1 \Rightarrow x^{2}+y^{2}=1 \\
& \left.\begin{array}{l}
z=x+i y \\
\bar{z}=x-i y
\end{array}\right\} \Rightarrow z \bar{z}=x^{2}+y^{2}=1
\end{aligned}
$$

The given equation becomes

$$
\bar{z} \cdot z=z^{n} \Rightarrow z^{n}=1 \Rightarrow z_{k}=\cos \frac{2 k \pi}{n}+i \sin \frac{2 k \pi}{n}, k=0,1, \ldots, n-1
$$

Solution to Problem 111.

$$
\begin{aligned}
& A\left(z_{1}\right), B\left(z_{2}\right), C\left(z_{3}\right), D\left(z_{4}\right) \\
& \Rightarrow M\left(\frac{z_{1}+z_{2}}{2}\right), N\left(\frac{z_{2}+z_{3}}{2}\right), P\left(\frac{z_{3}+z_{4}}{2}\right), Q\left(\frac{z_{4}+z_{1}}{2}\right)
\end{aligned}
$$

We find the sum of the abscissa of the opposite points:

$$
\begin{aligned}
& \frac{z_{1}+z_{2}}{2}+\frac{z_{1}+z_{4}}{2}=\frac{z_{1}+z_{2}+z_{3}+z_{4}}{2} \\
& \frac{z_{2}+z_{3}}{2}+\frac{z_{4}+z_{1}}{2}=\frac{z_{1}+z_{2}+z_{3}+z_{4}}{2} \\
& \frac{z_{1}+z_{2}}{2}+\frac{z_{3}+z_{4}}{2}=\frac{z_{2}+z_{3}}{2}+\frac{z_{4}+z_{1}}{2}
\end{aligned}
$$

$\Rightarrow M N P Q$ a parallelogram.
Solution to Problem 112.

In the quadrilateral $M_{1} M_{3} N_{3} N_{1}$ by connecting the midpoints we obtain the parallelogram $O^{\prime} P_{1} O^{\prime \prime} P_{3}$, with its diagonals intersecting at O, the midpoint of $\left|O^{\prime} O^{\prime \prime}\right|$ and thus $\left|P_{1} O\right| \equiv\left|O P_{3}\right|$. (1)

In the quadrilateral $M_{4} M_{2} N_{2} N_{4}$ by connecting the midpoints of the sides we obtain the parallelogram $O^{\prime} P_{2} O^{\prime \prime} P_{4}$ with its diagonals intersecting in O, the midpoint of $\left|O^{\prime} O^{\prime \prime}\right|$ and thus $\left|P_{2} O\right| \equiv\left|O P_{4}\right|$. (2)

From (1) and (2) $P_{1} P_{2} P_{3} P_{4}$ a parallelogram.

Solution to Problem 113.

$$
\begin{aligned}
& \left\|M^{\prime} M\right\|=\left|z-z^{\prime}\right|, \text { deci }\left|M_{1} M_{2} \|=\left|z_{2}-z_{1}\right|\right. \\
& \left\|M_{1} M_{2}\right\|=\left|f\left(z_{2}\right)-f\left(z_{1}\right)\right|=\left|a z_{2}+b-a z_{2}-b\right|=\| a z_{2}-a z_{1}\left|=\left|a\left(z_{2}-z_{1}\right)\right|=|a| \cdot\right| z_{2}-z_{1} \mid= \\
& =|a| \cdot\left|M_{1} M_{2}\right|
\end{aligned}
$$

If:

$$
|a|=1 \Rightarrow\left\|M_{1}^{\prime} M_{2}^{\prime}\right\|=\left\|M_{1} M_{2}\right\|
$$

If:

$$
\left.\begin{array}{r}
\left\|M_{1}^{\prime} M_{2}^{\prime}\right\|=\left\|M_{1} M_{2}\right\| \\
\left\|M_{1}^{\prime} M_{2}^{\prime}\right\|=|a| \cdot\left\|M_{1} M_{2}\right\|
\end{array}\right\} \Rightarrow\left\|M_{1} M_{2}\right\|=|a| \cdot\left\|M_{1} M_{2}\right\| \Rightarrow|a|=1
$$

Solution to Problem 114.

$$
z=x+i y, \bar{z}=x=i y
$$

Let M_{1} and M_{2} be of affixes z_{1} and z_{2}. Their images through the given function M_{1}^{\prime} and M_{2}^{\prime} with affixes \bar{z}_{1} and \bar{z}_{2}, so
$f\left(z_{1}\right)=\bar{z}_{1}, f\left(z_{2}\right)=\bar{z}_{2}$

$$
\begin{equation*}
\left|\left|M_{1} M_{2} \|=\left|z_{2}-z_{1}\right|=\left|x_{2}+i y_{2}-x_{1}-i y_{1}\right|=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\cdot\left(y_{2}-y_{1}\right)^{2}}\right.\right. \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
\left\|M_{1}^{\prime} M_{2}^{\prime}\right\|=\left|\bar{z}_{2}-\bar{z}_{1}\right|=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}} \tag{2}
\end{equation*}
$$

From (1) and (2) $\Rightarrow\left\|M_{1} M_{2}\right\|=\left\|M_{1}^{\prime} M_{2}^{\prime}\right\|$ or $\left\|M_{1}^{\prime} M_{2}^{\prime}\right\|=\left|\bar{z}_{2} \bar{z}_{1}\right|=\left|\sqrt{z_{2}-z_{1}}\right|=$ $\left|z_{2}-z_{1}\right|=\left\|M_{1} M_{2}\right\|$.

So $f: C \rightarrow C, f(z)=\bar{z}$ defines an isometry because it preserves the distance between the points.

Solution to Problem 115.

We know that the argument $\left(a z_{1}\right)=\arg z_{1}+\arg z_{\alpha}-2 k \pi$, where $k=0$ or $k=1$.
Because $\arg z_{2}=\arg \left(a z_{1}\right), \arg z_{2}=\arg z_{1}+\arg z_{\alpha}-2 k \pi$.
a. We assume that

$$
\begin{aligned}
& \left|O M_{1}=\right| O M_{2} \Rightarrow \arg z_{1}=\arg z_{2} \Rightarrow \arg z_{1}=\arg z_{1}+\arg \alpha-2 k \pi \Rightarrow \\
& \Rightarrow \arg \alpha=2 k \pi, \arg \in[0,2 \pi] \Rightarrow \arg \alpha=0 \Rightarrow \alpha \in \mid O x \text { (poz.) } \alpha=\alpha>0 .
\end{aligned}
$$

Vice versa,

$$
\begin{aligned}
& \alpha>0 \Rightarrow \arg \alpha=0 \Rightarrow \arg z_{2}=\arg z_{1}-2 k \pi \Rightarrow \arg z_{1}=\arg z_{2} \operatorname{sau} \arg z_{2}= \\
& =\arg z_{1}-2 \pi \Rightarrow\left|O M_{1}=\right| O M_{2}
\end{aligned}
$$

b. Let $\mid O M_{1}$ and $\mid O M_{2}$ be opposed $\Rightarrow \arg z_{2}=\arg z_{1}+\pi$
$\Rightarrow \arg z_{1}+\pi=\arg z_{1}+\arg \alpha-2 k \pi \Rightarrow \arg \alpha=\pi$
\in to the negative ray $\mid O x^{\prime} \Rightarrow \alpha<0$. Vice versa,
$\alpha<0 \Rightarrow \arg \alpha=\pi \Rightarrow \arg z_{2}=\arg z_{1}+\pi-2 k \pi$
$k=0$ or $\left.k=1 \Rightarrow \begin{array}{c}\arg z_{2}=\arg z_{1}+\pi \\ \operatorname{or} \\ \arg z_{2}=\arg z_{1}-\pi\end{array}\right\} \Rightarrow \mid O M_{1}$ and $\mid O M_{2}$ are opposed.

Solution to Problem 116.

If n and n^{\prime} are the geometric images of complex numbers z and z^{\prime}, then the image of the difference $z-z^{\prime}$ is constructed on $\left|\mathrm{OM}_{1}\right|$ and $\left|M^{\prime} M\right|$ as sides.

We assume that $M_{3} \in \mid M_{1} M_{2}$
We construct the geometric image of $z_{2}-z_{1}$. It is the fourth vertex of the parallelogram $O M_{1} M_{2} Q_{1}$. The geometric image of $z_{3}-z_{1}$ is Q_{2}, the fourth vertex of the parallelogram $O M_{1} M_{3} Q_{2}$.

$$
\left.\begin{array}{c}
O Q_{1} \| M_{1} M_{2} \\
O Q_{2} \| M_{1} M_{3} \\
M_{1} M_{2} M_{3} \text { collinear }
\end{array}\right\} \Rightarrow Q_{1}, Q_{2}, Q_{3} \text { collinear } \Rightarrow
$$

Vice versa, we assume that
$\frac{z_{3}-z_{1}}{z_{2}-z_{1}}>0 \Rightarrow \frac{z_{3}-z_{1}}{z_{2}-z_{1}}=k>0 \Rightarrow z_{3}-z_{1}=k\left(z_{2}-z_{1}\right), k>0$
$\left.\begin{array}{l}O Q_{1}=\mid O Q_{2} \\ M_{1} M_{2}| | O Q_{1} \\ M_{1} M_{3}| | O Q_{2}\end{array}\right\} \Rightarrow\left|M_{1} M_{2}=\left|M_{1} M_{3} \Rightarrow M_{3} \in\right| M_{1} M_{2}\right.$
If M_{3} and $M_{2} \in$ the opposite ray to O, then $z_{3}-z_{1}=\alpha\left(z_{2}-z_{1}\right)$ with $\alpha<0$.
We repeat the reasoning from the previous point for the same case.

Thus, when $M_{3} \in M_{1} M_{2} M_{3}+M_{2}$ we obtain for the respective ratio positive, negative or having $M_{3}=M_{1}$, so $\frac{z_{3}-z_{1}}{z_{2}-z_{1}} \in R$.

Solution to Problem 117.

The images of the roots of order 3 of the unit are the peaks of the equilateral triangle.

$$
\varepsilon_{0}=1, \varepsilon=\frac{1+i \sqrt{3}}{2}, \varepsilon_{2}=\frac{-1-i \sqrt{3}}{2}
$$

But $\varepsilon_{1}=\varepsilon_{2}^{2}$, so if we write $\varepsilon_{2}=\varepsilon$, then $\varepsilon_{1}=\varepsilon_{2}$.
Thus $M_{1}(1), M_{2}(\varepsilon), M_{3}\left(\varepsilon^{2}\right)$.
We use the equality:

$$
(z-1)\left(\varepsilon^{2}-\varepsilon\right)+(z-\varepsilon)\left(1-\varepsilon^{2}\right)=\left(2-\varepsilon^{2}\right)(1-\varepsilon)
$$

adequate $(\forall) z \in \mathbb{C}$.

$$
\left|(z-1)\left(\varepsilon^{2}-\varepsilon\right)+(z-\varepsilon)\left(1-\varepsilon^{2}\right)\right|=\left|\left(z-\varepsilon^{2}\right)(1-\varepsilon)\right|
$$

But
$\left|(z-1)\left(\varepsilon^{2}-\varepsilon\right)+(z-\varepsilon)\left(1-\varepsilon^{2}\right)\right| \leq\left|(z-1)\left(\varepsilon^{2}-\varepsilon\right)\right|+\left|(z-\varepsilon)\left(1-\varepsilon^{2}\right)\right|$
$\left|(z-1)\left(\varepsilon^{2}-\varepsilon\right)+(z-\varepsilon)\left(1-\varepsilon^{2}\right)\right| \geq\left|(z-1)\left(\varepsilon^{2}-\varepsilon\right)\right|-\left|-(z-\varepsilon)\left(1-\varepsilon^{2}\right)\right|$
Therefore,

$$
\begin{aligned}
& \left|(z-1)\left(\varepsilon^{2}-\varepsilon\right)\right|+\left|(z-\varepsilon)\left(1-\varepsilon^{2}\right)\right| \geq\left|\left(z-\varepsilon^{2}\right)(1-\varepsilon)\right| \\
& \left|(z-1)\left(\varepsilon^{2}-\varepsilon\right)\right|+\mid(z-\varepsilon)\left(1-\varepsilon^{2}\left|\geq\left|z-\varepsilon^{2}\right| \cdot\right| 1-\varepsilon \mid\right. \\
& \varepsilon=\frac{-1-i \sqrt{3}}{2}, \varepsilon^{2}=\frac{-1+\sqrt{3}}{2} \Rightarrow \varepsilon^{2}-\varepsilon=i \sqrt{3}=0+i \sqrt{3} \Rightarrow\left|\varepsilon^{2}-\varepsilon\right|=\sqrt{3} \\
& 1-\varepsilon^{2}=-1-\frac{-1+i \sqrt{3}}{2}=\frac{3}{2}-i \frac{\sqrt{3}}{2}\left|1-\varepsilon^{2}\right|=\sqrt{\frac{9}{4}+\frac{3}{4}}=\sqrt{3} \\
& 1-\varepsilon=1-\frac{-1-i \sqrt{3}}{2}=\frac{3}{2}=\frac{i \sqrt{3}}{2} \\
& |1-\varepsilon|=\sqrt{\frac{9}{4}+\frac{3}{4}}=\sqrt{3} .
\end{aligned}
$$

By substitution:

$$
|z-1| \cdot \sqrt{3}+|z-\varepsilon| \cdot \sqrt{3} \geq\left|z-\varepsilon^{2}\right| \cdot \sqrt{3}
$$

but

$$
\left\|M M_{1}\right\|=|z-1| ;\left\|M M_{2}\right\|=|z-\varepsilon| ;\left\|M M_{3}\right\|=\left|z-\varepsilon^{2}\right|,
$$

thus

$$
\left\|M M_{1}\right\|+\left\|M M_{2}\right\| \geq\left\|M M_{3}\right\|
$$

Therefore $\left\|M M_{1}\right\|,\left\|M M_{2}\right\|,\left\|M M_{3}\right\|$ sides of a Δ.
Then we use $\|x|-|y \| \leq|x-y|$ and obtain the other inequality.

Problems in Spatial Geometry

118. Show that if a line d is not contained in plane α, then $d \cap \alpha$ is \emptyset or it is formed of a single point.

Solution to Problem 118
119. Show that $(\forall) \alpha_{1}(\exists)$ at least one point which is not situated in α.

Solution to Problem 119
120. The same; there are two lines with no point in common.

Solution to Problem 120
121. Show that if there is a line $d(\exists)$ at least two planes that contain line d.
122. Consider lines $d, d^{\prime}, d^{\prime \prime}$, such that, taken two by two, to intersect. Show that, in this case, the 3 lines have a common point and are located on the same plane.

Solution to Problem 122
123. Let A, B, C be three non-collinear points and D a point located on the plane $(A B C)$. Show that:
a. The points D, A, B are not collinear, and neither are $D, B, C ; D, C, A$.
b. The intersection of planes $(D A B),(D B C),(D C A)$ is formed of a single point.
124. Using the notes from the previous exercise, take the points E, F, G distinct from A, B, C, D, such that $E \in A D, F \in B D, G \in C D$. Let $B C \cap F G=\{P\}, G E \cap$ $C A=\{Q\}, E F \cap A B=\{R\}$. Show that P, Q, R are collinear (T. Desarques).
125. Consider the lines d and d^{\prime} which are not located on the same plane and the distinct points $A, B, C \in d$ and $D, E \in d^{\prime}$. How many planes can we draw such that each of them contains 3 non-collinear points of the given points? Generalization.

Solution to Problem 125
126. Show that there exist infinite planes that contain a given line d.

Solution to Problem 126
127. Consider points A, B, C, D which are not located on the same plane.
a. How many of the lines $A B, A C, A D, B C, B D, C D$ can be intersected by a line that doesn't pass through A, B, C, D ?
b. Or by a plane that doesn't pass through A, B, C, D ?

Solution to Problem 127
128. The points α and β are given, $A, B \in \alpha$. Construct a point $M \in \alpha$ at an equal distance from A and B, that \in also to plan β.

Solution to Problem 128
129. Determine the intersection of three distinct planes α, β, γ.

Solution to Problem 129
130. Given: plane α, lines d_{1}, d_{2} and points $A, B \notin \alpha \cup d_{1} \cup d_{2}$. Find a point $M \in$ α such that the lines $M A, M B$ intersect d_{1} and d_{2}.
131. There are given the plane α, the line $d \notin \alpha$, the points $A, B \notin \alpha \cup d$, and $C \in \alpha$. Let $M \in d$ and A^{\prime}, B^{\prime} the points of intersection of the lines $M A, M B$ with plane α (if they exist). Determine the point M such that the points $C, A^{\prime}, B^{\prime}$ to be collinear.

Solution to Problem 131
132. If points A and B of an open half-space σ, then $[A B] \subset \sigma$. The property is as well adherent for a closed half-space.

Solution to Problem 132
133. If point A is not situated on plane α and $B \in \alpha$ then $|B A \subset| \alpha A$.

Solution to Problem 133
134. Show that the intersection of a line d with a half-space is either line d or a ray or an empty set.

Solution to Problem 134
135. Show that if a plane α and the margin of a half-space σ are secant planes, then the intersection $\sigma \cap \alpha$ is a half-plane.

Solution to Problem 135
136. The intersection of a plane α with a half-space is either the plane α or a half-plane, or an empty set.

Solution to Problem 136
137. Let A, B, C, D four non coplanar points and α a plane that doesn't pass through one of the given points, but it passes trough a point of the line $|A B|$. How many of the segments $|A B|,|A C|,|A D|,|B C|,|B D|,|C D|$ can be intersected by plane α ?
138. Let d be a line and α, β two planes such that $d \cap \beta=\emptyset$ and $\alpha \cap \beta=\emptyset$. Show that if $A \in d$ and $B \in \alpha$, then $d \subset \mid \beta A$ and $\alpha \subset \mid \beta B$.

Solution to Problem 138
139. Let $\mid \alpha A$ and $\mid \beta B$ be two half-spaces such that $\alpha \neq \beta$ and $|\alpha A \subset| \beta B$ or $|\alpha A \cap| \beta B=\varnothing$. Show that $\alpha \cap \beta=\emptyset$.

Solution to Problem 139
140. Show that the intersection of a dihedral angle with a plane α can be: a right angle, the union of two lines, a line, an empty set or a closed halfplane and cannot be any other type of set.

Solution to Problem 140
141. Let d be the edge of a proper dihedron $\angle \alpha^{\prime} \beta^{\prime}, A \in \alpha^{\prime}-d, b \in \beta^{\prime}-d$ and $P \in$ int. $\angle \alpha^{\prime} \beta^{\prime}$. Show that:
a. $(P d) \cap$ int. $\angle \alpha^{\prime} \beta^{\prime}=\mid d P$;
b. If $M \in d$, int. $\angle A M B=$ int. $\alpha^{\prime} \beta^{\prime} \cap(A M B)$.
142. Consider the notes from the previous problem. Show that:
a. The points A and B are on different sides of the plane $(P d)$;
b. The segment $|A B|$ and the half-plane $\mid d P$ have a common point.
143. If $\angle a b c$ is a trihedral angle, $P \in$ int. $\angle a b c$ and A, B, C are points on edges a, b, c, different from O, then the ray $\mid O P$ and int. $A B C$ have a common point.

Solution to Problem 143
144. Show that any intersection of convex sets is a convex set.
145. Show that the following sets are convex planes, half-planes, any open or closed half-space and the interior of a dihedral angle.

Solution to Problem 145
146. Can a dihedral angle be a convex set?

Solution to Problem 146
147. Which of the following sets are convex:
a. a trihedral angle;
b. its interior;
c. the union of its faces;
d. the union of its interior with all its faces?

Solution to Problem 147
148. Let σ be an open half-space bordered by plane α and M a closed convex set in plane α. Show that the set $M \cap \sigma$ is convex.

Solution to Problem 148
149. Show that the intersection of sphere $S(O, r)$ with a plane which passes through O, is a circle.

Solution to Problem 149
150. Prove that the int. $S(O, r)$ is a convex set.

Solution to Problem 150
151. Show that, by unifying the midpoints of the opposite edges of a tetrahedron, we obtain concurrent lines.
152. Show that the lines connecting the vertices of a tetrahedron with the centroids of the opposite sides are concurrent in the same point as the three lines from the previous example.

Solution to Problem 152
153. Let $A B C D$ be a tetrahedron. We consider the trihedral angles which have as edges $[A B,[A E,[A D,[B A,[B C,[B D,[C A,[C B,[C D,[D A,[D B,[D C$. Show that the intersection of the interiors of these 4 trihedral angles coincides with the interior of tetrahedron [ABCD].

Solution to Problem 153
154. Show that (\forall) $M \in$ int. $[A B C D]$ (() $P \in|A B|$ and $Q \in|C D|$ such that $M \in$ $\| P Q$.

Solution to Problem 154
155. The interior of tetrahedron [$A B C D$] coincides with the union of segments $|P Q|$ with $P \in|A B|$ and $Q \in|C D|$, and tetrahedron $[A B C D]$ is equal to the union of the closed segments $[P Q]$, when $P \in[A B]$ and $Q \in[C D]$.

Solution to Problem 155
156. The tetrahedron is a convex set.
157. Let M_{1} and M_{2} convex sets. Show that by connecting segments [PQ], for which $P \in M_{1}$ and $Q \in M_{2}$ we obtain a convex set.

Solution to Problem 157
158. Show that the interior of a tetrahedron coincides with the intersection of the open half-spaces determined by the planes of the faces and the opposite peak. Define the tetrahedron as an intersection of half-spaces.

Solutions

Solution to Problem 118.

We assume that $d \cap \alpha=\{A, B\} \Rightarrow d \subset \alpha$.
It contradicts the hypothesis $\Rightarrow d \cap \alpha=\{A\}$ or $d \cap \alpha=\emptyset$.

Solution to Problem 119.
We assume that all the points belong to the plane $\alpha \Rightarrow(\nexists)$ for the points that are not situated in the same plane. False!

Solution to Problem 120.

$\exists A, B, C, D$, which are not in the same plane. We assume that $A B \cap C D=\{0\} \Rightarrow$ $A B$ and $C D$ are contained in the same plane and thus A, B, C, D are in the same plane. False, it contradicts the hypothesis $\Rightarrow A B \cap C D=\emptyset \Rightarrow(\exists) \Rightarrow$ lines with no point in common.

Solution to Problem 121.

(ヨ) $A \notin d$ (if all the points would $\in d$, the existence of the plane and space would be negated). Let $\alpha=(d A),(\exists) B \notin \alpha$ (otherwise the space wouldn't exist). Let $\beta=$ $(B d), \alpha \neq \beta$ and both contain line d.

Solution to Problem 122.
We show that $d \neq d^{\prime} \neq d^{\prime \prime} \neq d$.
Let

$$
\begin{gathered}
d \cap d^{\prime}=\{A\}=\left(d, d^{\prime}\right) \Rightarrow\left\{\begin{array}{l}
d \subset \alpha \\
d^{\prime} \subset \alpha
\end{array}\right. \\
\begin{array}{c}
d \cap d^{\prime}=\{B\} \\
B \neq A
\end{array} \Rightarrow\left\{\begin{array}{l}
B \in d \\
d \subset \alpha
\end{array} \Rightarrow B \in a, B \in d^{\prime}\right.
\end{gathered}
$$

$$
\begin{aligned}
\substack{d^{\prime \prime} \cap d^{\prime}=\{C\} \\
C \neq B \\
C \neq A}
\end{aligned} \quad \Rightarrow \begin{gathered}
C \in d^{\prime} \\
d^{\prime} \subset \propto
\end{gathered} \Rightarrow C \in \alpha, C \in d^{\prime \prime}
$$

$\Rightarrow d^{\prime \prime} \subset \alpha$, so the lines are located on the same plane α.

If $\left.\begin{array}{rl}d \cap d^{\prime} & =\{A\} \Rightarrow A \in d^{\prime} \\ d^{\prime \prime} \cap d & =\{A\} \Rightarrow A \in d^{\prime \prime}\end{array}\right\} \Rightarrow d^{\prime} \cap d^{\prime \prime}=\{A\}$, and the three lines have a point in common.

Solution to Problem 123.

a. $D \notin(A B C)$.

We assume that D, A, B collinear $\Rightarrow(\exists) d$ such that $\left.\begin{array}{c}D \in d, A \in d, B \in d \\ A \in(A B C), B \in(A B C)\end{array}\right) \stackrel{T_{2}}{\Rightarrow} d \subset$ $(A B C) \Rightarrow D \in(A B C)$ - false. Therefore, the points D, A, B are not collinear.
b. Let $(D A B) \cap(B C D) \cap(D C A)=E$.

As the planes are distinct, their intersections are:

$$
\left.\begin{array}{l}
(D A B) \cap(D B C)=D B \\
(D A B) \cap(D C A)=D A \\
(D B C) \cap(D C A)=D C
\end{array}\right\} \Rightarrow A, B, C \text { If }(D A B)=(D B C)
$$

We suppose that (\exists) $\left.\left.M \in E, M \neq D \Rightarrow \begin{array}{l}M \in D B \\ M \in D A\end{array}\right\} \Rightarrow \begin{array}{l}B \in M D \\ A \in M D\end{array}\right\} \Rightarrow A, B, D$ are collinear (false, contrary to point a.). Therefore, set E has a single point $E=\{D\}$.

Solution to Problem 124.

We showed at the previous exercise that if $D \notin(A B C),(D A B) \neq(D B C)$. We show that E, F, G are not collinear. We assume the opposite. Then,

$$
\left.\begin{array}{l}
G \in E F \\
E F \subset(D A B)
\end{array}\right\} \Rightarrow\left\{\begin{array}{l}
G \in(D A B) \\
G \in(D B C)
\end{array} \Rightarrow\right.
$$

Having three common points D, B and $G \Rightarrow$ false. So E, F, G are not collinear and determine a plane ($E F G$).

$$
\left.\begin{array}{l}
P \in B C \Rightarrow P \in(A B C) \\
P \in F G \Rightarrow P \in(E F G) \\
R \in A B \Rightarrow R \in(A B C) \\
R \in E F \Rightarrow R \in(E F G) \\
Q \in C A \Rightarrow P \in(A B C) \\
Q \in G E \Rightarrow P \in(E F G)
\end{array}\right\} P, Q, R \in(A B C) \cap(E F G) \Rightarrow
$$

$\Rightarrow P, Q, R$ are collinear because \in to the line of intersection of the two planes.

Solution to Problem 125.

The planes are $\left(A, d^{\prime}\right) ;\left(B, d^{\prime}\right) ;\left(C, d^{\prime}\right)$.

Generalization: The number of planes corresponds to the number of points on line d because d^{\prime} contains only 2 points.

Solution to Problem 126.

Let line d be given, and A any point such that $A \notin d$.

We obtain the plane $\alpha=(A, d)$, and let $M \notin \alpha$. The line $d^{\prime}=A M, d^{\prime} \not \subset \alpha$ is not thus contained in the same plane with d. The desired planes are those of type $(M d), M \in d^{\prime}$, that is an infinity of planes.

Solution to Problem 127.
a. $(\forall) 3$ points determine a plane. Let plane (ABD). We choose in this plane $P \in$ $|A D|$ and $Q \in|A B|$ such that $P \in|B Q|$, then the line $P Q$ separates the points A and D, but does not separate A and B, so it separates P and $D \Rightarrow P Q \cap|B D|=R$, where $R \in|B D|$.

Thus, the line $P Q$ meets 3 of the given lines. Let's see if it can meet more.

We assume that

$$
\left.P Q \cap B C=\{E\} \Rightarrow E \in P Q \subset(A B D) \Rightarrow \begin{array}{l}
E \in(A B D) \\
E \in B C
\end{array}\right\} \Rightarrow
$$

it has two points in common with the plane.

$$
\begin{aligned}
\Rightarrow\left\{\begin{array}{l}
B \in(A B D) \\
B \in B Q
\end{array} \Rightarrow B C \subset(A B D)\right. & \\
& \Rightarrow A, B, C, D \text { coplanar - false. }
\end{aligned}
$$

Thus,

$$
\left.\begin{array}{l}
B C \cap(A B D)=\{E\} \\
B C \cap(A B D)=\{B\}
\end{array}\right\} \Rightarrow E=B \Rightarrow B \in P Q .
$$

false.

We show in the same way that $P Q$ does not cut $A C$ or $D C$, so a line meets at most three of the given lines.
b. We consider points E, F, G such that $E \in|B C|, A \in|D F|, D \in|B G|$. These points determine plane ($E F G$) which obviously cuts the lines $B C, B D$ and $B D$. $F G$ does not separate A and D or $B D \Rightarrow$ it does not separate A or $B \Rightarrow A \in|B R|$.

Let's show that ($E F G$) meets as well the lines $A B, C D, A C$. In the plane ($A B D$) we consider the triangle $F D G$ and the line $A B$.

As this line cuts side $|F D|$, but it does not cut $|D G|$, it must cut side $|F G|$, so $A B \cap$ $|F G|=\{R\} \Rightarrow R \in|F G| \subset(E F G)$, so $A B \cap(E F G)=\{R\}$. In the plane $(B C D)$, the line $E G$ cuts $|B C|$ and does not cut $|B D|$, so $E G$ cuts the side $|C D|, E G \cap|C D|=\{P\} \Rightarrow$ $P \in E G \subset(E F G) \Rightarrow C D \cap(E F G)=\{P\}$.

$$
\left.\begin{array}{c}
R \in(E F G), R \text { does not separate } A \text { and } B \\
E \text { separates } B \text { and } C \\
\in(E F G) \cap A C=\{Q\} .
\end{array}\right\} \Rightarrow R \in \cap|A C|=Q \Rightarrow Q \in R E \Rightarrow Q
$$

Solution to Problem 128.

We assume problem is solved, if $\left.\begin{array}{c}M \in \alpha \\ M \in \beta\end{array}\right\} \Rightarrow \alpha \cap \beta \neq \emptyset, \Rightarrow \alpha \cap \beta=d$.

As $\|M A\|=\|M B\| \Rightarrow M \in$ the bisecting line of the segment $[A B]$.
So, to find M, we proceed as follows:

1. We look for the line of intersection of planes α and β, d. If $\alpha \| \beta$, the problem hasn't got any solution.
2. We construct the bisecting line d^{\prime} of the segment $[A B]$ in the plane α.
3. We look for the point of intersection of lines d and d^{\prime}. If $d \| d^{\prime}$, the problem hasn't got any solution.

Solution to Problem 129.

If $\alpha \cap \beta=\emptyset \Rightarrow \alpha \cap \beta \cap \gamma=\emptyset$. If $\alpha \cap \beta=d$, the desired intersection is $d \cap \gamma$, which can be a point (the 3 planes are concurrent), the empty set (the line of intersection of two planes is \|| with the third) or line d (the 3 planes which pass through d are secant).

Solution to Problem 130.

To determine M, we proceed as follows:

1. We construct plane $\left(A d_{1}\right)$ and we look for the line of intersection with α_{1}, d_{1}. If $d_{1}(/ \exists), \nexists$ neither does M.
2. We construct plane $\left(B d_{2}\right)$ and we look for the line of intersection with $\alpha, d_{2}{ }^{\prime}$. If $d_{2}{ }^{\prime}$ does not exist, neither does M.
3. We look for the point of intersection of lines $d_{1}{ }^{\prime}$ and $d_{2}{ }^{\prime}$. The problem has only one solution if the lines are concurrent, an infinity if they are coinciding lines and no solution if they are parallel.

Solution to Problem 131.

We assume the problem is solved.
a. First we assume that $A . B, C$ are collinear. As $A A^{\prime}$ and $B B^{\prime}$ are concurrent lines, they determine a plane β, that intersects α after line $A^{\prime} B^{\prime}$.

As
$\left.C \in A B \Rightarrow \begin{array}{c}C \in \beta \\ C \in \alpha\end{array}\right\} \Rightarrow C \in \alpha \cup \beta \Rightarrow C \in A^{\prime} B^{\prime}$
and points C, A, B^{\prime} are collinear $(\forall) M \in d$.
b. We assume that A, B, C are not collinear.

We notice that: $\left(A A^{\prime}, B B^{\prime}\right)=\beta$ (plane determined by 2 concurrent lines).
$\beta \cup \alpha=d^{\prime}$ and $C \in d^{\prime}$.

To determine M we proceed as follows:

1) We determine plane $(A B C)$;
2) We look for the point of intersection of this plane with line d, so $d \cap$ $(A B C)=\{M\}$ is the desired point.
Then $(A B C) \cap \alpha=d^{\prime}$.
$\left.\begin{array}{l}\left.\begin{array}{l}A M \cap \alpha=\left\{A^{\prime}\right\} \\ B M \cap \beta=\left\{B^{\prime}\right\}\end{array}\right\} \Rightarrow A^{\prime} B \in d^{\prime \prime} \\ \left.\begin{array}{r}C \in\left\{A^{\prime}\right\} \\ C \in \alpha\end{array}\right\} \Rightarrow\end{array}\right\} \Rightarrow$
$\Rightarrow A^{\prime}, B^{\prime}, C^{\prime}$ are collinear.

Solution to Problem 132.

$A \in \sigma$ and $B \in \sigma \Rightarrow[A B] \cap \alpha \neq \emptyset$.
Let $\sigma=|\alpha A=| \alpha B$.
Let $M \in|A B|$ and we must show that $M \in \sigma(\forall) M$ inside the segment.
We assume the contrary that $M \notin \sigma \Rightarrow(\exists) P$ such that $[A M] \cap d=\{P\} \Rightarrow P \in$ $[A M] \Rightarrow P \in[A B] \Rightarrow[A B] \cap \alpha \neq \emptyset$ false.
$P \in \alpha$, so $M \in \sigma$. The property is also maintained for the closed half-space.

Compared to the previous case there can appear the situation when one of the points A and $B \in \alpha$ or when both belong to α.

If $A \in \alpha, B \in \sigma,|A B| \cap \alpha \neq \emptyset$ and we show as we did above that:

$$
\left.\begin{array}{l}
|A B| \subset \sigma \\
A \in \alpha \\
B \in \sigma
\end{array}\right\} \Rightarrow[A B] \subset \sigma \cup \alpha
$$

If:

$$
A, B \in \alpha \Rightarrow A B \subset \alpha \Rightarrow[A B] \subset \alpha \Rightarrow[A B] \subset \alpha \cup \sigma
$$

Solution to Problem 133.

Let

$$
M \in \mid B A \Rightarrow B \notin[M A] \Rightarrow[M A] \cap \alpha=\oslash
$$

$\Rightarrow M \in \mid \alpha A$
So
$|B A \subset| \alpha A$

Solution to Problem 134.
Let α be a plane and σ_{1}, σ_{2} the two half-spaces that it determines. We consider half-space σ_{1}.

$$
d \cap \alpha=\theta
$$

1) $d \cap \sigma_{1}=\varnothing$
2) $d \cap \sigma_{1} \neq \varnothing$, fie $A \in d \cap \sigma_{1} \Rightarrow\left\{\begin{array}{l}A \in \sigma_{1} \\ A \in d\end{array}\right.$

$$
\left.\left.\begin{array}{c}
M \in d \Rightarrow[A M] \subset d \\
d \cap \alpha=\varnothing
\end{array}\right\} \Rightarrow \begin{array}{l}
{[A M \cap \cap \alpha=\varnothing} \\
A \in \sigma_{1}
\end{array}\right\} \Rightarrow M \in \sigma_{1},(\forall) M \in d \Rightarrow d \subset \sigma_{1} \Rightarrow
$$

3) $d \cap \alpha \neq \varnothing \Rightarrow d \bigcap \alpha=\{P\} \Rightarrow$
P determines on d two rays, $\mid P A$ and $\mid P B$ where
$\left.\begin{array}{l}P \in|A B| \\ P \in \alpha\end{array}\right\} \Rightarrow|A B| \cap \alpha \neq \varnothing \Rightarrow$
A and B are in different half-spaces.
We assume
$\left.\begin{array}{l}A \in \sigma_{1} \\ P \in \alpha\end{array}\right\} \stackrel{p r \sigma_{2}}{\Rightarrow}|P A \subset| \alpha A \Rightarrow\left|P A \subset \sigma_{1} \Rightarrow \sigma_{1} \cap d=\right| P A$.

Solution to Problem 135.

Let σ be an open half-space and p its margin and let $d=\alpha \cap \beta$.
We choose points A and $B \in \alpha-d$, on both sides of line $d \Rightarrow$

$$
\left.\begin{array}{l}
\Rightarrow[A B] \cap \beta \neq \varnothing \\
d \subset \beta
\end{array}\right\} \Rightarrow[A B] \cap \beta \neq \varnothing
$$

$\Rightarrow A, B$ are on one side and on the other side of β and it means that only one of them is on σ.
We assume that $A \in \sigma \Rightarrow B \in \sigma$. We now prove $\alpha \cap \sigma=\mid d A$.

$$
\alpha \cap \sigma \subset \mid d A
$$

Let

$$
\left.\left.M \in \alpha \cap \sigma \Rightarrow M \in \alpha, M \in \sigma, \begin{array}{l}
M \in \sigma, B \neq \sigma
\end{array}\right\} \Rightarrow[M B] \cap B \neq \vartheta \begin{array}{l}
M \in \alpha \\
B \in \alpha
\end{array}\right\} \Rightarrow
$$

$[M B] \in d \neq \emptyset \Longrightarrow M$ and B are on one side and on the other side of line $d \Rightarrow M$ is
on the same side of line d with $A \Longrightarrow M \in \mid d A$

$$
\left.\left.\begin{array}{c}
\Rightarrow M \in \mid d A \Rightarrow[M A] \cap d=\varnothing \\
\alpha \cap \beta=d \\
{[M A] \subset \alpha}
\end{array}\right\} \Rightarrow[M A] \cap B=\varnothing \Rightarrow M \in \left\lvert\, \beta A \Rightarrow \begin{array}{c}
M \in \sigma \\
M \in \alpha
\end{array}\right.\right\} \Rightarrow
$$

Solution to Problem 136.
Let σ be the considered half-space and β its margin. There are more possible cases:

$$
\text { 1) } \alpha \cap \beta=\varnothing
$$

In this case it is possible that:
a) $a \cap \sigma=\varnothing$
b) $\alpha \subset \sigma \neq \varnothing \Rightarrow(\exists) A \in \alpha \cap \sigma \Rightarrow \begin{aligned} & A \in \alpha \\ & A \in \sigma\end{aligned}$

Let
$\left.\begin{array}{c}\boldsymbol{M} \in \alpha \Rightarrow[\boldsymbol{M A}] \subset \alpha \\ a \cap \beta=\varnothing\end{array}\right\} \Rightarrow \begin{gathered}{[M A] \cap \beta=\varnothing} \\ A \in \sigma\end{gathered} \Rightarrow M \in \sigma,(\forall) \boldsymbol{M} \in \alpha \Rightarrow \alpha \subset \sigma \Rightarrow \alpha \cap \sigma=\alpha$
2) $a \cap \beta \neq \varnothing \Rightarrow \alpha \cap \beta=d \Rightarrow \alpha \cap \sigma$
is a half-plane according to a previous problem.

Solution to Problem 137.

The intersection of two planes is a line and it cuts only two sides of a triangle.
There are more possible cases:

1. d cuts $\lfloor A B \mid$ and $\lfloor B C \mid$
d^{\prime} cuts $|A B|$ and $\lfloor A D\rfloor, \alpha$ cuts $|A D|$ so it has a point in common with (ADC) and let $(A D C) \cap \alpha=d^{\prime \prime}$.
$d^{\prime \prime}$ cuts $|A D|$ and does not cut $|A C| \Rightarrow d^{\prime \prime}$ cuts $|D C|$
α cuts $|D C|$ and $|B C| \Rightarrow$ it does not cut $|B D|$. In this case α cuts 4 of the 6 segments (the underlined ones).
2. d cuts $\lfloor A B \mid$ and $\lfloor A C \mid$, it does not cut $|B D|$
d^{\prime} cuts $|A B|$ an $|A D|$, it does not cut $|B D|$
$d^{\prime \prime}$ cuts $|A D|$ an $|A C|$, it does not cut $|D C|$
$\Rightarrow \alpha$ does not intersect plane (BCD). In this case α intersects only 3 of the 6 segments.
3. d cuts $\lfloor A B \mid$ and $|B C|$, it does not cut $|A C|$
d^{\prime} cuts $|A B|$ an $|B D|$, it does not cut $|D C|$
α intersects $|B D|$ and $|B C|$, so it does not cut $|D C|$
In $\triangle B D C \Rightarrow \alpha$ does not intersect plane ($A D C$)
In this case α intersects only three segments.
4. d cuts $\lfloor A B \mid$ and $\lfloor A C\rfloor$, it does not cut $|B C|$
d^{\prime} cuts $|A B|$ an $\lfloor B D \mid$, it does not cut $|A D|$
$d^{\prime \prime}$ cuts $|A C|$ an $\lfloor D C \mid$
α does not cut $|B C|$ in triangle $B D C$. So α intersects 4 or 3 segments.

Solution to Problem 138.

```
\(d \cap \beta=\varnothing\)
Let
\(\left.\left.\begin{array}{c}M \in d \\ A \in d\end{array}\right\} \Rightarrow \begin{array}{l}{[A M] \subset d} \\ d \cap \beta=\varnothing\end{array}\right\} \Rightarrow=[A M] \cap \beta=\varnothing\)
    \(\Rightarrow M \in|\beta A,(\forall) M \in d \Rightarrow d \subset| \beta A\)
Let
\(\left.\left.\begin{array}{l}N \in \alpha \\ B \in \alpha\end{array}\right\} \Rightarrow \begin{array}{l}{[N B] \subset \alpha} \\ a \cap \beta=\varnothing\end{array}\right\} \Rightarrow=[N B] \cap \beta=\varnothing\)
\(\alpha \subset \mid \beta B\).
```


Solution to Problem 139.

We first assume that $\alpha \neq \beta$ and $|\alpha A \subset| \beta B$.

As

$$
\left.\begin{array}{r}
A \in \mid a A \\
|\alpha A \subset| \beta B
\end{array}\right\} \Rightarrow A \in|\beta B \Rightarrow| \beta B=\mid \beta A
$$

The hypothesis can then be written as $\alpha \neq \beta$ and $|\alpha A \subset| \beta B$. Let's show that $\alpha \cap$ $\beta=\emptyset$. By reductio ad absurdum, we assume that $\alpha \cap \beta \neq \emptyset \Rightarrow(\exists) d=\alpha \cap \beta$ and let $O \in d$, so $O \in \alpha$ and $O \in \beta$. We draw through A and O a plane r, such that $d \in r$, so the three planes α, β and r do not pass through this line. As r has the common point O with α and β, it is going to intersect these planes.

$$
\left.\begin{array}{l}
r \cap \alpha=\delta^{\prime} \\
r \cap \beta=\delta
\end{array}\right\} \Rightarrow \delta \cap \delta^{\prime}=O
$$

which is a common point of the 3 planes. Lines δ and δ^{\prime} determine 4 angles in plane r, having O as a common peak, $A \in$ the interior of one of them, let $A \in \operatorname{int}$. $\widehat{h k}$. We consider $C \in$ int. $\widehat{h k}$.
Then C is on the same side with A in relation to δ^{\prime}, so C is on the same side with A in relation to $\alpha \Rightarrow C \in \mid \alpha A$.

But C is on the opposite side of A in relation to δ, so C is on the opposite side of A in relation to $\beta \Rightarrow C \notin \mid \beta A$. So $|\alpha A \not \subset| \beta A$ - false - it contradicts the hypothesis \Rightarrow So $\alpha \cap \beta=\varnothing$.

Solution to Problem 140.

Let d be the edge of the given dihedral angle. Depending on the position of a line in relation to a plane, there can be identified the following situations:

1) $d \cap \alpha=\{O\}$
$\Rightarrow\left\{\begin{array}{l}O \in d \\ O \in \alpha\end{array} \Rightarrow\left\{\begin{array}{l}O \in \gamma \\ O \in \beta^{\prime}\end{array} \Rightarrow\left\{\begin{array}{l}\gamma^{\prime} \cap \alpha=d^{\prime} \\ \beta^{\prime} \cap \alpha=d^{\prime \prime}\end{array}\right.\right.\right.$

The ray with its origin in O, so $\alpha \subset \widehat{\beta^{\prime} \gamma^{\prime}}=\widehat{d^{\prime} d^{\prime \prime}}$ thus an angle.
2) $d \cap \alpha=\varnothing$

$$
\left.\begin{array}{c}
\text { a) } \alpha \cap \beta^{\prime} \neq \emptyset \Rightarrow \alpha \cap \beta=d^{\prime} \\
\alpha \cap \gamma^{\prime} \neq \emptyset \Rightarrow \alpha \cap \gamma^{\prime}=d^{\prime \prime}
\end{array}\right\} \Rightarrow d^{\prime \prime} \| d^{\prime \prime}
$$

Indeed, if we assumed that $d^{\prime} \cap d^{\prime \prime} \neq \emptyset \Rightarrow(\exists) O \in d^{\prime} \cap d^{\prime \prime}$.
$\Rightarrow\left\{\begin{array}{l}O \in d^{\prime} \\ O \in d^{\prime \prime}\end{array} \Rightarrow\left\{\begin{array}{ll}O \in \beta^{\prime} & O \in d \\ O \in \gamma^{\prime} \Rightarrow & O \in \alpha \\ O \in a & O \in d \cap \alpha,\end{array}\right\} \Rightarrow O\right.$,
false - it contradicts the hypothesis.
b) $\left\{\begin{array}{l}\alpha \cap \beta^{\prime}=d^{\prime \prime} \\ \alpha \cap \gamma^{\prime}=\varnothing\end{array}\right.$

Or

$$
\left\{\begin{array}{l}
\alpha \cap \beta^{\prime}=\ell \\
\alpha \cap \gamma^{\prime}=d^{\prime \prime}
\end{array} \Rightarrow\right.
$$

in this case $\alpha \cap \overline{\beta^{\prime} \gamma^{\prime}}=d^{\prime \prime}-$ a line.

c) $\left.\begin{array}{l}\alpha \cap \beta^{\prime}=\varnothing \\ \alpha \cap \gamma^{\prime}=\varnothing\end{array}\right\}$

Then $\alpha \cap \overline{\beta^{\prime} \gamma^{\prime}}=\emptyset$.
3) $d \cap \alpha=d$
a)

$d \cap \alpha=d$, but $\alpha \neq \beta, \alpha \neq \gamma$
$\alpha \cap \overline{\beta^{\prime} \gamma^{\prime}}=d$ thus the intersection is a line.
b) $\alpha=\beta \quad \alpha=\gamma$.

In this case the intersection is a closed half-plane.

Solution to Problem 141.

1) int. $\widehat{\alpha^{\prime} \beta^{\prime}}=|\alpha B \cap| \beta A$
$P \in \operatorname{int} . \alpha^{\prime} \beta^{\prime} \Rightarrow P \in \alpha B$
$P \in \mid \beta A$
$a \cap(P d)=d \stackrel{\text { pr. } 4}{\Rightarrow}(P d) \cap(\alpha B)$ is a half-plane $\quad P \in \mid \alpha B$
$\Rightarrow(P d) \cap \alpha B=d P$

$$
\left.\begin{array}{cc}
(P d) \cap \beta=d \Rightarrow & (P d) \cap \mid \beta A \text { is a half-plane } \\
P \in \mid \beta A
\end{array}\right\} \Rightarrow(P d) \cap|\beta A=| d P
$$

From (*) and (**),
$\Rightarrow(P d) \cap \alpha B \cap|\beta A=| d P \Rightarrow(P d) \cap$ int $\cdot \widehat{a^{\prime} \beta^{\prime}}=\mid d P$
2) $(A B M) \cap \alpha=A M$ so they are secant planes $\stackrel{\text { pr. } 4}{\Longrightarrow}(A M B) \cap \beta A=\mid M B_{1} A$
$(A M B) \cap$ int. $\widehat{a^{\prime} \beta^{\prime}}=(A M B) \cap|\alpha B \cap| \beta A=\{(A M B) \cap|\alpha B| \cap[(A M B) \cap \mid \beta A]=$ $=\left|M B_{1} A \cap\right| M A_{1} B=\operatorname{int} \cdot \widehat{A M} B$.

Solution to Problem 142.
$\left.\begin{array}{r}M \in d \Rightarrow M \in d P \\ M \in(A B M)\end{array}\right\} \Rightarrow(A M B) \cap(d P)=d^{\prime}$ si $M \in d^{*}$
$\left.\left.\left.\begin{array}{l}d^{\prime} \subset(d P) \\ d^{\prime} \cap d=M\end{array}\right\} \Rightarrow \begin{array}{r}\left|d P \cap d^{\prime}=\right| M Q \\ Q \in \mid d P\end{array}\right\} \Rightarrow \begin{array}{l}|M Q \subset| d P \subset \text { int. } \widehat{\alpha^{\prime} \beta^{\prime}} \\ \mid M Q \subset d^{\prime} \subset(A M B)\end{array}\right\} \Rightarrow$
$\Rightarrow \mid M Q \subset$ int $\left(\widehat{\alpha^{\prime} \beta^{\prime}}\right) \cap(A B M) \Rightarrow \mid M Q \subset$ int. $\widehat{A M B} \Rightarrow \begin{aligned} & |M Q \subset| A B \mid=\{R\} \\ & |M Q \subset| d P\end{aligned}$
$\Rightarrow|d P \cap| A B|=\{R\} \quad \quad| d P \subset(d P) \quad(d P) \cap|A B|=\{R\}$
\Rightarrow points A and B are on different sides of $(d P)$.

Solution to Problem 143.

Let rays $\alpha^{\prime}=\left|O A_{1} B, \beta=\left|O A_{1} C, \gamma^{\prime}=\right| O A_{1} P\right.$.
As P is interior to the dihedron formed by any half-plane passing through O of the trihedral, so

$$
\left.\begin{array}{c}
P \in \operatorname{int} \widehat{\alpha^{\prime} \bar{\beta}^{\prime}} \\
\\
B \in \alpha^{\prime} \\
C \in \gamma
\end{array}\right\} \Rightarrow|B C| \cap \gamma^{\prime}=\{Q\}
$$

So

$$
\left.\begin{array}{l}
P \in \mid O A_{1} P \\
Q \in \mid O A_{1} P=\gamma^{\prime}
\end{array}\right\} \Rightarrow
$$

P and Q in the same half-plane det. $O A \Rightarrow P$ and Q on the same side of $O A$ (1)
$P \in$ int $\widehat{a b c} \Rightarrow P \in \mid O A C, A \Rightarrow$
$\Rightarrow P$ and A are on the same side of $(O B C) \cap \gamma^{\prime} \Rightarrow P$ and A are on the same side of $O Q$ (2).

From (1) and (2) \Rightarrow
$P \in \operatorname{int} . \widehat{A O Q} \xrightarrow{\text { T. transv. }}|A Q| \cap|O P=\{R\} \Rightarrow R \in| A Q|,|A Q| \subset$ int. $A B C$
$\Rightarrow R \in$ int. $A B C \Rightarrow \mid O P \cap$ int. $A B C=\{R\}$.

Solution to Problem 144.
Let M and M^{\prime} be two convex sets and $M \cap M^{\prime}$ their intersection. Let

$$
\left.\Rightarrow P Q \in M \cap M^{\prime}, P \neq Q \Rightarrow P \in M \cap Q \in M, M \xrightarrow{P \in M^{\prime} \text { corvex }\left\{\begin{array}{l}
|P Q| \subset M \\
|P Q| \subset M^{\prime}
\end{array} \Rightarrow \text { Q } A \in M^{\prime}\right.}\right\} \Rightarrow
$$

$\Rightarrow|P Q| \subset M \cap M^{\prime}$
so the intersection is convex.

Solution to Problem 145.

a. Let $P, Q \in \alpha ; P \neq Q \Rightarrow \mid P Q=P Q$ (the line is a convex set) $P Q \subset \alpha$, so $|P Q| \subset \alpha$, so the plane is a convex set.
b. Half-planes: Let $S=\mid d A$ and $P, Q \in S \Rightarrow|P Q| \cap d=\emptyset$. Let $M \in|P Q| \Rightarrow|P M| \subset$ $|P Q| \Rightarrow|P M| \cap d=\varnothing \Rightarrow P$ and M are in the same half-plane $\Rightarrow M \in S$. So $|P Q| \subset S$ and S is a convex set.

Let $S^{\prime}=[d A$. There are three situations:

1) $P, Q \in \mid d A$ - previously discussed;
2) $P, Q \in d \Rightarrow|P Q| \subset d \subset S^{\prime}$;
3) $\quad P \in d, Q \notin d \Rightarrow|P Q| \subset|d Q \Rightarrow| P Q|\subset| d A \subset[d A$ so $[d A$ is a convex set.

c. Half-spaces: Let $\sigma=\mid \alpha A$ and let $P, Q \in \sigma \Rightarrow|P Q| \cap \alpha=\emptyset$.

Let $M \in|P Q| \Rightarrow|P M| \subset|P Q| \Rightarrow|P M| \cap \alpha=\varnothing$.
Let $\sigma^{\prime}=[\alpha A$. There are three situations:

1) $P, Q \in \mid \alpha A$ previously discussed;
2) $P, Q \in \alpha \Rightarrow|P Q| \subset \alpha \subset \sigma^{\prime}$;
3) $P \in \alpha, Q \notin \alpha$.

$$
\left.P, Q \in \sigma^{\prime} \Rightarrow[P Q] \subset \sigma^{\prime} \Rightarrow \mid P Q \subset \sigma^{\prime}\right\}
$$

and so σ^{\prime} is a convex set.

d. the interior of a dihedral angle:
int. $\alpha^{\prime} \beta^{\prime}=|\alpha A \cap| \beta B$ and as each half-space is a convex set and their intersection is the convex set.

Solution to Problem 146.

No. The dihedral angle is not a convex set, because if we consider it as in the previous figure $A \in \beta^{\prime}$ and $B \in \alpha^{\prime}$.

$$
\left.\begin{array}{l}
\text { (} \forall) P \in \text { int. } \widehat{\alpha^{\prime}},|d P \cap| A B \mid \neq \varnothing \\
\Rightarrow(\exists) M \in|A B| \text { a.iM } M \in \text { int. } \widehat{\alpha^{\prime} \beta^{\prime}} \\
M \notin \alpha^{\prime}, M \notin \beta^{\prime}
\end{array}\right\} \Rightarrow|A B| \not \subset \widehat{\alpha^{\prime} \beta^{\prime}} .
$$

Only in the case of the null or straight angle, when the dihedral angle becomes a plane or closed half-plane, is a convex set.

Solution to Problem 147.

a. No. The trihedral angle is not the convex set, because, if we take $A \in a$ and $Q \in$ the int. $\widehat{b c}$ determined by $P \in$ the int. $\widehat{a b c},(\exists) R$ such that $\mid O P \cap$ the int. $A B C=$ $\{R\}, R \in|A Q|, R \notin \widehat{a b c}$.
So $A, Q \in \widehat{a b c}$, but $|A Q| \notin a b c$.
b. $B=(O C A), \gamma=(O A B)$ is a convex set as an intersection of convex sets.
C) It is the same set from a. and it is not convex.
D) The respective set is $[\alpha A \cap[\beta B \cap[\gamma C$, intersection of convex sets and, thus, it is convex.

Solution to Problem 148.

Let $\sigma=\mid \alpha A$ and $M \subset \alpha$. Let $P, Q \in M \cap \sigma$.
We have the following situations:
a) $P, Q \in \sigma \Rightarrow|P Q| \subset \sigma \subset \sigma \subset \mathcal{M}$;
b) $P . Q \in \mathcal{M} \Rightarrow|P Q| \subset \mathcal{M} \subset \sigma \cap \mathcal{M}$;
c) $P \in \mathcal{M}, Q \in \sigma \Rightarrow|P Q| \subset \sigma \subset \sigma \cap \mathcal{M}$.

Solution to Problem 149.

$$
\begin{aligned}
& S(O, r)=\{M \in S /\|O M\|=r\} . \\
& S(O, r) \cap \alpha=\{M \in S / M \in S(O, r) \cap M \alpha \cap\|O M\|=r\}=\{M \in \alpha /\|O M\|=r\}= \\
& =C(O, r)
\end{aligned}
$$

Solution to Problem 150.

Let

$$
P, Q \in \operatorname{int} . S(O, r) \Rightarrow\|O P\| \subset r,\|O Q\| \subset r .
$$

In plane $(O P Q)$, let $M \in(P Q)$.

$$
\left.\begin{array}{l}
\Rightarrow\|O M\|<\|O P\|<r \\
\text { or } \\
\|O M\|<\|O Q\|<r
\end{array}\right\} \Rightarrow\|O M\|<r
$$

Solution to Problem 151.

$$
\begin{array}{ll}
\text { Let: } & P \text { midpoint of }|A B| \\
& R \text { midpoint of }|B C| \\
& Q \text { midpoint of }|D C| \\
& S \text { midpoint of }|A D| \\
& T \text { midpoint of }|B D| \\
& U \text { midpoint of }|A C|
\end{array}
$$

In triangle $A B C$:
$|R P|$ 1.m. $\|P R\|=\frac{\|A C\|}{2} ; P R \| A C$.
In triangle DAC:
$|S Q|$ 1.m. $\|S Q\|=\frac{\|A C\|}{2} ; S Q \| A C$.
$\Rightarrow\|P R\|=\|S Q\|, P R \| S Q \Rightarrow P R S Q$
\Rightarrow parallelogram $\Rightarrow|P Q|$ and $|S R|$ intersect at their midpoint O.
$\left.\left.\begin{array}{cc}\|S T\|=\frac{\|A B\|}{2}, & \|O R\|=\frac{\|A B\|}{2} \\ S T \| A B & U R \| A B\end{array}\right\} \Rightarrow \begin{array}{c}\|S T\|=\|U R\| \\ S T \| U R\end{array}\right\} \Rightarrow$
$\Rightarrow S T R U$ parallelogram.
$\Rightarrow|T U|$ passes through midpoint O of $|S R|$.
Thus the three lines $P R, S R, T U$ are concurrent in O.

Solution to Problem 152.

Let tetrahedron $A B C D$ and E be the midpoint of $|C D|$. The centroid G of the face $A C D$ is on $|A E|$ at a third from the base. The centroid G^{\prime} of the face $B C D$ is on $|B E|$ at a third from the base $|C D|$.

We separately consider $\triangle A E B$. Let F be the midpoint of $A B$, so $E F$ is median in this triangle and, in the previous problem, it was one of the 3 concurrent segments in a point located in the middle of each.

Let O be the midpoint of $|E F|$. We write $A O \cap E B=\{G\}$ and $B G \cap E A=\{G\}$.

$$
\left.\begin{array}{l}
|A F| \equiv|F B| \Rightarrow|F H| \mathrm{m} . \text { in } A B G^{\prime} \Rightarrow|B H| \equiv\left|H G^{\prime}\right| \\
O G^{\prime} \mid F H \tag{2}\\
|E O| \equiv|O F|
\end{array}\right\} \Rightarrow\left|O G^{\prime}\right| \text { l.m. in } \triangle E F H \Rightarrow\left|E G^{\prime}\right| \equiv G^{\prime} H
$$

From (1) and (2)
$\Rightarrow\left|E G^{\prime}\right| \equiv\left|G^{\prime} H\right| \equiv|H B| \Rightarrow \frac{\| E G \mid}{\|E B\|}=\frac{1}{3} \Rightarrow$
$\Rightarrow G^{\prime}$ is exactly the centroid of face $B C D$, because it is situated on median $|E B|$ at a third from E. We show in the same way that G is exactly the centroid of face $A C D$. We've thus shown that $B G$ and $A G^{\prime}$ pass through point O from the previous problem.

We choose faces $A C D$ and $A C B$ and mark by $G^{\prime \prime}$ the centroid of face $A C B$, we show in the same way that $B G$ and $D G^{\prime \prime}$ pass through the middle of the segment $|M N|(|A M| \equiv|M C|,|B N| \equiv|N D|)$ thus also through point O, etc.

Solution to Problem 153.

We mark planes $(A B C)=\alpha,(A D C)=\beta,(B D C)=\gamma,(A B O)=\delta$.
Let M be the intersection of the interiors of the 4 trihedral angles.
We show that:
$M=$ int. [ABCD], by double inclusion.

1. $P \in M \Rightarrow P \in$ int. $\widehat{a b c} \cap$ int. $\widehat{a f d} \cap$ int. $\widehat{d e c} \cap$ int. $\widehat{b f c} \Rightarrow P \in|\alpha D \cap| \gamma C \cap \beta B$ and $P \in|\delta A \cap| \gamma C \cap|\beta B \Rightarrow P \in| \alpha D$ and $P \in \mid \beta B$ and $P \in \mid \gamma C$ and $P \in \mid \delta C \Rightarrow P \in$ $|\alpha D \cap| \gamma C \cap \beta B \cap \delta A \Rightarrow P \in$ int. [ABCD]. So $M \in[A B C D]$.
2. Following the inverse reasoning we show that $[A B C D] \subset M$ from where the equality.

Solution to Problem 154.

$M \in \operatorname{int} .[A B C D] \Rightarrow(\exists) N \in$ int. $A B C$
such that
$M \in|D N|, N \in$ int. $A B C \Rightarrow(\exists) P \in|A B|$
such that $N \in|C P|,(A D B) \cap(D P C)=D P$.
From $N \in|C P|$ and $\in|D N| \xlongequal{\text { lemma }}$ int. $D P C \Longrightarrow M \in$ int. $D P C \Longrightarrow(\exists) Q \in|D C|$.
So we showed that $(\exists) P \in|A B|$ and $Q \in|D C|$ such that $M \in|P Q|$.

Solution to Problem 155.
Let \mathcal{M} be the union of the open segments $|P Q|$. We must prove that: int. $[A B C D]=$ \mathcal{M} through double inclusion.

1. Let $M \in$ int. $[A B C D] \Rightarrow(\forall) P \in \mid A B$ and $Q \in \mid C D$ such that $M \in|P Q| \Rightarrow M \in \mathcal{M}$ so int. $[A B C D] \subset \mathcal{M}$.
2. Let $M \in \mathcal{M} \Rightarrow(\exists) P \in|A B|$ and $Q \in|C D|$ such that $M \in|P Q|$. Points D, C and P determine plane $(P D C)$ and $(P D C) \cap(A C B)=P C,(P U C) \cap(A D B)=P D$.
As $(\forall) Q \in|C D|$ such that $M \in|P Q| \Rightarrow M \in[P C D] \Rightarrow|(\forall) R \in| P C \mid$ such that $M \in|D R|$. If $P \in|A B|$ and $R \in|P C| \Rightarrow R \in$ int. $A C B$ such that $M \in|D R| \Rightarrow M$ int. $[A B C D] \Rightarrow$ $\mathcal{M} \subset$ int. [ABCD].
Working with closed segments we obtain that $(\forall) R \in[A C B]$ such that $M \in[D R]$, thus obtaining tetrahedron [ABCD].

Solution to Problem 156.
Let $M \in[A B C D] \Rightarrow(\exists) P \in[A B C]$ such that $M \in[D P]$.
Let $N \in[A B C D] \Rightarrow(\exists) Q \in[A B C]$ such that $N \in[D Q]$.
The concurrent lines $D M$ and $D N$ determine angle $D M N$.
The surface of triangle $D P Q$ is a convex set.

$$
\left.\Rightarrow \begin{array}{l}
M \in[D P Q] \\
N \in[D P Q]
\end{array}\right\} \Rightarrow|M N| \subset[D P Q] .
$$

Let
$O \in|M N| \Rightarrow O \in[D P Q] \Rightarrow(3) R \in[P Q]$
such that $O \in[D R]$. But $[P Q] \subset[A B C]$ because $P \in[A B C] \cap Q \in[A B C]$ and the surface of the triangle is convex. So (\exists) $R \in[A B C]$ such that
$O \in[D R] \Rightarrow O \in[A B C D],(\forall) O \in|M N| \Rightarrow|M N| \subset[A B C D]$
and the tetrahedron is a convex set.

Note: The tetrahedron can be regarded as the intersection of four closed halfspaces which are convex sets.

Solution to Problem 157.

Let \mathcal{M} be the union of the segments $[P Q]$ with $P \in \mathcal{M}_{1}$ and $Q \in \mathcal{M}_{2}$.
Let $x, x^{\prime} \in \mathcal{M} \Rightarrow(\forall) P \in \mathcal{M}_{1}$ and $Q \in \mathcal{M}_{2}$ such that $x \in[P Q]$;
(ヨ) $P^{\prime} \in \mathcal{M}_{1}$ and $Q^{\prime} \in \mathcal{M}_{2}$ such that $x^{\prime} \in\left[P^{\prime} Q^{\prime}\right]$.
From $P, P^{\prime} \in \mathcal{M}_{1} \Rightarrow\left[P P^{\prime}\right]^{\prime} \in \mathcal{M}_{1}$ which is a convex set.
From $Q, Q^{\prime} \in \mathcal{M}_{2} \Rightarrow\left[Q Q^{\prime}\right] \in \mathcal{M}_{2}$ which is a convex set.
The union of all the segments $[M N]$ with $M \in\left[P P^{\prime}\right]$ and $N \in\left[Q Q^{\prime}\right]$ is tetrahedron $\left[P P^{\prime} Q Q^{\prime}\right] \subset \mathcal{M}$.
So from $x, x^{\prime} \in \mathcal{M} \Rightarrow\left|x x^{\prime}\right| \subset \mathcal{M}$, so set \mathcal{M} is convex.

Solution to Problem 158.

The interior of the tetrahedron coincides with the union of segments $|P Q|, P \in$ $|A B|$ and $Q \in|C D|$, that is int. $[A B C D]=\{|P Q| \backslash P \in|A B|, Q \in|C D|\}$.

Let's show that:
$\operatorname{int} .[A B C D]=|(A B C), D \cap|(A B D), C \cap i(A D C), B \cap$
$\cap!(D B C), A$.

1. Let

$$
\begin{align*}
& M \in \operatorname{int} .[A B C D] \Rightarrow P \in|A B|: Q \in|D C| \quad M \in|P Q| . \\
& \left.P \in|A B| \Rightarrow B \notin|A P| \Rightarrow|A P| \cap(B D C)=\varnothing \Rightarrow \begin{array}{l}
P \in \mid(B D C), A \\
P \in(B D C)
\end{array}\right\} \Rightarrow \\
& \Rightarrow|P Q| \subset|(B D C), A ; M \in| P Q|\Rightarrow M \in|(B D C), A \\
& P \in|A B| \Rightarrow A \notin|P B| \Rightarrow|P B| \cap(A D C)=\varnothing \Rightarrow P \in \mid(A D C), B ; Q \in(A D C) \Rightarrow \\
& \Rightarrow|P Q| \subset|(A D C), B \Rightarrow M \in|(A D C), B \tag{2}\\
& \left.Q \in|D C| \Rightarrow D \notin|Q C| \Rightarrow|Q C| \dot{\cap}(A B D)=\varnothing \Rightarrow \begin{array}{l}
Q \in \mid(A B D), C \\
P \in(A B D)
\end{array}\right\} \Rightarrow \\
& \Rightarrow|P Q| \subset|(A B D), C \Rightarrow M \in|(A B D), C \tag{3}\\
& \left.Q \in|D C| \Rightarrow C \notin|D Q| \Rightarrow|D Q| \cap(A B C)=Q \Rightarrow \begin{array}{l}
Q \in \mid(A B C), D \\
P \in(A \dot{B C})
\end{array}\right\} \Rightarrow \\
& \Rightarrow|P Q| \subset|(A B C), D \Rightarrow M \in|(A B C), D \tag{4}\\
& \text { (1),(2),(3),(4) } \Rightarrow M \in|(B D C), A \cap|(A D C), B \cap|(A B D), C \cap|(A B C), D \\
& \text { int. }[A B C D] \subset|(B D C), A \cap|(A D C), B \cap|(A B D), C \cap|(A B C), D \text {. }
\end{align*}
$$

2. Let
$M \in|(B D C), A \cap|(A D C) ; B \cap|(A B D), C \cap|(A B C), D \Rightarrow M \in|(B D C), A \cap|(A D C)$,
$B \cap \mid(A B D), C \Rightarrow M \in$ int. $\widehat{a b c} \Rightarrow|D M| \cap$ int. $A B C=\{N\}$.
If we assume $N \in|D M| \Rightarrow|D M| \cap(A B C) \neq \varnothing \Rightarrow M$ and D are in different half-
spaces in relation to $(A B C) \Rightarrow M \notin(A B C), D$, false (it contradicts the hypothesis).
So
$M \in|D N|,(\exists) N \in \operatorname{int} . A B C$ a.t. $M \in|D N| \Rightarrow M \in$ int. $[A B C D]$
and the second inclusion is proved.
As regarding the tetrahedron: $[A B C D]=\{[P Q] \backslash P \in[A B]$ and $Q \in[C D]\}$.

$$
P=A, Q \in[C D],[P Q] \text { describes face }[A D C]
$$

If $P=B, Q \in[C D],[P Q]$ describes face $[B D C]$
$Q=C, P \in[A B],[P Q]$ describes face $[A B C]$.
Because the triangular surfaces are convex sets and along with their two points P, Q, segment $[P Q]$ is included in the respective surface.
So, if we add these two situations to the equality from the previous case, we obtain:

$$
[A B C D]=[(B C D), A \cap[(A C D), B \cap[(A B D), C \cap[(A B C), D .
$$

Lines and Planes

159. Let d, d^{\prime} be two parallel lines. If the line d is parallel to a plane α, show that $d^{\prime} \| \alpha$ or $d^{\prime} \subset \alpha$.

Solution to Problem 159
160. Consider a line d, parallel to the planes α and β, which intersects after the line a. Show that $d \| a$.

Solution to Problem 160
161. Through a given line d, draw a parallel plane with another given line d^{\prime}. Discuss the number of solutions.

Solution to Problem 161
162. Determine the union of the lines intersecting a given line d and parallel to another given line $d^{\prime}\left(d \nVdash d^{\prime}\right)$.

Solution to Problem 162
163. Construct a line that meets two given lines and that is parallel to a third given line. Discuss.

Solution to Problem 163
164. If a plane α intersects the secant planes after parallel lines, then α is parallel to line $\beta \cap \gamma$.

Solution to Problem 164
165. A variable plane cuts two parallel lines in points M and N. Find the geometrical locus of the middle of segment [MN].

Solution to Problem
166. Two lines are given. Through a given point, draw a parallel plane with both lines. Discuss.

Solution to Problem 166
167. Construct a line passing through a given point, which is parallel to a given plane and intersects a given line. Discuss.

Solution to Problem 167
168. Show that if triangles $A B C$ and $A^{\prime} B^{\prime} C^{\prime}$, located in different planes, have $A B\left\|A^{\prime} B^{\prime}, A C\right\| A^{\prime} C^{\prime}$ and $B C \| B^{\prime} C^{\prime}$, then lines $A A^{\prime}, B B^{\prime}, C C^{\prime}$ are concurrent or parallel.

Solution to Problem 168
169. Show that, if two planes are parallel, then a plane intersecting one of them after a line cuts the other one too.

Solution to Problem 169
170. Through the parallel lines d and d^{\prime} we draw the planes α and α^{\prime} distinct from (d, d^{\prime}). Show that $\alpha \| \alpha^{\prime}$ or $\left(\alpha \cap \alpha^{\prime}\right) \| d$.

Solution to Problem 170
171. Given a plane α, a point $A \in \alpha$ and a line $d \subset \alpha$.
a. Construct a line d^{\prime} such that $d^{\prime} \subset \alpha, A \in d^{\prime}$ and $d^{\prime} \| d$.
b. Construct a line through A included in α, which forms with d an angle of a given measure a. How many solutions are there?

Solution to Problem 171
172. Show that relation $\alpha \| \beta$ defined on the set of planes is an equivalence relation. Define the equivalence classes.
173. Consider on the set of all lines and planes the relation " $x \| y$ " or $x=y$, where x and y are lines or planes. Have we defined an equivalence relation?

Solution to Problem 173
174. Show that two parallel segments between parallel planes are concurrent.
175. Show that through two lines that are not contained in the same plane, we can draw parallel planes in a unique way. Study also the situation when the two lines are coplanar.

Solution to Problem 175
176. Let α and β be two parallel planes, $A, B \in \alpha$, and $C D$ is a parallel line with α and β. Lines $C A, C B, D B, D A$ cut plane β respectively in M, N, P, Q. Show that these points are the vertices of a parallelogram.

Solution to Problem 176
177. Find the locus of the midpoints of the segments that have their extremities in two parallel planes.

Solution to Problem 177

Solutions

Solution to Problem 159.
\qquad

$$
\text { Let } \left.\left.\begin{array}{c}
d \| \alpha \\
d^{\prime \prime} \| d \\
d^{\prime} \| d \\
d^{\prime \prime} \| d
\end{array}\right\} \Rightarrow d^{\prime \prime}\left\|\alpha=d^{\prime}\right\| d^{\prime \prime}\right\} \Rightarrow d^{\prime \prime} \| \alpha \text { or } d^{\prime} \subset \alpha .
$$

Solution to Problem 160.
Let $A \in a \Rightarrow A \in \alpha \cap A \in \beta$. We draw through $\mathrm{A}, d^{\prime} \| d$.

$$
\left.\left.\left.\left.\begin{array}{r}
\left.A \in \alpha, \begin{array}{c}
d \| \alpha \\
d^{\prime} \| d
\end{array}\right\} \Rightarrow d^{\prime} \subset \alpha \\
\left.A \in \beta, \begin{array}{l}
\| \\
d^{\prime} \| d
\end{array}\right\}
\end{array}\right\} \Rightarrow d^{\prime} \subset \beta\right\} \begin{array}{l}
d^{\prime} \subset \alpha \subset \beta \\
\alpha \cap \beta=a
\end{array}\right\} \Rightarrow \begin{array}{l}
d^{\prime}=a \\
d^{\prime} \| d
\end{array}\right\} \Rightarrow a \| d
$$

Solution to Problem 161.
a. If $d \nVdash d^{\prime}$ there is only one solution and it can be obtained as it follows:

Let $A \in d$. In the plane $\left(A, d^{\prime \prime}\right)$ we draw $d^{\prime \prime} \| d^{\prime}$. The concurrent lines d and $d^{\prime \prime}$ determine plane a. As $d^{\prime \prime}\|d \Rightarrow d\| \alpha$, in the case of the non-coplanar lines.

b. If $d\left\|d^{\prime}\right\| \mathrm{d}^{\prime \prime},(\exists)$ infinite solutions. Any plane passing through d is parallel to $d^{\prime \prime}$, with the exception of plane (d, d^{\prime}).
c. $d \nVdash d^{\prime}$, but they are coplanar (\nexists) solutions.

Solution to Problem 162.

Let $A \in d$, we draw through $A, d_{1} \| d^{\prime}$. We write $\alpha=\left(d, d_{1}\right)$. As $d_{1}\left\|d^{\prime} \Rightarrow d^{\prime}\right\| \alpha$.
Let $M \in d$, arbitrary $\Rightarrow M \in \alpha$.
 contained in plane α.

Let $\gamma \subset \alpha, \gamma \| d^{\prime} \Rightarrow \gamma \cap d=B$, so (\forall) parallel to d^{\prime} from α intersects d. Thus, the plane α represents the required union.

Solution to Problem 163.

We draw d through M such that $\left.\begin{array}{c}d \| d^{\prime} \\ d^{\prime} \| d_{3}\end{array}\right\} \Rightarrow d \| d_{3}$. According to previous problem: $d \cap d_{1}=\{N\}$. Therefore,

$$
\begin{aligned}
& d \cap d_{2}=\{M\} \\
& d \cap d_{1}=\{N\} \\
& d \| d_{3}
\end{aligned}
$$

a. If $d_{3} \| d_{1}$, the plane α is unique, and if $d_{2} \cap \alpha \neq \emptyset$, the solution is unique.
b. If $d_{1} \| d_{3 \prime}$ (\exists) $\begin{gathered}d \| d_{1} \\ d \cap d_{1} \neq \emptyset^{\prime}\end{gathered}$, because it would mean that we can draw through a point two parallel lines $d_{1} d_{1}$ to the same line d_{3}. So there is no solution.
c. If $d_{1} \nVdash d_{3}$ and $d_{2} \cap \alpha \neq \emptyset$, all the parallel lines to d_{2} cutting d_{1} are on the plane α and none of them can intersect d_{2}, so the problem has no solution.
d. If $d_{2} \subset \alpha, d_{1} \cap d_{2} \neq \emptyset$, let $d_{1} \cap d_{2}=\{0\}$, and the required line is parallel to d_{3} drawn through $O \Rightarrow$ one solution.

e. If $d_{2} \subset \alpha, d_{1} \| d_{2}$. The problem has infinite solutions, $(\forall) \|$ to d_{3} which cuts d_{1}, also cuts d_{2}.

Solution to Problem 164.

$$
\left.\begin{array}{c}
\beta \cap \gamma=d \\
\alpha \cap \beta=d_{1} \\
\alpha \cap \gamma=d_{2} \\
d_{1} \| d_{2} \\
d_{1}\left\|d_{2} \Rightarrow d_{1}\right\| \gamma \\
d_{1} \subset \beta \\
d=d_{1} \\
d_{1} \subset \alpha
\end{array}\right\} \Rightarrow \beta \cap \gamma=d \Rightarrow \alpha \| \alpha
$$

Solution to Problem 165.

$d_{1} \| d_{2} \Rightarrow(\exists) \alpha=\left(d_{1}, d_{2}\right)$
The problem is reduced to the geometrical locus of the midpoints of the segments that have extremities on two parallel lines. P is such a point $|M P|=|P N|$. We draw $A B \perp d 1 \Rightarrow A B ? \widehat{M P A}=B \widehat{P N} \Rightarrow \triangle M A P=\triangle N B P \Rightarrow|P A| \equiv|P B| \Rightarrow\|A P\| ? \Rightarrow$ the geometrical locus is the parallel to d_{1} and d_{2} drawn on the mid-distance between them. It can also be proved vice-versa.

Solution to Problem 166.

$$
M \notin d_{1}, M \notin d_{2} .
$$

Let $d_{1} \nVdash d_{2}$. In plane (d, M) we draw $d_{1}^{\prime} \| d_{1}, M \in d_{1}^{\prime}$. In plane $\left(d_{2} M\right)$ we draw $d_{2}^{\prime} \| d_{2}, M \in d_{2}^{\prime}$. We note $\alpha=d_{1}^{\prime} d_{2}^{\prime}$ the plane determined by two concurrent lines.

$$
\begin{aligned}
& d_{1}\left\|d_{1}^{\prime} \Rightarrow d_{1}\right\| \alpha \\
& d_{1}\left\|d_{2}^{d_{2}^{\prime}} \Rightarrow d_{2}\right\| \alpha
\end{aligned}
$$

$M \in \alpha$ the only solution.
Let $d_{1} \| d_{2}, N \notin d_{1}, M \notin d_{2}$.
$d_{1}=d_{1}^{\prime}=d_{2}^{\prime}$
In this case $d_{1}^{\prime}=d_{2}^{\prime}=d$ and infinite planes pass through d;
$\left.\begin{array}{l}d_{2} \\ \left.\begin{array}{l}\| \\ d_{1}\end{array} \right\rvert\, \\ \| \\ \hline\end{array}\right\} \Rightarrow d_{1}, d_{2}$ are parallel lines with (\forall) of the planes passing through d.
The problem has infinite solutions. But $M \in d_{1}$ or $M \in d_{2}$, the problem has no solution because the plane can't pass through a point of a line and be parallel to that line.

Solution to Problem 167.

Let A be the given point, α the given plane and d the given line.
a. We assume that $d \sharp \alpha, d \cap \alpha=\{M\}$. Let plane ($d A$) which has a common point M with $\alpha \Rightarrow(d A) \cap \alpha=d$.

We draw in plane $(d A)$ through point A a parallel line to d^{\prime}.

$$
\left.\left.\begin{array}{l}
a \| d^{\prime \prime} \\
\left.\begin{array}{l}
d^{\prime} \cap d=\{M\}
\end{array}\right\} \Rightarrow a \cap d \neq \varnothing \\
a \| d \\
d^{\prime} \in \alpha
\end{array}\right\} \quad \Rightarrow a \| \alpha, A \in a\right\}
$$

$\Rightarrow a$ is the required line.
b. $d \| \alpha,(d A) \cap \alpha \neq \emptyset$.

All the lines passing through A and intersecting d are contained in plane ($d A$). But all these lines also cut $d^{\prime} \| d$, so they can't be parallel to α. There is no solution.
c. $\quad d \| \alpha,(d A) \cap \alpha=\emptyset$.

Let $M \in d$ and line $A M \subset(d A) ;(d A) \cap \alpha=\emptyset \Rightarrow A M \cap \alpha=\emptyset \Rightarrow A M \| \alpha,(\forall) M \in d$.
The problem has infinite solutions.

Solution to Problem 168.

$(A B C)$ and $\left(A^{\prime} B^{\prime} C^{\prime}\right)$ are distinct planes, thus the six points $A, B, C, A^{\prime}, B^{\prime}, C^{\prime}$ can't be coplanar.
$A B \| A^{\prime} B^{\prime} \Rightarrow A, B, A^{\prime}, B^{\prime}$ are coplanar.

The points are coplanar four by four, that is $\left(A B B^{\prime} A\right),\left(A C C^{\prime} A^{\prime}\right),\left(B C C^{\prime} B^{\prime}\right)$, and determine four distinct planes. If we assumed that the planes coincide two by two, it would result other 6 coplanar points and this is false.
In plane $A B B^{\prime} A^{\prime}$, lines $A A^{\prime}, B B^{\prime}$ can be parallel or concurrent.
First we assume that:

$$
\begin{aligned}
& A A^{\prime} \cap B B^{\prime}=\{S\} \Rightarrow S \in A A^{\prime} \cap S \in B B^{\prime} \\
& S \in A A^{\prime} \Rightarrow\left\{\begin{array}{l}
S \in\left(A B B^{\prime} A^{\prime}\right) \\
S \in\left(A C C^{\prime} A^{\prime}\right)
\end{array}\right. \\
& S \in B B^{\prime} \Rightarrow\left\{\begin{array}{c}
S \in\left(B C C^{\prime} \boldsymbol{B}^{\prime}\right) \\
S \in\left(\boldsymbol{A B B ^ { \prime }} \boldsymbol{A}^{\prime}\right)
\end{array}\right\}
\end{aligned}
$$

is a common point to the 3 distinct planes, but the intersection of 3 distinct planes can be only a point, a line or \emptyset. It can't be a line because lines

$$
\left.\begin{array}{l}
\left(A B B^{\prime} A^{\prime}\right) \cap\left(A C C^{\prime} A^{\prime}\right)=A A^{\prime} \\
\left(A B B^{\prime} A^{\prime}\right) \cap\left(B C C^{\prime} B^{\prime}\right)=B B^{\prime} \\
\left(A C C^{\prime} A^{\prime}\right) \cap\left(B C C^{\prime} B^{\prime}\right)=C C^{\prime \prime}
\end{array}\right\}
$$

\Rightarrow are distinct if we assumed that two of them coincide, the 6 points would be coplanar, thus there is no common line to all the three planes. There is one possibility left, that is they have a common point S and from

$$
\left.\begin{array}{r}
S \in\left(A C C^{\prime} A\right) \\
S \in\left(C C^{\prime} B B^{\prime}\right)
\end{array}\right\} \Rightarrow S \in C C^{\prime} \Rightarrow
$$

$$
\alpha \| \beta \Rightarrow \alpha \cap \beta=0
$$

We assume $d \cap \beta=\emptyset \Rightarrow d \| \beta \Rightarrow d \in$ plane $\| \beta$ drawn through $A \Rightarrow d \subset \alpha$, false.
So $d \cap \beta=\{B\}$.

Solution to Problem 169.
Hypothesis: $\alpha \| \beta, \gamma \cap \alpha=d_{1}$.
Conclusion: $\gamma \cap \beta=d_{2}$.
We assume that $\gamma \cap \beta=\emptyset \Rightarrow \gamma \| \beta$.
Let
$A \in d_{1} \Rightarrow\left\{\begin{array}{l}A \in \alpha, \alpha \| \beta \\ A \in \gamma, \gamma \| \beta \Rightarrow a=\gamma,\end{array}\right.$
because from a point we can draw only one parallel plane with the given plane.
But this result is false, it contradicts the hypothesis $\gamma \cap \alpha=d_{1}$ so $\gamma \cap \beta=d_{2}$.

Solution to Problem 170.

Hypothesis: $d \| d^{\prime} ; d \subset \alpha ; d^{\prime} \subset \alpha^{\prime} ; \alpha, a^{\prime} \neq\left(d d^{\prime}\right)$.
Conclusion: $\alpha \| \alpha^{\prime}$ or $d^{\prime \prime} \| d$.
As $\alpha, a^{\prime} \neq\left(d d^{\prime}\right) \Rightarrow \alpha \neq a^{\prime}$.
If $a \cap a^{\prime}=\emptyset \Rightarrow a \| a^{\prime}$.
If $a \cap a^{\prime}=\varnothing \Rightarrow a \cap a^{\prime}=d^{\prime \prime}$.
If $\left.\begin{array}{l}d \| d^{\prime \prime} \\ d^{\prime} \subset a^{\prime}\end{array} \Rightarrow \begin{array}{l}d \| a^{\prime} \\ d \subset a\end{array}\right\} \Rightarrow d^{\prime \prime} \| d$.

Solution to Problem 171.

a. If $A \in d$, then $d^{\prime}=d$. If $A \notin d$, we draw through $A, d^{\prime} \| d$.
b. We draw $d_{1} \subset \alpha, A \in d$, such that $m\left(\widehat{d_{1} d^{\prime}}\right)=a$ and $d \subset \alpha, A \in d_{2}$, such that $m\left(\widehat{d_{2} d^{\prime}}\right)=a$, a line in each half-plane determined by d^{\prime}. So (\exists) 2 solutions excepting the situation $a=0$ or $a=90$ when (\exists) only one solution.

Solution to Problem 172.
$\alpha \| \beta$ or $\alpha=\beta \Leftrightarrow \alpha \sim \beta$

1. $\alpha=\alpha \Rightarrow \alpha \sim \alpha$, the relation is reflexive;
2. $\alpha \sim \beta \Rightarrow \beta \sim \alpha$, the relation is symmetric.
$\alpha \| \beta$ or $\alpha=\beta \Rightarrow \beta \| \alpha$ or $\beta=\alpha \Rightarrow \beta \sim \alpha ;$
3. $\alpha \sim \beta \cap \beta \sim \gamma \Rightarrow \alpha \sim \gamma$.

If $\alpha=\beta \cap \beta \sim \gamma \Rightarrow \alpha \sim \gamma$.
If $\left.\begin{array}{c}\alpha \neq \beta \text { and } \alpha \sim \beta \Rightarrow \alpha \| \beta \\ \beta \sim \gamma \Rightarrow \beta=\gamma \text { or } \beta \| \gamma\end{array}\right\} \Rightarrow \alpha \| \gamma \Rightarrow \alpha \sim \gamma$.
The equivalence class determined by plane α is constructed of planes α^{\prime} with $\alpha^{\prime} \sim \alpha$, that is of α and all the parallel planes with α.

Solution to Problem 173.

No, it is an equivalence relation, because the transitive property is not true. For example, x is a line, y a plane, z a line. From $x \| y$ and $\|z \nRightarrow x\| z$ lines x and z could be coplanar and concurrent or non-coplanar.

Solution to Problem 174.

$$
\begin{aligned}
& d_{1} \| d_{2} \Rightarrow(\exists) \gamma=\left(d_{1} d_{2}\right) \\
& \left.\begin{array}{l}
\alpha \cap \gamma=A B \\
\beta \cap \gamma=C D \\
\alpha \| \beta
\end{array}\right\} \Rightarrow \begin{array}{l}
A B \| C D \\
A C \| B D
\end{array} \Rightarrow \\
& \Rightarrow A B C D \text { parallelogram. } \\
& \text { So }\|A C\|=\|B D\| .
\end{aligned}
$$

Solution to Problem 175.

We consider $A \in d$ and draw through it $d_{1} \| d^{\prime}$. We consider $B \in d^{\prime}$ and draw $d_{2} \| d$. Plane $\left(d_{1} d_{2}\right) \|\left(d d_{1}\right)$, because two concurrent lines from the first plane are parallel with two concurrent lines from the second plane.

When d and d^{\prime} are coplanar, the four lines d, d_{1}, d_{2} and d^{\prime} are coplanar and the two planes coincide with the plane of the lines d and d^{\prime}.

Solution to Problem 176.
Let planes:

$$
\begin{array}{r}
\left.\begin{array}{r}
(C D A) \\
C D \| \beta
\end{array}\right\} \Rightarrow C D \| Q M \\
\left.\begin{array}{r}
(C D B) \\
C D \| \beta
\end{array}\right\} \Rightarrow C D \| P N \\
\left.\begin{array}{r}
\alpha \| \beta
\end{array}\right\} \Rightarrow A B \| M N \\
\left.\begin{array}{r}
(D A B) \\
\alpha \| \beta
\end{array}\right\} \Rightarrow A B \| Q P \tag{4}
\end{array}
$$

From (1), (2), (3), (4) $\Rightarrow M N P Q$ parallelogram.

Solution to Problem 177.
Let $[A B]$ and $[C D]$ be two segments, with $A, C \in \alpha$ and $B, D \in \beta$ such that $|A M|=$ $|M B|$ and $|C N|=|N D|$.

In plane ($M C D$) we draw through $M, E F\|C D \Rightarrow E C\| D F \Rightarrow E F D C$ parallelogram $\Rightarrow|E F| \equiv|C D|$.
Concurrent lines $A B$ and $E F$ determine a plane which cuts planes α after 2 parallel lines $\Rightarrow E A \| B F$.
In this plane, $|A M| \equiv|B M|$.

$$
\left.\begin{array}{rl}
\widehat{E M A} & \equiv B M F \text { (angles } \widehat{\text { opposed at peak) }} \\
\widehat{E A M} & \equiv F B M \text { (alternate interior angles) }
\end{array}\right\}
$$

In parallelogram ECDF,

$$
\begin{align*}
& |C N| \equiv|N D|,|E M| \equiv|M F| \Rightarrow \\
& \left\{\begin{array}{l}
M N \| E C \\
M N \| F D
\end{array} \Rightarrow \begin{array}{c}
M N \| \alpha \\
M N \| \beta
\end{array}\right. \tag{1}
\end{align*}
$$

So the segment connecting the midpoints of two of the segments with the extremity in α and β is parallel to these planes. We also consider [GH] with $G \in$ $\alpha, H \in \beta$ and $|G Q| \equiv|Q H|$ and we show in the same way that $O M \| \alpha$ and $O M \| \beta$. (2)
From (1) and (2) $\Rightarrow M, N, Q$ are elements of a parallel plane to α and β, marked by γ.

Vice-versa, let's show that any point from this plane is the midpoint of a segment, with its extremities in α and β.
Let segment $[A B]$ with $A \in \alpha$ and $B \in \beta$ and $|A M|=|B M|$. Through M, we draw the parallel plane with α and β and in this plane we consider an arbitrary point $O \in \gamma$.
Through O we draw a line such that $d \cap \alpha=\{I\}$ and $d \cap \beta=\{I\}$.
In plane $(O A B)$ we draw $A^{\prime} B^{\prime} \| A B$. Plane $\left(A A^{\prime} B^{\prime} B\right)$ cuts the three parallel planes after parallel lines \Rightarrow

$$
\left.\begin{array}{l}
A^{\prime} A\|O M\| B^{\prime} B \\
B \in \beta
\end{array}\right\} \Rightarrow
$$

In plane $\left(A^{\prime} B^{\prime} I\right) \Rightarrow\left|A^{\prime} O\right| \equiv\left|O B^{\prime}\right| \Rightarrow I A^{\prime}| | B^{\prime} I$ and thus $\frac{\left|A^{\prime} O\right| \equiv\left|O B^{\prime}\right|}{\widehat{I O A^{\prime}} \equiv \widehat{I O B^{\prime}}}$ and $\widehat{I A^{\prime} O} \equiv$ $\widehat{I B^{\prime} O} \Rightarrow$

$$
\Rightarrow \triangle I O A^{\prime} \equiv \triangle I O B^{\prime} \Rightarrow|O I| \equiv|I O| \Rightarrow
$$

O is the midpoint of a segment with extremities in planes α and β.
Thus the geometrical locus is plane γ, parallel to α and β and passing through the mid-distance between α and β.

Projections

178. Show that if lines d and d^{\prime} are parallel, then $\operatorname{pr}_{\alpha} d \| \operatorname{pr}_{\alpha} d^{\prime}$ or $\operatorname{pr}_{\alpha} d=\operatorname{pr}_{\alpha} d^{\prime}$. What can we say about the projective planes of d and d^{\prime} ?

Solution to Problem 178
179. Show that the projection of a parallelogram on a plane is a parallelogram or a segment.

Solution to Problem 179
180. Knowing that side [OA of the right angle $A O B$ is parallel to a plane α, show that the projection of $\widehat{A O B}$ onto the plane α is a right angle.

Solution to Problem 180
181. Let $A^{\prime} B^{\prime} C^{\prime}$ be the projection of $\triangle A B C$ onto a plane α. Show that the centroid of $\triangle A B C$ is projected onto the centroid of $\triangle A^{\prime} B^{\prime} C^{\prime}$. Is an analogous result true for the orthocenter?

Solution to Problem 181
182. Given the non-coplanar points A, B, C, D, determine a plane on which the points A, B, C, D are projected onto the peaks of parallelogram.

Solution to Problem 182
183. Consider all triangles in space that are projected onto a plane α after the same triangle. Find the locus of the centroid.

Solution to Problem 183
184. Let A be a point that is not on line d. Determine a plane α such that $\operatorname{pr}_{\alpha} d$ passes through $\operatorname{pr}_{\alpha} A$.

Solution to Problem 184
185. Determine a plane onto which three given lines to be projected after concurrent lines.

Solution to Problem 185
186. Let α, β be planes that cut each other after a line a and let d be a perpendicular line to a. Show that the projections of line d onto α, β are concurrent.

Solution to Problem 186
187. Consider lines $O A, O B, O C \perp$ two by two. We know that $\|O A\|=a$, $\|O B\|=b,\|O C\|=c$. Find the measure of the angle of planes $(A B C)$ and (OAB).

Solution to Problem 187
188. A line cuts two perpendicular planes α and β at A and B. Let A^{\prime} and B^{\prime} be the projections of points A and B onto line $\alpha \cap \beta$.
a. Show that $\|A B\|^{2}=\left\|A A^{\prime}\right\|^{2}+\left\|A^{\prime} B^{\prime}\right\|^{2}+\left\|B^{\prime} B\right\|^{2}$;
b. If a, b, c are the measures of the angles of line $A B$ with planes α, β and with $\alpha \cap \beta$, then $\cos c \frac{\left\|A^{\prime} B^{\prime}\right\|}{\|A B\|}$ and $\sin ^{2} a+\sin ^{2} b=\sin ^{2} c$.

Solution to Problem 188
189. Let $A B C$ be a triangle located in a plane $\alpha, A^{\prime} B^{\prime} C^{\prime}$ the projection of $\Delta A^{\prime} B^{\prime} C^{\prime}$ onto plane α. We mark with $S, S^{\prime}, S^{\prime \prime}$ the areas of $\triangle A B C$, $\Delta A^{\prime} B^{\prime} C^{\prime}, \Delta A^{\prime \prime} B^{\prime \prime} C^{\prime \prime}$, show that S^{\prime} is proportional mean between S and $S^{\prime \prime}$.

Solution to Problem 189
190. A trihedral $[A B C D]$ has $|A C| \equiv|A D| \equiv|B C| \equiv|B D| . M, N$ are the midpoints of edges $[A B],[C D]$, show that:
a. $M N \perp A B, M N \perp C D, A B \perp C D$
b. If $A^{\prime}, B^{\prime}, C^{\prime}, D^{\prime}$ are the feet of the perpendicular lines drawn to the peaks A, B, C, D on the opposite faces of the tetrahedron, points B, A^{\prime}, N are collinear and so are $A, B^{\prime}, N ; D, C^{\prime}, M ; C, D^{\prime}, M$.
c. $A A^{\prime}, B B^{\prime}, M N$ and $C C^{\prime}, D D^{\prime}, M N$ are groups of three concurrent lines.

Solution to Problem 190
191. If rays [$O A$ and [$O B$ with their origin in plane $\alpha, O A \perp \alpha$, then the two rays form an acute or an obtuse angle, depending if they are or are not on the same side of plane α.

Solution to Problem 191
192. Show that the 6 mediator planes of the edges of a tetrahedron have a common point. Through this point pass the perpendicular lines to the faces of the tetrahedron, drawn through the centers of the circles of these faces.
193. Let d and d^{\prime} be two non-coplanar lines. Show that (\exists) unique points $A \in$ $d, A^{\prime} \in d^{\prime}$ such that $A A^{\prime} \perp d$ and $A A^{\prime} \perp d^{\prime}$. The line $A A^{\prime}$ is called the common perpendicular of lines d and d^{\prime}.

Solution to Problem 193
194. Consider the notations from the previous problem. Let $M \in d, M^{\prime} \in d^{\prime}$. Show that $\left\|A A^{\prime}\right\| \leq\left\|M M^{\prime}\right\|$. The equality is possible only if $M=A, M^{\prime}=A^{\prime}$.

Solution to Problem 194
195. Let $A A^{\prime}$ be the common \perp of non-coplanar lines $d, d^{\prime \prime}$ and $M \in d, M^{\prime} \in d^{\prime}$ such that $|A M| \equiv\left|A^{\prime} M^{\prime}\right|$. Find the locus of the midpoint of segment [$\left.M M^{\prime}\right]$.

Solution to Problem 195
196. Consider a tetrahedron $V A B C$ with the following properties. $A B C$ is an equilateral triangle of side $a,(A B C) \perp(V B C)$, the planes $(V A C)$ and $(V A B)$
form with plane $(A B C)$ angles of 60°. Find the distance from point V to plane (ABC).

Solution to Problem 196
197. All the edges of a trihedral are of length a. Show that a peak is projected onto the opposite face in its centroid. Find the measure of the dihedral angles determined by two faces.
198. Let $D E$ be a perpendicular line to the plane of the square $A B C D$. Knowing that $\|B E\|=l$ and that the measure of the angle formed by [$B E$ and $(A B C)$ is β, determine the length of segment $A E$ and the angle of [AE with plane (ABC).
199. Line $C D \perp$ plane of the equilateral $\triangle A B C$ of side a, and [$A D$ and $[B D$ form with plane $(A B C)$ angles of measure β. Find the angle of planes $(A B C)$ and $A B D$.

Solution to Problem 199
200. Given plane α and $\triangle A B C, \Delta A^{\prime} B^{\prime} C^{\prime}$ that are not on this plane. Determine a $\triangle D E F$, located on α such that on one side lines $A D, B E, C F$ and on the other side lines $A^{\prime} D, B^{\prime} E, C^{\prime} F$ are concurrent.

Solutions

Solution to Problem 178.

Let $d \| d^{\prime}, \beta$ the projective plane of d.

We assume that $d^{\prime} \not \subset \beta$, which means that is plane $d, d^{\prime} \pm \alpha, \Rightarrow$ the projective plane of d^{\prime} is β^{\prime}. We want to show that $\mathrm{pr}_{a} d \| \mathrm{pr}_{a} d^{\prime}$. We assume that $\mathrm{pr}_{a} d \cap$ $\operatorname{pr}_{a} d^{\prime}=\{P\} \Rightarrow(\exists) M \in d$ such that $\operatorname{pr}_{a} M=P$ and (ヨ) $M^{\prime} \in d^{\prime}$ such that $\operatorname{pr}_{a} M^{\prime}=P$. $\left.\Rightarrow \begin{array}{c}P M \perp \alpha \\ P M^{\prime} \perp \alpha\end{array}\right\} \Rightarrow$ in the point P on plane α we can draw two distinct perpendicular lines. False.

If β is the projective plane of d and β of d^{\prime}, then $\beta \| \beta^{\prime}$, because if they had a common point their projections should be elements of $\operatorname{pr}_{a} d$ and $\mathrm{pr}_{a} d^{\prime}$, and thus they wouldn't be anymore parallel lines.

If $d^{\prime} \subset \beta$ or $d \subset \beta^{\prime}$, that is $\left(d, d^{\prime}\right) \perp \alpha \Rightarrow d$ and d^{\prime} have the same projective plane $\Rightarrow \mathrm{pr}_{a} d=\mathrm{pr}_{a} d^{\prime}$.

Solution to Problem 179.

We assume that $A B C D \pm \alpha$. Let $A^{\prime}, B^{\prime}, C^{\prime}, D^{\prime}$ be the projections of points A, B, C, D. $\left.\begin{array}{l}A B\left\|D C \stackrel{p r 1}{\Rightarrow} A^{\prime} B^{\prime}\right\| D^{\prime} C^{\prime} \\ A D\left\|B C \Rightarrow A^{\prime} D^{\prime}\right\| B^{\prime} D^{\prime}\end{array}\right\} \Rightarrow A^{\prime}, B^{\prime}, C^{\prime}, D^{\prime}$ parallelogram.

If $(A B C D) \perp \alpha \Rightarrow$ the projection $A^{\prime}, B^{\prime}, C^{\prime}, D^{\prime} \in$ the line $(A B C D) \cap \alpha \Rightarrow$ the projection of the parallelogram is a segment.

Solution to Problem 180.

If $O A\left\|\alpha \Rightarrow \operatorname{proj}_{\alpha} O A\right\| O A \Rightarrow O^{\prime} A^{\prime} \| O A$ because (\forall) a plane which passes through $O A$ cuts the plane α after a parallel to $O A$.

$$
\begin{aligned}
& \left.\left.\begin{array}{c}
O O^{\prime} \perp O^{\prime} A^{\prime} \\
O^{\prime} A^{\prime} \| O A
\end{array}\right\} \Rightarrow \begin{array}{l}
O A \perp O O^{\prime} \\
O A \perp O B
\end{array}\right\} \Rightarrow \\
& \left.\Rightarrow \begin{array}{l}
O A \perp\left(O O^{\prime} B\right) \\
O^{\prime} A^{\prime} \| O A
\end{array}\right\} \Rightarrow O^{\prime} A^{\prime} \perp\left(O O^{\prime} B\right) \Rightarrow \\
& \Rightarrow O^{\prime} A^{\prime} \perp O^{\prime} B^{\prime} \Rightarrow A^{\prime} O^{\prime} B^{\prime} \text { is a right angle. }
\end{aligned}
$$

Solution to Problem 181.

In the trapezoid $B C C^{\prime} B^{\prime}\left(B B^{\prime} \| C C^{\prime}\right)$,

$$
\left.\begin{array}{c}
|B M| \equiv|M C| \\
M M^{\prime} \| B B^{\prime}
\end{array}\right\} \Rightarrow\left|B^{\prime} M^{\prime}\right| \equiv\left|M C^{\prime}\right|
$$

$\Rightarrow A^{\prime} M^{\prime}$ is a median.

$$
\left.\begin{array}{rl}
M M^{\prime} \| A A^{\prime} & \Rightarrow M M^{\prime} A^{\prime} A \text { trapezoid } \\
\frac{\|A G\|}{\|G M\|} & =2, G G^{\prime} \| A A^{\prime}
\end{array}\right\} \frac{\left\|A^{\prime} G\right\|}{\left\|G^{\prime} M^{\prime}\right\|}=\frac{\|A G\|}{\|G M\|}=2
$$

$\Rightarrow G^{\prime}$ is on median $\mathrm{A}^{\prime} \mathrm{M}^{\prime}$ at $2 / 3$ from the peak and $1 / 3$ from the base.
Generally no, because the right angle $A M C$ should be projected after a right angle. The same thing is true for another height. This is achieved if the sides of the Δ are parallel to the plane.

Solution to Problem 182.

Let A, B, C, D be the 4 non-coplanar points and M, N midpoints of segments $|A B|$ and $|C D|$.
M and N determine a line and let a plane $\alpha \perp M N, M$ and N are projected in the same point O onto α.

$$
\left.\left.\left.\begin{array}{c}
A A^{\prime}\|M O\| B B^{\prime} \\
|A M| \equiv|M B| \\
C C^{\prime}| | D D^{\prime} \| N O \\
|D N| \equiv|N C|
\end{array}\right\} \Rightarrow\left|A^{\prime} O\right| \equiv\left|O B^{\prime}\right|\right\} \Rightarrow\left|D^{\prime} O\right| \equiv\left|O C^{\prime}\right|\right\} \Rightarrow
$$

$\Rightarrow A^{\prime} B^{\prime} C^{\prime} D^{\prime}$ a parallelogram.

Let $A^{\prime} B^{\prime} C^{\prime}, A^{\prime \prime} B^{\prime \prime} C^{\prime \prime}$ two triangles of this type, with the following property:

$$
\operatorname{pr}_{\alpha} A^{\prime} B^{\prime} C^{\prime}=A B C, \operatorname{pr}_{\alpha} A^{\prime \prime} B^{\prime \prime} C^{\prime \prime}=A B C .
$$

$$
\left.\Rightarrow \begin{array}{l}
\operatorname{pr}_{\alpha} G^{\prime}=G \Rightarrow G^{\prime} G \perp \alpha \\
\operatorname{pr}_{\alpha} G^{\prime \prime}=G \Rightarrow G^{\prime \prime} G \perp \alpha
\end{array}\right\} \Rightarrow
$$

$$
\Rightarrow G^{\prime} G=G G^{\prime \prime} \Rightarrow G^{\prime \prime}, G^{\prime}, G \text { are collinear. }
$$

Due to the fact that by projection the ratio is maintained, we show that $G^{\prime \prime}$ is the centroid of A, B, C.

$$
\frac{\|B G\|}{\|G M\|}=\frac{\left\|B_{1} G\right\|}{\| G_{1} M_{1}}=2 .
$$

Solution to Problem 184.

Let $M \in d$ and $A \notin d$. The two points determine a line and let α be a perpendicular plane to this line, $A M \perp \alpha \Rightarrow A$ and M are projected onto α in the same point A^{\prime} through which also passes $\operatorname{proj}_{\alpha} d=\operatorname{proj}_{\alpha} A \in \operatorname{proj}_{\alpha} d$.

Solution to Problem 185.
We determine a line which meets the three lines in the following way.
Let
$M \in d_{2} \Rightarrow \beta=\left(M, d_{1}\right), \gamma=\left(M, d_{3}\right)$ si $\beta \cap \gamma=$
$=d \Rightarrow d \subset \beta_{1}, d \cap d_{1}=\{N\}, d \subset \gamma_{1}, d \cap d_{3}=\{P\}$.

Let now a plane
$\alpha \perp d \Rightarrow \operatorname{pr}_{\alpha} M=\operatorname{pr}_{\alpha} N=\operatorname{pr}_{\alpha} P=$
$=O \Rightarrow \operatorname{pr}_{\mathrm{a}} d_{1} \cap \mathrm{pr}_{\mathrm{\alpha}} d_{2} \cap \operatorname{pr}_{\alpha} d_{3} \neq \varnothing \Rightarrow d_{1}^{\prime} \cap d_{2}^{\prime} \cap d_{3}=$
$=\{O\}$.

Solution to Problem 186.

Let $\alpha \cap \beta=a$ and $M \in d$. We project this point onto α and β :
$\left.M M^{\prime} \perp \alpha \Rightarrow \begin{array}{r}M M^{\prime} \perp a \\ d \perp a\end{array}\right\} \Rightarrow a \perp\left(M M^{\prime}, d\right)$
$\left.M M^{\prime \prime} \perp \beta \Rightarrow \begin{array}{r}M M^{\prime \prime} \perp a \\ d \perp a\end{array}\right\} \Rightarrow a \perp\left(M M^{\prime \prime}, d\right)$
$\Rightarrow a \perp$ onto the projective plane of d onto β.

$$
\begin{aligned}
& \left.\left.\begin{array}{l}
\left(M M^{\prime}, d\right) \perp d \\
\left(N M^{\prime \prime}, d\right) \perp a
\end{array}\right\} \Rightarrow \begin{array}{c}
\left(M M^{\prime}, d\right) \|\left(M M^{\prime \prime}, d\right) \\
\Rightarrow\left(M M^{\prime}, d\right)=\left(M M^{\prime \prime}, d\right)=\left(M M^{\prime} M^{\prime \prime}\right)
\end{array}\right\} \Rightarrow
\end{aligned}
$$

Let
$\left.a \cap\left(M M^{\prime} M^{\prime \prime}\right)=\{O\} \Rightarrow \begin{array}{l}\operatorname{pr}_{a} d=O M^{\prime} \\ \operatorname{pr}_{a} d=O M^{\prime \prime}\end{array}\right\} \Rightarrow$
$\Rightarrow O M^{\prime} \cap O M^{\prime \prime}=\{O\}$, so the two projections are concurrent.

Solution to Problem 187.

$$
\left.\left.\begin{array}{l}
O C \perp O A \\
O C \perp O B
\end{array}\right\} \Rightarrow \begin{array}{c}
O C \perp(O A B) \\
O M \perp A B
\end{array}\right\} \Rightarrow C M \perp A B \Rightarrow
$$

the angle of planes $(A B C)$ and $(O A B)$ is $\widehat{O M C}=\alpha$.

$$
\begin{aligned}
& \|A B\|=\sqrt{a^{2}+b^{2}} ;\|O M\|=\frac{a b}{\sqrt{a^{2}+b^{2}}} \\
& \operatorname{tg} \alpha=\frac{\|O C\|}{\|O M\|}=\frac{c}{\frac{a b}{\sqrt{a^{2}+b^{2}}}}=\frac{c \sqrt{a^{2}+b^{2}}}{a b} .
\end{aligned}
$$

Solution to Problem 188.
Let $\alpha \cap \beta=$ a and $A A^{\prime} \perp a, B B^{\prime} \perp a$.
$\left.\begin{array}{l}\alpha \perp \beta \\ A \in \alpha \\ A A^{\prime} \perp a\end{array}\right\} \Rightarrow A A^{\prime} \perp \beta \Rightarrow A A^{\prime} \perp A^{\prime} B \Rightarrow$
$\Rightarrow\|A B\|^{2}=\left\|A A^{\prime}\right\|^{2}+\left\|A^{\prime} B\right\|^{2}$.

As
$\left.\begin{array}{r}B B^{\prime} \perp a \\ \beta \perp \alpha\end{array}\right\} \Rightarrow B B^{\prime} \perp a \Rightarrow \mathrm{pr}_{\alpha} A B=A B^{\prime} \Rightarrow$
$\Rightarrow \Varangle$ of line $A B$ with $\alpha, \widehat{B A B^{\prime}}=a$
$A A^{\prime} \perp \beta \Rightarrow \mathrm{pr}_{\beta} A B=A^{\prime} B \Rightarrow$
$\Rightarrow \Varangle$ of line $A B$ with $\beta, A B A^{\prime}=b$
In the plane β we draw through B a parallel line to a and through A^{\prime} a parallel line to $B B^{\prime}$. Their intersection is C, and $\left\|A^{\prime} B^{\prime}\right\|=\|B C\|,\left\|B B^{\prime}\right\|=\left\|A^{\prime} C\right\|$. The angle of line $A B$ with α is $\widehat{A B C}=c$.

As $A A^{\prime} \perp \beta \Rightarrow A A^{\prime} \perp A^{\prime} C \Rightarrow\|A C\|^{2}=\left\|A A^{\prime}\right\|^{2}+\left\|A^{\prime} C\right\|^{2}=\left\|A A^{\prime}\right\|^{2}+\left\|B^{\prime} B\right\|^{2}(1)$
$B^{\prime} B C A$ rectangle

$$
\left.\begin{array}{r}
\Rightarrow A^{\prime} C \perp \| C B \\
A A^{\prime} \perp \beta
\end{array}\right\} \Rightarrow A C \perp C B .
$$

$\Rightarrow \triangle A C B$ is right in C.
We divide the relation (1) with $\|A B\|^{2}$:

$$
\frac{\|A C\|^{2}}{\|A B\|^{2}}=\frac{\left\|A A^{\prime}\right\|^{2}}{\|A B\|^{2}}+\frac{\left\|B^{\prime} B\right\|^{2}}{\|A B\|^{2}} \Rightarrow \sin ^{2} c=\sin ^{2} b+\sin ^{2} a .
$$

Solution to Problem 189.

$$
\begin{aligned}
& S^{\prime}=S \cos a \\
& S^{\prime \prime}=S^{\prime} \cos a
\end{aligned}, a \in(\widehat{\alpha, \beta})
$$

Solution to Problem 190.

a. $\quad|A C| \equiv|B C| \Longrightarrow \triangle A C B$ isosceles $\underset{C M \text { median }}{\Rightarrow}\} \Rightarrow C M \perp A B$ (1)

$$
\left.\begin{array}{c}
|A D| \equiv|B C| \Longrightarrow \triangle A B D \text { isosceles } \\
D M \text { median }
\end{array}\right\} \Rightarrow D M \perp A B \text { (2) }
$$

From (1) and (2) $\left.\Rightarrow A B \perp(D M C)=\begin{array}{l}A B \perp M N \\ A B \perp D C\end{array}\right\}$

$$
\left.\left.\begin{array}{l}
|B C| \equiv|B D| \\
\left.\begin{array}{l}
B N \text { median }
\end{array}\right\} \Rightarrow B N \perp D C \\
|A D| \equiv|A C| \\
A N \text { median }
\end{array}\right\} \Rightarrow A N \perp D C\right\} \Rightarrow D C \perp(A B N) \Rightarrow D C \perp M N
$$

b.

$$
\left.\left.\left.\left.\begin{array}{l}
D C \perp M N \\
D C \perp A B
\end{array}\right\} \Rightarrow \begin{array}{l}
D C \perp(A B N) \\
D C \subset(B D C)
\end{array}\right\} \Rightarrow \begin{array}{l}
(B D C) \perp(A B N) \\
A A^{\prime} \perp(B D C)
\end{array}\right\} \Rightarrow \begin{array}{l}
A A^{\prime} \subset(A B N) \\
A^{\prime} \in(B D C)
\end{array}\right\} \Rightarrow
$$

$\Rightarrow A^{\prime} \in B N \Rightarrow B, A^{\prime}, N$ are collinear.
In the same way:
From $\quad(A D C) \perp(A B N) \Longrightarrow A, B^{\prime}, N$ collinear
$(A B C) \perp(D M C) \Longrightarrow M, D^{\prime}, C$ collinear
$(A B D) \perp(D M C) \Rightarrow D, C^{\prime}, M$ collinear
C. At point a. we've shown that $M N \perp A B$
$\left.\left.\begin{array}{c}A A^{\prime} \perp(B D C) \\ B N \subset(D B C) \\ B B^{\prime} \perp(A D C) \\ A N \subset(A D C)\end{array}\right\} \Rightarrow \begin{array}{c}A A^{\prime} \perp B N \\ A^{\prime} \in B N \\ B B^{\prime} \perp A N \\ B^{\prime} \in A N\end{array}\right\} \Rightarrow$
$A A^{\prime}, B B^{\prime}$ and $M N$ are heights in $\triangle A B N$, so they are concurrent lines.
In the same way, $D D^{\prime}, C C^{\prime}, M N$ will be heights in $\triangle D M C$.

Solution to Problem 191.

We assume that [$O A,[O B$ are on the same side of plane α.
We draw
$\left.\begin{array}{c}B B^{\prime} \perp \alpha \\ A O \perp \alpha\end{array}\right\} \Rightarrow B B^{\prime} \| A O \Rightarrow$
(ヨ) plane $\left(A D, B B^{\prime}\right)=\beta \Rightarrow|O A| O$,$B are in the same half-plane.$
$A O \perp \alpha \Rightarrow A O \perp O B^{\prime}, m\left(\widehat{B O B^{\prime}}\right)<90^{\circ} \Rightarrow \mid O B \subset$
int $\widehat{A O B^{\prime}}$.
In plane β we have $m(\widehat{A O B})=90^{\circ}=m\left(\widehat{B O B}^{\prime}\right)<90^{\circ} \Rightarrow \widehat{A O B}$ acute.
We assume that [OA and [OB are in different half-planes in relation to $\alpha \Rightarrow A$ and B are in different half-planes in relation to $O B^{\prime}$ in plane $\beta \Rightarrow \mid O B^{\prime} \subset$ int. $\widehat{B O A} \Rightarrow m(\widehat{A O B})=$ $90^{\circ}+m\left(\widehat{B O B^{\prime}}\right)>90^{\circ} \Rightarrow A O B$ obtuse.

Solution to Problem 192.

We know the locus of the points in space equally distant from the peaks of $\triangle B C D$ is the perpendicular line d to the $\mathrm{pl} . \Delta$ in the center of the circumscribed circle of this Δ, marked with O. We draw the mediator plane of side $|A C|$, which intersects this $\perp d$ at point O. Then, point O is equally distant from all the peaks of the tetrahedron $\|O A\|=\|O B\|=\|O C\|=\|O D\|$. We connect O with midpoint E of side $|A B|$. From $|O A| \equiv|O B| \Rightarrow \triangle O A B$ isosceles $\Rightarrow O C \perp A B$ (1).

We project O onto plane ($A B D$) in point O_{2}.
As $\left.\begin{array}{l}|O A| \equiv|O B| \equiv|O D| \\ \mid O) O_{2} \text { common side }\end{array}\right\} \Rightarrow \triangle O A O_{2}=\triangle O B O_{2}=\triangle O D O_{2}$
$\Rightarrow\left|O_{2} A\right| \equiv\left|B O_{2}\right| \equiv\left|D O_{2}\right| \Rightarrow$
$\Rightarrow O_{2}$ is the center of the circumscribed circle of $\triangle A B D$. We show in the same way that O is also projected on the other faces onto the centers of the circumscribed circles, thus through O pass all the perpendicular lines to the faces of the tetrahedron. These lines are drawn through the centers of the circumscribed circles. So b. is proved.
From $\left|O_{2} A\right| \equiv\left|O B_{2}\right| \Rightarrow \triangle O_{2} A B$ isosceles $O_{2} E \perp A B$ (2)
From (1) and (2) $\left.\Rightarrow \begin{array}{c}A B \perp\left(E O_{2} O\right) \\ |A E| \equiv|E B|\end{array}\right\} \Rightarrow$
$\Rightarrow\left(E O_{2} O\right)$ is a mediator plane of side $|A B|$ and passes through O and the intersection of the 3 mediator planes of sides $|B C|,|C D|,|B D|$ belongs to line d, thus O is the common point for the 6 mediator planes of the edges of a tetrahedron.

Solution to Problem 193.

Let $M \in d$ and $\delta \| d^{\prime}, M \in \delta$. Let $=(d, \delta) \Rightarrow d^{\prime} \| \alpha$.
Let
$\left.\begin{array}{l}d^{\prime \prime}=\operatorname{pr}_{a} d^{\prime \prime} \\ d^{\prime \prime} \|, a\end{array}\right\} \Rightarrow d^{\prime \prime}\left\|d^{\prime \prime} \Rightarrow d^{\prime \prime}\right\| d^{\prime \prime} \Rightarrow d^{\prime \prime} \cap d=$
$=\{A\}$ otherwise d and d^{\prime} would be parallel, thus coplanar. Let β be the projective plane of line

$$
d^{\prime \prime} \Rightarrow \begin{aligned}
& \beta \perp \alpha \\
& \beta \cap \alpha=d^{\prime \prime}
\end{aligned}
$$

In plane β we construct a perpendicular to $d^{\prime \prime}$ in point A and
$\left.\begin{array}{c}A A^{\prime} \perp d^{\prime \prime} \\ d^{\prime} \| d^{\prime \prime}\end{array}\right\} \Rightarrow A A^{\prime} \perp d^{\prime}$.

Solution to Problem 194.

We draw

$$
M^{\prime} M^{\prime \prime} \perp d^{\prime \prime} \Rightarrow M^{\prime} M^{\prime \prime} \perp d \Rightarrow M^{\prime} M^{\prime \prime} \perp M^{\prime \prime} M \Rightarrow\left\|M^{\prime} M\right\| \geq\left\|M^{\prime} M^{\prime \prime}\right\|=\left\|A^{\prime} A\right\| .
$$

We can obtain the equality only when $M=A$ and $M^{\prime}=A^{\prime}$.

Solution to Problem 195.

Let $M \in d, M^{\prime} \in d^{\prime}$ such that $|A M| \equiv\left|A^{\prime} M^{\prime}\right|$. Let $d^{\prime \prime}=\operatorname{pr}_{\alpha} d^{\prime}$ and $M^{\prime} M^{\prime \prime} \perp d^{\prime \prime} \Rightarrow$ $M^{\prime} M^{\prime \prime} \perp \alpha \Rightarrow M^{\prime} M^{\prime \prime} \perp M^{\prime \prime} M$.
$\left.\left.\begin{array}{l}M^{\prime \prime} \| A^{\prime} A \\ A^{\prime} M^{\prime} \| A M^{\prime \prime}\end{array}\right\} \Rightarrow \begin{array}{l}\left|A^{\prime} M^{\prime}\right| \equiv\left|A M^{\prime \prime}\right| \\ \left|A^{\prime} M^{\prime}\right| \equiv|A M|\end{array}\right\} \Rightarrow|A M| \equiv\left|A M^{\prime}\right| \Rightarrow$
$\Rightarrow \triangle A M M^{\prime}$ isosceles.
Let P be the midpoint of $\left|M M^{\prime}\right|$ and $P^{\prime}=\operatorname{pr}_{\alpha} P \Rightarrow P P^{\prime} \| M^{\prime} M^{\prime \prime} \Rightarrow P^{\prime}$ is the midpoint of $M M^{\prime \prime}, \Delta A M M^{\prime \prime}$ isosceles $\Rightarrow\left[A P^{\prime}\right.$ the bisector of $\widehat{M^{\prime} A M}$. $\left(P P^{\prime}\right)$ is midline in $\Delta M^{\prime} M^{\prime \prime} M \Rightarrow\left\|P P^{\prime}\right\|=\frac{1}{2}\left\|M^{\prime} M^{\prime \prime}=\frac{1}{2}\right\| A^{\prime} A \|=$ constant.
Thus, the point is at a constant distance from line $A P^{\prime}$, thus on a parallel line to this line, located in the \perp plane α, which passes through $A P^{\prime}$.
When $M=A$ and $M^{\prime}=A^{\prime} \Rightarrow\|A M\|=\| N^{\prime} A^{\prime}=0 \Rightarrow P=R$, where R is the midpoint of segment $\left|A A^{\prime}\right|$. So the locus passes through R and because

$$
\left.\begin{array}{l}
A A^{\prime} \perp A P^{\prime} \\
R P \| A P^{\prime}
\end{array}\right\} \Rightarrow R P \perp A A^{\prime} \Rightarrow
$$

$\Rightarrow R P$ is contained in the mediator plane of segment $\left|A A^{\prime}\right|$.
So $R P$ is the intersection of the mediator plane of segment $\left|A A^{\prime}\right|$ with the \perp plane to α, passing through one of the bisectors of the angles determined by d and d^{\prime}, we obtain one more line contained by the mediator plane of [$A A^{\prime}$], the parallel line with the other bisector of the angles determined by d and $d^{\prime \prime}$.
So the locus will be formed by two perpendicular lines.

Vice-versa, let $Q \in R P$ a (\forall) point on this line and $Q^{\prime}=\operatorname{pr}_{\alpha} Q \Rightarrow Q^{\prime} \in \mid A P^{\prime}$ bisector. We draw $N N^{\prime \prime} \perp A Q^{\prime}$ and because $A Q^{\prime}$ is both bisector and height $\Rightarrow \triangle A N N^{\prime \prime}$ isosceles $\Rightarrow\left|A Q^{\prime}\right|$ median $\Rightarrow\left|N Q^{\prime}\right| \equiv\left|Q^{\prime} N^{\prime \prime}\right|$.

We draw

$$
\begin{aligned}
& \left.N^{\prime} N^{\prime \prime} \perp d^{\prime \prime} \Rightarrow \begin{array}{c}
\left|A^{\prime} N^{\prime \prime}\right| \equiv\left|A N^{\prime \prime}\right| \\
\left|A N^{\prime \prime}\right| \equiv|A N|
\end{array}\right\} \Rightarrow|A N| \equiv\left|A^{\prime} N^{\prime}\right| \\
& Q Q^{\prime \prime} \| \mid N^{\prime} N^{\prime \prime} \Rightarrow Q, Q^{\prime}, N^{\prime \prime}, N^{\prime \prime} \quad \text { coplanar } \Rightarrow N^{\prime \prime} Q^{\prime} \in\left(Q Q^{\prime} N^{\prime} N^{\prime \prime}\right) \Rightarrow N \in\left(Q Q^{\prime} N^{\prime} N^{\prime \prime}\right)
\end{aligned}
$$

As

$$
\left.\begin{array}{c}
\left\|Q^{\prime} Q\right\|=\frac{1}{2}\left\|A A^{\prime}\right\|=\frac{1}{2}\left\|N^{\prime} N^{\prime \prime}\right\| \\
Q Q^{\prime} \| N^{\prime} N^{\prime \prime}
\end{array}\right\} \Rightarrow
$$

$$
\Rightarrow\left|Q^{\prime} Q\right| \text { midline in } \Delta N N^{\prime} N^{\prime \prime} \Rightarrow Q, N^{\prime}, N \text { collinear and }\left|Q N^{\prime}\right| \equiv|Q N| .
$$

Solution to Problem 196.

$D=\mathrm{pr}_{B C} V$ sii $E=\mathrm{pr}_{A B} V F D=\mathrm{pr}_{A C} V$
$(V B C) \perp(A B C) \Rightarrow V D \perp(A B C) \Rightarrow d(V, \alpha)=\|V D\|$,
where $\alpha=(A B C)$.
$\|E D\|=\frac{a}{2} \cdot \sin 60^{\circ}=\frac{a}{2} \frac{\sqrt{3}}{2}=\frac{a \sqrt{3}}{4}$
$\|V D\|=\|E D\| \cdot \operatorname{tg} 60^{\circ}=\frac{a \sqrt{3}}{4} \cdot \sqrt{3}=\frac{3 a}{4}$

$$
\begin{aligned}
& \left.\left.\begin{array}{l}
\left.\begin{array}{l}
V D \perp(A B C) \\
V E \perp A B
\end{array}\right\} \Rightarrow D E \perp A B \Rightarrow m(\widehat{V E D})=60^{\circ} \\
V D \perp(A B C) \\
V F \perp A C
\end{array}\right\} \Rightarrow \begin{array}{c}
D F \perp A C \Rightarrow m(\widehat{V F D})=60^{\circ} \\
V D \text { common side }
\end{array}\right\} \Rightarrow \\
& \left.\Rightarrow \begin{array}{r}
\triangle V D E=\triangle V D F \Rightarrow|E D| \equiv|F D| \\
m(\hat{B})=m(\hat{C})=60^{\circ}
\end{array}\right\} \Rightarrow \triangle E D B \equiv \triangle F D C \Rightarrow|B D| \equiv|D C| \Rightarrow\|B D\|=\frac{a}{2}
\end{aligned}
$$

Solution to Problem 197.

Let

$$
\begin{aligned}
& \left.\begin{array}{l}
O=\mathrm{pr}_{(B A C)} V ;\|V A\|=\|V B\|=\|V C\|=a \\
\quad\|V O\| \text { common }
\end{array}\right\} \Rightarrow \\
& \Rightarrow \triangle V A O \equiv \triangle V B O \equiv \triangle V B O \equiv \triangle V C O \Rightarrow|O A| \equiv \\
& \equiv|B O| \equiv|C O| \Rightarrow
\end{aligned}
$$

$\Rightarrow O$ is the center of the circumscribed circle and as $\triangle A B C$ is equilateral $\Rightarrow O$ is the centroid \Rightarrow

$$
\begin{gathered}
\Rightarrow\|O M\|=\frac{1}{3}\|M C\|=\frac{1}{3} \cdot \frac{a \sqrt{3}}{2}=\frac{a \sqrt{3}}{6} \\
\|V M\|=\|M C\|=\sqrt{a^{2}-\frac{a^{2}}{4}}=\frac{a \sqrt{3}}{2}
\end{gathered}
$$

$$
\triangle V O M \Rightarrow \cos (V \widehat{M} O)=\frac{\|O M\|}{\|N M\|}=\frac{\frac{a \sqrt{3}}{6}}{\frac{a \sqrt{3}}{2}}=\frac{1}{3} \Rightarrow V \widehat{M} O=\arccos \frac{1}{3} .
$$

Solution to Problem 198.

$$
\begin{aligned}
& \|D E\|=l \\
& m(D B E)=\beta \\
& \triangle E D B:\|D E\|=l \sin \beta \\
& \quad\|D B\|=l \cos \beta . \\
& \forall A B\|=a \Rightarrow\| D B \|=a \sqrt{2}, \\
& \|A B\|=\frac{\|D B\|}{\sqrt{2}}=\frac{l \cos \beta}{\sqrt{2}} .
\end{aligned}
$$

In $\triangle A E B$, right in A :

$$
\begin{aligned}
& \|A E\|=\sqrt{l^{2}-\frac{l^{2} \cos ^{2} \beta}{2}}=l \sqrt{\frac{2-\cos ^{2} \beta}{2}}=l \sqrt{\frac{1+\sin ^{2} \beta}{2}} \\
& \triangle A D E\left(m(\widehat{D})=90^{\circ}\right) \quad \operatorname{tg} \rho=\frac{\|D E\|}{\|A D\|}=\frac{\rho \sin \beta}{\frac{\rho \cos \beta}{\sqrt{2}}}=\sqrt{2} \operatorname{tg} \beta .
\end{aligned}
$$

Solution to Problem 199.

$\left.\begin{array}{l}C E \perp B A \\ D E \perp A B\end{array}\right\} \Rightarrow \Varangle$ pl. $(A B C)$ and $A B D$ are $m(\widehat{D E C})$.
$A B C$ equilateral $\Rightarrow\|C E\|=\frac{a \sqrt{3}}{2}$.

$$
\begin{aligned}
& \triangle C B D:\|D B\|=\frac{a}{\cos \beta}=\|A D\| \\
& D E^{2}=\sqrt{\frac{a^{2}}{\cos ^{2} \beta}-\frac{a^{2}}{2}}=a \sqrt{\frac{\sin \beta}{\cos \beta}} \\
& \cos \alpha=\frac{\|C O\|}{\|C E\|}=\frac{\frac{a \sqrt{3}}{2}}{a \sqrt{\frac{\sin \beta}{\cos \beta}}}=\frac{\sqrt{3} \cos \beta}{2 \cdot \sqrt{\sin \beta}} \\
&
\end{aligned}
$$

$\operatorname{tg} \alpha \cdot \frac{\|C D\|}{\|C E\|}=\frac{\frac{a \cdot \sin \beta}{\cos \beta}}{\frac{a \sqrt{3}}{2}}=\frac{2}{\sqrt{3}} \cdot \operatorname{tg} \beta$.

Solution to Problem 200.
We consider the problem solved and we take on plane $\alpha, \triangle D E F$, then points O and O^{\prime} which are not located on α.

We also construct lines $|D O,|F O| E$,$O respectively | D O^{\prime},\left|F O^{\prime},\right| E O^{\prime}$. On these rays we take $\triangle A B C$ and $\triangle A^{\prime} B^{\prime} C^{\prime}$. Obviously, the way we have constructed the lines $A D, B E, C F$ shows that they intersect at O. We extend lines $B A, B C, C A$ until they intersect plane
α at points B, C respectively A. Then, we extend lines $C^{\prime} A^{\prime}, C^{\prime} B^{\prime}, A^{\prime} B^{\prime}$ until they intersect plane α at points A_{2}, C_{2} respectively B_{2}.
Obviously, points A_{1}, B_{1}, C_{1} are collinear (because $\in \alpha \cap(A B C)$) and A_{2}, B_{2}, C_{2} are as well collinear (because $\in \alpha \cap\left(A^{\prime} B^{\prime} C^{\prime}\right)$).

On the other side, points D, F, A_{1}, A_{2} are collinear because:
$\left.\begin{array}{c}A_{1} \in A C(A C O D) \\ A, D, F \subset \alpha\end{array}\right\} \Rightarrow O, F, A_{1} \in \alpha \cap(A C O)$,
thus collinear (1)
$A_{2} \in O^{\prime} A^{\prime} \subset\left(A^{\prime} C^{\prime} O D F\right)$
$D, F, A_{2} \in \alpha$
$\Rightarrow D, F, A_{2} \in \alpha \cap\left(C^{\prime} A^{\prime} O\right) \Rightarrow$
$\Rightarrow D, F, A_{2}$ collinear (2)
From (1) and (2) $\Rightarrow D, F, A_{1}, A_{2}$ collinear. Similarly C, E, F, C_{2} collinear and B_{1}, E, D, D_{2} collinear.

Consequently, $D E F$ is at the intersection of lines $A_{1} A_{2}, C_{1} C_{2}, B_{1} B_{2}$ on plane α, thus uniquely determined.

Review Problems

201. Find the position of the third peak of the equilateral triangle, the affixes of two peaks being $z_{1}=1, z_{2}=2+i$.

Solution to Problem 201
202. Let z_{1}, z_{2}, z_{3} be three complex numbers, not equal to 0 , two by 2 , and of equal moduli. Prove that if $z_{1}+z_{2} z_{3}, z_{2}+z_{3} z_{1}, z_{2}+z_{1} z_{3} \in R \Rightarrow z_{1} z_{2} z_{3}=1$.

Solution to Problem 202
203. We mark by G the set of n roots of the unit, $G=\left\{\varepsilon_{0}, \varepsilon_{1}, \ldots, \varepsilon_{n-1}\right\}$. Prove that:
a. $\varepsilon_{i} \cdot \varepsilon_{j} \in G,(\forall) i, j \in\{0,1, \ldots, n-1\}$;
b. $\varepsilon_{i}^{-1} \in G,(\forall) i \in\{0,1, \ldots, n-1\}$.

Solution to Problem 203
204. Let the equation $a z^{2}+b z^{2}+c=0, a, b, c \in C$ and $\arg a+\arg c=2 \arg b$, and $|a|+|c|=|b|$. Show that the given equation has at list one root of unity.

Solution to Problem 204
205. Let z_{1}, z_{2}, z_{3} be three complex numbers, not equal to 0 , such that $\left|z_{1}\right|=$ $\left|z_{2}\right|=\left|z_{3}\right|$.
a. Prove that (\exists) complex numbers α and β such that $z_{2}=\alpha z_{1}, z_{3}=\beta z_{2}$ and $|\alpha|=|\beta|=1 ;$
b. Solve the equation $\alpha^{2}+\beta^{2}-\alpha \cdot \beta-\alpha-\beta+1=0$ in relation to one of the unknowns.
c. Possibly using the results from a. and b., prove that if $z_{1}^{2}+z_{2}^{2}+z_{3}^{2}=$ $z_{1} z_{2}+z_{2} z_{3}+z_{1} z_{3}$, then we have $z_{1}=z_{2}=z_{3}$ or the numbers z_{1}, z_{2}, z_{3} are affixes of the peaks of an equilateral Δ.

Solution to Problem 205
206. Draw a plane through two given lines, such that their line of intersection to be contained in a given plane.

Solution to Problem 206
207. Let a, b, c be three lines with a common point and P a point not located on any of them. Show that planes $(P a),(P b),(P c)$ contain a common line.
208. Let A, B, C, D be points and α a plane separating points A and B, A and C, C and D. Show that $\alpha \cap|B D| \neq \emptyset$ and $\alpha \cap|A D|=\emptyset$.

Solution to Problem 208
209. On edges a, b, c of a trihedral angle with its peak O, take points A, B, C; let then $D \in|B C|$ and $E \in|A D|$. Show that $\mid O E \subset$ int. $\angle a b c$.

Solution to Problem 209
210. Show that the following sets are convex: the interior of a trihedral angle, a tetrahedron without an edge (without a face).

Solution to Problem 210
211. Let A, B, C, D be four non-coplanar points and E, F, G, H the midpoints of segments $[A B],[B C],[C D],[D A]$. Show that $E F \|(A C D)$ and points E, F, G, H are coplanar.

Solution to Problem 211
212. On lines d, d^{\prime} consider distinct points $A, B, C ; A^{\prime}, B^{\prime}, C^{\prime}$ respectively. Show that we can draw through lines $A A^{\prime}, B B^{\prime}, C C^{\prime}$ three parallel planes if and only if $\frac{\|A B\|}{\left\|A^{\prime} B^{\prime}\right\|}=\frac{\|B C\|}{\left\|B^{\prime} C^{\prime}\right\|}$.
213. Let M, M^{\prime} be each mobile points on the non-coplanar lines d, d^{\prime}. Find the locus of points P that divide segment $\left|M M^{\prime}\right|$ in a given ratio.

Solution to Problem 213
214. Construct a line that meets three given lines, respectively in M, N, P and for which $\frac{\|M N\|}{\|N P\|}$ to be given ratio.

Solution to Problem 214
215. Find the locus of the peak P of the triangle M, N, P if its sides remain parallel to three fixed lines, the peak M describes a given line d, and the peak $N \in$ a given plane α.

Solution to Problem 215
216. On the edges $[O A,[O B,[O C$ of a trihedral angle we consider points M, N, P such that $\|O M\|=\lambda\|O A\|,\|O N\|=\lambda\|O B\|,\|O P\|=\lambda\|O C\|$, where λ is a positive variable number. Show the locus of the centroid of triangle MNP.
217. $A B C D$ and $A_{1} B_{1} C_{1} D_{1}$ are two parallelograms in space. We take the points $A_{2}, B_{2}, C_{2}, D_{2}$ which divide segments $\left[A A_{1}\right],\left[B B_{1}\right],\left[C C_{1}\right],\left[D D_{1}\right]$ in the same ratio. Show that $A_{2} B_{2} C_{2} D_{2}$ is a parallelogram.

Solution to Problem 217
218. The lines d, d^{\prime} are given, which cut a given plane α in A and A^{\prime}. Construct the points M, M^{\prime} on d, d^{\prime} such that $M M^{\prime} \| \alpha$ and segment [$M M^{\prime}$] to have a given length l. Discuss.

Solution to Problem 218
219. Construct a line which passes through a given point A and that is perpendicular to two given lines d and d^{\prime}.
220. Show that there exist three lines with a common point, perpendicular two by two.

Solution to Problem 220
221. Let $a b, c, d$ four lines with a common point, d is perpendicular to $a b, c$. Show that lines a, b, c are coplanar.

Solution to Problem 221
222. Show that there do not exist four lines with a common point that are perpendicular two by two.

Solution to Problem 222
223. Let $d \perp \alpha$ and $d^{\prime} \| d$. Show that $d^{\prime} \perp \alpha$.

Solution to Problem 223
224. Show that two distinct perpendicular lines on a plane are parallel.

Solution to Problem 224
225. Let $d \perp \alpha$ and $d^{\prime}\left[\| \alpha\right.$. Show that $d^{\prime} \perp d$.

Solution to Problem 225
226. Show that two perpendicular planes on the same line are parallel with each other.

Solution to Problem 226
227. Show that the locus of the points equally distant from two distinct points A and B is a perpendicular plane to $A B$, passing through midpoint O of the segment $[A B]$ (called mediator plane of $[A B]$).

Solution to Problem 227
228. Find the locus of the points in space equally distant from the peaks of a triangle $A B C$.

Solution to Problem 228
229. The plane α and the points $A \in \alpha, B \notin \alpha$ are given. A variable line d passes through A and it is contained in plane α. Find the locus of the \perp feet from B to d.

Solution to Problem 229
230. A line α, and a point $A \notin \alpha$ are given. Find the locus of the feet of the perpendicular lines from A to planes passing through α.

Solution to Problem 230
231. Consider a plane α that passes through the midpoint of segment [AB].

Show that points A and B are equally distant from plane α.
Solution to Problem 231
232. Through a given point, draw a line that intersects a given line and is \perp to another given line.

Solution to Problem 232
233. Let α and β be two distinct planes and the line d their intersection. Let M be a point that is not located on $\alpha \cup \beta$. We draw the lines $M M_{1}$ and $M M_{2} \perp$ on α and β. Show that the line d is \perp to $\left(M M_{1} M M_{2}\right)$.

Solution to Problem 233
234. A plane α and a point $A, A \notin \alpha$ are given. Find the locus of points $M \in \alpha$ such that segment $|A M|$ has a given length.

Solution to Problem 234
235. Let O, A, B, C be four points such that $O A \perp O B \perp O C \perp D A$ and we write $a=\|O A\|, b=\|O B\|, c=\|O C\|$.
a. Find the length of the sides of $\triangle A B C$ in relation to a, b, c;
b. Find $\sigma[A B C]$ and demonstrate the relation $\sigma[A B C]^{2}=\sigma[D A B]^{2}+$ $\sigma[O B C]^{2}+\sigma[O C A]^{2} ;$
c. Show that the orthogonal projection of point O on plane $(A B C)$ is the orthocenter H of $\triangle A B C$;
d. Find the distance $\|O H\|$.

Solution to Problem 235
236. Consider non-coplanar points A, B, C, D and lines $A A^{\prime}, B B^{\prime}, C C^{\prime}, D D^{\prime}$ perpendicular to $(B C D),(A C D),(A B D)$. Show that if lines $A A^{\prime}$ and $B B^{\prime}$ are concurrent, then lines $C C^{\prime}, D D^{\prime}$ are coplanar.

Solution to Problem 236
237. Let A, B, C, D four non-coplanar points. Show that $A B \perp C D$ and $A C \perp B D$ $\Rightarrow A D \perp B C$.
238. On the edges of a triangle with its peak O, take the points A, B, C such that $|O A| \equiv|O B| \equiv|O C|$. Show that the \perp foot in O to the plane ($A B C$) coincides with the point of intersection of the bisectors $\triangle A B C$.

Solution to Problem 238
239. Let a peak A of the isosceles triangle $A B C(|A B| \equiv|A C|)$ be the orthogonal projection onto A^{\prime} on a plane α which passes through $B C$. Show that $\widehat{B A^{\prime} C}>\widehat{B A C}$.

Solution to Problem 239
240. With the notes of Theorem 1, let [$A B^{\prime}$ be the opposite ray to $\left[A B^{\prime \prime}\right.$. Show that for any point $M \in \alpha-\left[A B^{\prime \prime}\right.$ we have $\widehat{B^{\prime \prime} A B}>\overline{M A B}$.

Solution to Problem 240
241. Let α be a plane, $A \in \alpha$ and B and C two points on the same side of α such that $A C \perp \alpha$. Show that $\widehat{C A B}$ is the complement of the angle formed by [AB with α.

Solution to Problem 241
242. Let $\alpha^{\prime} \beta^{\prime}$ be a trihedral angle with edge m and $A \in m$. Show that of all the rays with origin at A and contained in half-plane β^{\prime}, the one that forms with plane α the biggest possible angle is that $\perp p \in m$ (its support is called the line with the largest slope of β in relation to α).

Solution to Problem 242
243. Let α be a plane, σ a closed half-plane, bordered by α, α^{\prime} a half-plane contained in α and a a real number between 0° and 180°. Show that there is only one half-space β^{\prime} that has common border with α^{\prime} such that $\beta^{\prime} \subset \sigma$ and $m\left(\alpha^{\prime} \beta^{\prime}\right)=a$.

Solution to Problem 243
244. Let ($\overline{\alpha^{\prime} \beta^{\prime}}$) be a proper dihedral angle. Construct a half-plane γ^{\prime} such that $m\left(\overline{\alpha^{\prime} \beta^{\prime}}\right)=m\left(\overline{\gamma^{\prime} \beta^{\prime}}\right)$. Show that the problem has two solutions, one of which is located in the int. $\overline{\alpha^{\prime} \beta^{\prime}}$ (called bisector half-plane of $\overline{\alpha^{\prime} \beta^{\prime}}$).

Solution to Problem 244
245. Show that the locus of the points equally distant from two secant planes α, β is formed by two \perp planes, namely by the union of the bisector planes of the dihedral angles α and β.

Solution to Problem 245
246. If α and β are two planes, $Q \in \beta$ and $d \perp$ through Q on α. Show that $d \subset$ β.
247. Consider a line $d \subset \alpha$. Show that the union of the \perp lines to α, which intersect line d, is a plane $\perp \alpha$.

Solution to Problem 247
248. Find the locus of the points equally distant from two concurrent lines.

Solution to Problem 248
249. Show that a plane $\alpha \perp$ to two secant planes is \perp to their intersection.
250. Let A be a point that is not on plane α. Find the intersection of all the planes that contain point A and are \perp to plane α.

Solution to Problem 250
251. From a given point draw a \perp plane to two given planes.

Solution to Problem 251
252. Intersect a dihedral angle with a plane as the angle of sections is right.
253. Show that a line d and a plane α, which are perpendicular to another plane, are parallel or line d is contained in α.

Solution to Problem 253
254. If three planes are \perp to a plane, they intersect two by two after lines a, b, c. Show that $a\|b\| c$.

Solution to Problem 254
255. From a point A we draw perpendicular lines $A B$ and $A C$ to the planes of the faces of a dihedral angle $\widehat{\alpha^{\prime} \beta^{\prime}}$. Show that $m(\widehat{B A C})=m\left(\widehat{\alpha^{\prime} \beta^{\prime}}\right)$ or $m(\widehat{B A C})=180^{\circ}-m\left(\widehat{\alpha^{\prime} \beta^{\prime}}\right)$.

Solutions

Solution to Problem 201.

$$
\begin{aligned}
& M_{1}-z_{1}=1 \\
& M_{2}-z_{1}=2+i \\
& M_{1}-z_{1}=x+y i \\
& \Delta M_{1} M_{2} M_{3} \text { equilateral } \Rightarrow\left\|M_{1} M_{2}\right\|=\left\|M_{1} M_{3}\right\|=\left\|M_{2} M_{3}\right\| \Rightarrow\left|z_{2}-z_{1}\right|=\left|z_{3}-z_{2}\right|= \\
& \left|z_{1}-z_{3}\right| \\
& \Rightarrow \sqrt{2}=\sqrt{(x-2)^{2}+(y-1)^{2}} \Rightarrow\left\{\begin{array} { c }
{ (x - 2) ^ { 2 } + (y - 1) ^ { 2 } = 2 } \\
{ (1 - x) ^ { 2 } + y ^ { 2 } = 2 }
\end{array} \Rightarrow \left\{\begin{array}{c}
x+y=2 \\
x^{2}+y^{2}-2 x=1
\end{array}\right.\right. \\
& \quad \Rightarrow y=2-x
\end{aligned} \begin{aligned}
& x^{2}+4+x^{2}-4 x-2 x=1 \Rightarrow x_{1,2}=\frac{3 \pm \sqrt{3}}{2} \Rightarrow\left[\begin{array}{c}
y_{1}=\frac{1-\sqrt{3}}{2} \\
y_{2} \frac{1+\sqrt{3}}{2}
\end{array}\right.
\end{aligned}
$$

Thus: $M_{3}\left(\frac{3+\sqrt{3}}{2}, \frac{1-\sqrt{3}}{2}\right)$ or $M_{3}\left(\frac{3-\sqrt{3}}{2}, \frac{1+\sqrt{3}}{2}\right)$.
There are two solutions!

Solution to Problem 202.

$$
\begin{aligned}
& z_{1}=r\left(\cos t_{1}+i \sin t_{1}\right) \\
& z_{2}=r\left(\cos t_{2}+i \sin t_{2}\right) \\
& z_{3}=r\left(\cos t_{3}+i \sin t_{3}\right) \\
& z_{1} \neq z_{2} \neq z_{3} \Rightarrow t_{1} \neq t_{2} \neq t_{3} \\
& \left\{\begin{array}{l}
z_{1}+z_{2} z_{3} \in \mathbb{R} \Rightarrow \sin t_{1}+r \sin \left(t_{2}+t_{3}\right)=0 \\
z_{2}+z_{3} z_{1} \in \mathbb{R} \Rightarrow \sin t_{2}+r \sin \left(t_{1}+t_{3}\right)=0 \Rightarrow \\
z_{3}+z_{1} z_{2} \in \mathbb{R} \Rightarrow \sin t_{3}+r \sin \left(t_{1}+t_{2}\right)=0
\end{array}\right. \\
& \left\{\begin{array}{l}
\sin t_{1}(1-r \cos t)+r \sin t \cdot \cos t_{1}=0 \\
\sin t_{2}(1-r \cos t)+r \sin t \cdot \cos t_{2}=0 \\
\sin t_{3}(1-r \cos t)+r \sin t \cdot \cos t_{3}=0
\end{array}\right. \\
& t_{1} \neq t_{2} \neq t_{3}
\end{aligned}
$$

These equalities are simultaneously true only if $1-r \cdot \cos t=0$ and r. $\sin t=0$, as $r \neq 0 \Rightarrow \sin t=0 \Rightarrow t=0 \Rightarrow \cos t=1 \Rightarrow 1-r=0 \Rightarrow r=1$, so $z_{1} z_{2} z_{3}=1 \cdot(\cos 0+\sin 0)=1$.

Solution to Problem 203.
a. $\quad \varepsilon_{k}=\frac{2 k \pi}{n}+i \sin \frac{2 k \pi}{n}, k \in\{0,1, \ldots, n-1\}$.

So $\left.\begin{array}{l}\varepsilon_{i}=\cos \frac{2 i \pi}{n}+i \sin \frac{2 i \pi}{n} \\ \varepsilon_{j}=\cos \frac{2 j \pi}{n}+i \sin \frac{2 j \pi}{n}\end{array}\right\} \Rightarrow \varepsilon_{i} \varepsilon_{j}=\cos \frac{2 \pi(i+j)}{n}+i \sin \frac{2 \pi(i+j)}{n}, i, j \in\{0,1, \ldots, n-1\}$.

1) $i+j<n-1 \Rightarrow i+j=k \in\{0,1, \ldots, n-1\} \Rightarrow \varepsilon_{i} \varepsilon_{j}=\varepsilon_{k} \in G$;
2) $i+j=n \Rightarrow \varepsilon_{i} \varepsilon_{j}=\cos 2 \pi+i \sin 2 \pi=1=\varepsilon_{o} \in G$;
3) $i+j>n \Rightarrow i+j=n \cdot m+r, 0 \leq r<n, \varepsilon_{i} \varepsilon_{j}=\cos \frac{2 \pi(n \cdot m+r)}{n}+i \sin \frac{2 \pi(n \cdot m+r)}{n}=$ $\cos \left(2 \pi m+\frac{2 \pi r}{n}\right)+i \sin \left(2 \pi m+\frac{2 \pi r}{n}\right)=\cos \frac{2 \pi r}{n}+i \sin \frac{2 \pi r}{n}=\varepsilon_{r} \in G$.
b. $\quad \varepsilon_{i}=\cos \frac{2 \pi i}{n}+i \sin \frac{2 \pi i}{n}$
$\varepsilon_{i}^{-1}=\frac{1}{\varepsilon_{i}}=\frac{\cos 0+i \sin 0}{\cos \frac{2 \pi i}{n}+i \sin \frac{2 \pi i}{n}}=\cos \left(-\frac{2 \pi i}{n}\right)+i \sin \left(-\frac{2 \pi i}{n}\right)=\cos \left(2 \pi-\frac{2 \pi i}{n}\right)+$
$i \sin \left(2 \pi-\frac{2 \pi i}{n}\right)=\cos \frac{2 \pi n-2 \pi i}{n}+i \sin \frac{2 \pi n-2 \pi i}{n}=\cos \frac{2 \pi(n-1)}{n}+i \sin \frac{2 \pi(n-1)}{n}$,
$i \in\{0,1, \ldots, n-1\}$.

$$
\text { If } i=0 \Rightarrow n-i=n \Rightarrow \varepsilon_{0}^{-1}=\varepsilon_{0} \in g
$$

If $i \neq 0 \Rightarrow n-i \leq n-1 \Rightarrow h=n-i \in\{0,1, \ldots, n-1\} \Rightarrow \epsilon^{-1}=\cos \frac{2 \pi h}{n}+$ $i \sin \frac{2 \pi h}{n} \in G$.

Solution to Problem 204.

$$
\begin{aligned}
& \left\{\begin{array}{l}
a=r_{1}\left(\cos t_{1}+i \sin t_{1}\right) \\
b=r_{2}\left(\cos t_{2}+i \sin t_{2}\right) \\
c=r_{3}\left(\cos t_{3}+i \sin t_{3}\right)
\end{array}\right. \\
& \arg a+\arg c=2 \arg b \Rightarrow t_{1}+t_{3}=2 t_{2} \\
& \text { and }|a|+|c|=|b| \Rightarrow r_{1}+r_{3}=r_{2} \\
& a z^{2}+b z+c=0 \Rightarrow z_{1,2}=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} \\
& =\frac{-r_{2}\left(\cos t_{2}+i \sin t_{2}\right) \pm \sqrt{r_{2}^{2}\left(\cos 2 t_{2}+i \sin 2 t_{2}\right)-4 r_{1} r_{3}\left(\cos \left(t_{1}+t_{3}\right)+i \sin \left(t_{1}+t_{3}\right)\right)}}{2 r_{1}\left(\cos t_{1}+i \sin t_{1}\right)} \\
& =\frac{-r_{2}\left(\cos t_{2}+i \sin t_{2}\right) \pm \sqrt{\left(\cos 2 t_{2}+i \sin 2 t_{2}\right)\left(r_{2}^{2}-4 r_{1} r_{3}\right)}}{2 r_{1}\left(\cos t_{1}+i \sin t_{1}\right)}
\end{aligned}
$$

But $r_{1}+r_{3}=r_{2} \Rightarrow r_{2}^{2}=r_{1}^{2}+r_{1}^{2}+r_{3}^{2}+2 r_{1} r_{3} \Rightarrow r_{2}^{2}-4 r_{1} r_{3}=r_{1}^{2}+r_{1}^{2}+r_{3}^{2}+2 r_{1} r_{3}-$ $4 r_{1} r_{3}=\left(r_{1}-r_{3}\right)^{2}$.

Therefore:

$$
z_{1,2}=\frac{-r_{2}\left(\cos t_{2}+i \sin t_{2}\right) \pm\left(\cos t_{2}+i \sin t_{2}\right)\left(r_{1}-r_{3}\right)}{2 r_{1}\left(\cos t_{1}+i \sin t_{1}\right)}
$$

We observe that:

$$
\begin{aligned}
& z_{2}=\frac{\left(\cos t_{2}+i \sin t_{2}\right)\left(-2 r_{1}\right)}{2 r_{1}\left(\cos t_{1}+i \sin t_{1}\right)}=-\left[\cos \left(t_{2}-t_{1}\right)+i \sin \left(t_{2}-t_{1}\right)\right]=\cos \left[\pi+\left(t_{2}-t_{1}\right)\right]+ \\
& i \sin \left[\pi+t_{2}-t_{1}\right] \text { and } t_{2}=1 .
\end{aligned}
$$

Solution to Problem 205.

> Let

$$
\left\{\begin{array}{l}
z_{1}=r\left(\cos t_{1}+i \sin t_{1}\right) \\
z_{2}=r\left(\cos t_{2}+i \sin t_{2}\right), \\
z_{3}=r\left(\cos t_{3}+i \sin t_{3}\right)
\end{array} \quad r \neq 0\right.
$$

Let

$$
\begin{aligned}
& \alpha=r_{4}\left(\cos t_{4}+i \sin t_{4}\right) \\
& \beta=r_{5}\left(\cos t_{5}+i \sin t_{5}\right) \\
& z_{2}=\alpha z_{1} \Rightarrow r\left(\cos t_{2}+i \sin t_{2}\right)=r \cdot r_{4}\left[\cos \left(t_{1}+t_{4}\right)+i \sin \left(t_{1}+t_{4}\right)\right] \Rightarrow \\
& \Rightarrow\left\{\begin{array} { l }
{ r = r \cdot r _ { 4 } } \\
{ t _ { 4 } + t _ { 1 } = t _ { 2 } + 2 k \pi }
\end{array} \Rightarrow \left\{\begin{array} { l }
{ r _ { 4 } = 1 } \\
{ t _ { 4 } = t _ { 2 } - t _ { 1 } + 2 k \pi }
\end{array} \Rightarrow \left\{\begin{array}{l}
|\alpha|=1 \\
t_{4}=t_{2}-t_{1}+2 k \pi
\end{array}\right.\right.\right.
\end{aligned}
$$

So α is determined.

$$
\begin{aligned}
& z_{3}=\beta z_{1} \Rightarrow r\left(\cos t_{3}+i \sin t_{3}\right)=r \cdot r_{3}\left[\cos \left(t_{1}+t_{5}\right)+i \sin \left(t_{1}+t_{5}\right)\right] \Rightarrow \\
& \Rightarrow\left\{\begin{array} { l }
{ r = r \cdot r _ { 5 } } \\
{ t _ { 1 } + t _ { 5 } = t _ { 3 } + 2 k \pi }
\end{array} \Rightarrow \left\{\begin{array} { l }
{ r _ { 5 } = 1 } \\
{ t _ { 5 } = t _ { 3 } - t _ { 1 } + 2 k \pi }
\end{array} \Rightarrow \left\{\begin{array}{l}
|\beta|=1 \\
t_{5}=t_{3}-t_{1}+2 k \pi
\end{array}\right.\right.\right.
\end{aligned}
$$

So β is determined.
If we work with reduced arguments, then $t_{4}=t_{2}-t_{1}$ or $t_{4}=t_{2}-t_{1}+2 \pi$, in the same way t_{5}.
b) $\alpha^{2}+\alpha(-\beta-1)+\beta^{2}-\beta+1=0$

$$
\begin{gathered}
\alpha_{1,2}=\frac{\beta+1 \pm \sqrt{\beta^{2}+2 \beta+1-4 \beta^{2}+4 \beta-4}}{2}=\frac{\beta+1 \pm \sqrt{-3 \beta^{2}+6 \beta-3}}{2}=\frac{\beta+1+i(\beta-1) \sqrt{3}}{2} \\
\alpha_{1}=\frac{\beta+i(\beta-1) \sqrt{3}}{2}, \quad \alpha_{2}=\frac{\beta-i(\beta-1) \sqrt{3}}{2}
\end{gathered}
$$

c) $z_{1}{ }^{2}+z_{2}{ }^{2}+z_{3}{ }^{2}=z_{1} z_{2}+z_{2} z_{3}+z_{1} z_{3}$

According to a. (ヨ) the complex numbers of modulus $1, \alpha$ and β such that $z_{2}=\alpha z_{1}$ and $z_{3}=\beta z_{1}$.
In the given relation, by substitution we obtain:

$$
\left.\begin{array}{c}
z_{1}^{2}+\alpha^{2} z_{1}^{2}+\beta^{2} z_{1}^{2}=\alpha z_{1}^{2}+\alpha \beta z_{1}^{2}+\beta z_{1}^{2}= \\
z_{1} \neq 0
\end{array}\right\} \Rightarrow 1+\alpha^{2}+\beta^{2}-\alpha-\beta-\alpha \cdot \beta=0
$$

$\alpha=1$ and $\beta=1$ verify this equality, so in this case $z_{2}=z_{3}=z_{1}$.
According to point b.,
$\alpha_{1}=\frac{\beta+i(\beta-1) \sqrt{3}}{2}$,
where $\beta=x+i y$, when
$|\beta|=1 \Rightarrow \sqrt{x^{2}+y^{2}}=1 \Rightarrow$
$x^{2}+y^{2}=1$
$\left.\begin{array}{rl}\alpha=\frac{x+i y+1+i(x+i y-1) \sqrt{3}}{2}=\frac{(x+1-y \sqrt{3})+i(y+x \sqrt{3}-\sqrt{3})}{2} \\ |\alpha| & =1\end{array}\right\} \Rightarrow$
$\Rightarrow|\alpha|=\sqrt{\left(\frac{x+1-y \sqrt{3}}{2}\right)^{2}+\left(\frac{x+x \sqrt{3}-y \sqrt{3}}{2}\right)^{2}}=\sqrt{x^{2}+y^{2}-x+1 y \sqrt{3}=1}$
We construct the system:

$$
\begin{aligned}
& \left\{\begin{array} { l }
{ x ^ { 2 } + y ^ { 2 } = 1 } \\
{ x ^ { 2 } + y ^ { 2 } - x - y \sqrt { 3 } = 0 }
\end{array} \Leftrightarrow \left\{\begin{array} { l }
{ x ^ { 2 } + y ^ { 2 } = 1 } \\
{ 1 - x - y \sqrt { 3 } = 0 }
\end{array} \Rightarrow \left\{\begin{array} { l }
{ x = 1 - y \sqrt { 3 } } \\
{ y (2 y - \sqrt { 3 }) = 0 }
\end{array} \Rightarrow \left\{\begin{array}{l}
x=0 \\
y=0 \\
\beta=1
\end{array} \Rightarrow\right.\right.\right.\right. \\
& \Rightarrow 1+\alpha^{2}+1-\alpha-1-\alpha=0 \Rightarrow \alpha=1
\end{aligned}
$$

The initial solution leads us to $z_{1}=z_{2}=z_{3}$.
$y=\frac{\sqrt{3}}{2} \Rightarrow x=-\frac{1}{2}$
and gives
$-\frac{1}{2}+\frac{\sqrt{3}}{2} i$
By substituting,
$1+\frac{1}{4}-\frac{3}{4}-\frac{\sqrt{3}}{2} i+\frac{1}{2}-\frac{i \sqrt{3}}{2}+\alpha^{2}-\alpha-\alpha\left(-\frac{1}{2}+\frac{\sqrt{3}}{2} i\right)=0 \Rightarrow$
$\Rightarrow 2 \alpha^{2}-\alpha(1+\sqrt{3} i)+2(1-\sqrt{3} i)=0$
$\alpha_{1,2}=\frac{(1+\sqrt{3}) \pm 3 \sqrt{-2+2 \sqrt{3} i}}{4}=\frac{(1+\sqrt{3} i) \pm 3(1+\sqrt{3} i)}{4}$
$\alpha_{1}=\frac{4(1+\sqrt{3} i)}{4}$,
$|\alpha|=2$ does not comply with the condition $|\alpha|=1$.
But
$\alpha_{2}=\frac{-2(1+\sqrt{3} i)}{4},=-\frac{1}{2}-\frac{\sqrt{3}}{2} i, \quad|\alpha|=1$
so
$\left\{\begin{array}{l}\alpha=-\frac{1}{2}-\frac{\sqrt{3}}{2} i=\cos \frac{4 \pi}{3}+i \sin \frac{4 \pi}{3} \\ \beta=-\frac{1}{2}+\frac{\sqrt{3}}{2} i=\cos \frac{2 \pi}{3}+i \sin \frac{2 \pi}{3}\end{array}\right.$
If
$z_{1}=r\left(\cos t_{1}+i \sin t_{1}\right)$,
then
$t_{2}=\alpha t_{1}=r \cdot\left[\cos \left(t_{1}+\frac{4 \pi}{3}\right)+i \sin \left(t_{1}+\frac{4 \pi}{3}\right)\right]$
and then
$t_{3}=\beta z_{2}=r \cdot\left[\cos \left(t_{1}+\frac{2 \pi}{3}\right)+i \sin \left(t_{1}+\frac{2 \pi}{3}\right)\right]$.
If
$M_{1}\left(t_{1}\right), M_{2}\left(t_{2}\right), M_{3}\left(t_{3}\right)$
are on the circle with radius r and the arguments are
$t_{1}, t_{1}+\frac{2 \pi}{3}$,
$t_{1}+\frac{4 \pi}{3} \Rightarrow$
they are the peaks of an equilateral triangle.

Solution to Problem 206.
a. We assume that $d \cap \alpha \neq \varnothing$ and $d^{\prime} \cap \alpha=\{B\}$.

Let $d \cap \alpha=\{A\}$ and $d^{\prime} \cap \alpha=\{B\}$ and the planes determined by pairs of concurrent lines $(d, A B)$; $\left(d^{\prime}, A B\right)$.
We remark that these are the required planes, because $d \subset(d, A B), d^{\prime \prime} \subset\left(d^{\prime}, A B\right)$ si $(d, A B) \cap \cap\left(d^{\prime}, A B\right)=$ $A B \subset \alpha$.
b. We assume $d \cap \alpha=\{A\}$ and $d^{\prime} \| \alpha$.

We draw through A, in plane α, line $d^{\prime} \| d$ and we consider planes ($d, d^{\prime \prime}$) and ($d^{\prime}, d^{\prime \prime}$) and we remark that

$$
\left(d, d^{\prime \prime}\right) \cap\left(d^{\prime}, d^{\prime \prime}\right)=d^{\prime \prime} \subset \alpha
$$

c. We assume $d \cap \alpha=\emptyset$ and $d^{\prime} \cap \alpha=\emptyset$ and $d^{\prime} \in$ direction d.

Let $A \in \alpha$ and $d^{\prime \prime}| | d \Rightarrow d^{\prime \prime} \| d^{\prime}$ and the planes are ($d, d^{\prime \prime}$) and ($d^{\prime}, d^{\prime \prime}$). The reasoning is the same as above.

Solution to Problem 207.

$$
\begin{aligned}
& a \cap b \cap c=\{O\} \\
& \left.\begin{array}{l}
P \in(P a) \\
O \in(P a)
\end{array}\right\} \Rightarrow O P \subset(P a) \\
& \left.\begin{array}{l}
P \in(P b) \\
O \in(P b)
\end{array}\right\} \Rightarrow O P \subset(P b) \\
& \begin{array}{l}
P \in(P c) \\
\left.\begin{array}{l}
\\
O \in(P c)
\end{array}\right\} \Rightarrow O P \subset(P c) \\
\Rightarrow(P a) \cap(P b) \cap(P c)=O P
\end{array}
\end{aligned}
$$

Solution to Problem 208.

If α separates points A and B, it means they are in different half-spaces and let $\sigma=\mid \alpha A$ and $\sigma^{\prime}=\mid \alpha B$.

Because α separates A and $C \Rightarrow C \in \sigma^{\prime}$.
Because α separates C and $D \Rightarrow D \in \sigma$.
From $B \in \sigma^{\prime}$ and $D \in \sigma \Rightarrow \alpha$ separates points B and D
$|B D| \cap \alpha \neq \varnothing$.
From $A \in \sigma$ and $D \in \sigma \Rightarrow|B D| \cap \alpha=\emptyset$.

Solution to Problem 209.

$$
\left.\begin{array}{l}
B \in(a b) \\
C \mid(a, b), c
\end{array}\right\} \Rightarrow[B C] \subset \mid(a, b), c \Rightarrow
$$

$$
\left.\begin{array}{rl}
\Rightarrow|O E \subset|(b c), A \\
C \in(a c) \\
B \in \mid(a c), c
\end{array}\right\} \left.\Rightarrow\left[C B|\subset|(a c), B \Rightarrow \begin{array}{l}
D \in \mid(a c), B \tag{3}\\
A \in(a, c)
\end{array}\right\} \Rightarrow[A D] \subset \right\rvert\,(a c), B
$$

From (1), (2), (3)
$\Rightarrow|O E \subset|(a b), c \cap|(b c), A \cap|(a c), B=$ int. $\widehat{a b c}$.

Solution to Problem 210.

a. int. $(|V A,|\widehat{V B}| V C)=,|(V A B), C \cap|(V B C), A \cap \mid(V A C), B$ is thus an intersection of convex set and thus the interior of a trihedron is a convex set.
b. Tetrahedron $[V A B C]$ without edge $[A C]$. We mark with $\mathcal{M}_{1}=[A B C]-[A C]=[A B, C \cap$ $[B C, A \cap \mid A C, B$ is thus a convex set, being intersection of convex sets.

$$
\|(A B C), V \cap \mathcal{M}_{1}
$$

is a convex set.
In the same way
$\mid(V A C), B \cup \mathcal{M}_{2}$
is a convex set, where
$\mathcal{M}_{2}=[V A C]-[A C]$.
But $[V A B C]-[A C]=$
$\left[(V A B), C \cap\left((V B C), A \cap\left(\mid(A B C), V \cup \mathcal{M}_{1}\right) \cap\left((\mid V A C), B \cup \mathcal{M}_{2}\right)\right.\right.$
and thus it is a convex set as intersection of convex sets.
c. Tetrahedron $[V A B C]$ without face $[A B C]$

$$
[V A B C]-[A B C]=[(V A B), C \cap[(V B C), A \cap[(V A C), B \cap[(A B C)
$$

V is thus intersection of convex sets \Rightarrow is a convex set.

Solution to Problem 211.

In plane $(B A C)$ we have $E F \| A C$. In plane $(D A C)$ we have $A C \subset(D A C) \Rightarrow E F \|(D A C)$.
In this plane we also have $H G \| A C$. So $E F \| H G \Rightarrow E, F, G, H$ are coplanar and because $\|E F\|=\frac{\|A C\|}{2}=\|H G\| \Rightarrow E F G H$ is a parallelogram.

Solution to Problem 212.

We assume we have $\alpha\|\beta\| \gamma$ such that $A A^{\prime} \subset \alpha, B B^{\prime} \subset, C C^{\prime} \subset \gamma$.

We draw through A^{\prime} a parallel line with $d: d^{\prime \prime} \| d$. As d intersects all the 3 planes $A^{\prime} \subset d^{\prime \prime}$ at $A, B, C \Rightarrow$ and its $\| d^{\prime \prime}$ cuts them at $A^{\prime}, B^{\prime \prime}, C^{\prime \prime}$.

Because

$$
\left.\begin{array}{r}
\alpha\|\beta\| \gamma \tag{1}\\
d \| d^{\prime \prime}
\end{array}\right\} \Rightarrow \begin{aligned}
& \|A B\|=\left\|A B^{\prime \prime}\right\| \\
& \|B C\|=\left\|B^{\prime \prime} C^{\prime \prime}\right\|
\end{aligned}
$$

Let plane ($d^{\prime}, d^{\prime \prime}$). Because this plane has in common with planes α, β, γ the points $A^{\prime}, B^{\prime \prime}, C^{\prime \prime}$ and because $\alpha\|\beta\| \gamma \Rightarrow$ it intersects them after the parallel lines

$$
\begin{equation*}
\| C^{\prime} C^{\prime \prime} \stackrel{\text { Taleg }}{\Longrightarrow} \frac{\left\|A^{\prime} B^{\prime \prime}\right\|}{\left\|A^{\prime} B^{\prime}\right\|}=\frac{\left\|B^{\prime \prime} C^{\prime \prime}\right\|}{\left\|B^{\prime} C^{\prime}\right\|} . \tag{2}
\end{equation*}
$$

Taking into consideration (1) and (2)
$\Rightarrow \frac{\|A B\|}{\left\|A^{\prime} B^{\prime}\right\|}=\frac{\|B C\|}{\left\|B^{\prime} C^{\prime}\right\|}$.
The vice-versa can be similarly proved.

Solution to Problem 213.

Let
$P \in\left|M M^{\prime}\right|$
such that
$\frac{\|\boldsymbol{M} \boldsymbol{P}\|}{\left\|\boldsymbol{P M}^{\prime}\right\|}=k$
and
$P^{\prime} \in\left|N N^{\prime}\right|$
such that
$\frac{\left\|N P^{\prime}\right\|}{\left\|P^{\prime} N^{\prime}\right\|}=k$
So
$\frac{\|M P\|}{\left\|P M^{\prime}\right\|}=\frac{\left\|N P^{\prime}\right\|}{\left\|P^{\prime} N^{\prime}\right\|} \Rightarrow \frac{\|M P\|}{\left\|N P^{\prime}\right\|}=\frac{\left\|P M^{\prime}\right\|}{\left\|P^{\prime} N^{\prime}\right\|}$
according to problem 7, three planes can be drawn $\|\beta\| \alpha \| \gamma$ such that $M N \subset \beta, P P^{\prime} \subset \alpha, M^{\prime} N^{\prime} \subset \gamma$.
$\left.\begin{array}{l}\beta \| \alpha \\ M N \subset \beta\end{array}\right\} \Rightarrow M N\|\alpha \Rightarrow d\| \alpha$
$\left.\begin{array}{l}\alpha \| \gamma \\ M^{\prime} N^{\prime} \subset \gamma\end{array}\right\} \Rightarrow M^{\prime} N^{\prime}\left\|\alpha \Rightarrow d^{\prime}\right\| \alpha$
and $P P^{\prime} \subset \alpha$.
So by marking P and letting P^{\prime} variable, $P^{\prime} \in$ a parallel plane with the two lines,
which passes through P. It is known that this plane is unique, because by drawing through P parallel lines to d and d^{\prime} in order to obtain this plane, it is well determined by 2 concurrent lines.
Vice-versa: Let $P \in \alpha$, that is the plane passing through P and it is parallel to d and d^{\prime}.
($P^{\prime \prime}, d$) determines a plane, and $\left(P^{\prime \prime}, d^{\prime}\right)$ determines a plane \Rightarrow the two planes, which have a common point, intersect after a line $\left(P^{\prime \prime}, d\right) \cap\left(P^{\prime \prime}, d^{\prime}\right)=Q Q^{\prime}$ where $Q \in$ d and $Q^{\prime} \in d^{\prime}$.

Because
$d\|\alpha \Rightarrow M Q\| \alpha \Rightarrow(\overline{3}) \beta$
such that $M Q \subset \beta, \beta \| \alpha$.
Because
$d^{\prime}\left\|\alpha \Rightarrow M^{\prime} Q^{\prime}\right\| \alpha \Rightarrow(\exists) \gamma$
such that $M^{\prime} Q^{\prime} \subset \gamma, \gamma \| \alpha$.
So the required locus is a parallel plane with d and d^{\prime}.

Solution to Problem 214.

We consider the plane, which according to a previous problem, represents the locus of the points dividing the segments with extremities on lines d_{1} and d_{3} in a given ratio k. To obtain this plane, we take a point $A \in d_{1}, B \in d_{3}$ and point $C \in A B$ such that $\frac{\|A C\|}{\|C B\|}=k$. Through this point C we draw two parallel lines d_{1} and d_{3} which determine the above mentioned plane α.
Let $d_{2} \cap \alpha=\{N\}$. We must determine a segment that passes through N and with its extremities on d_{1} and d_{3}, respectively at M and P. As the required line passes through N and M

$$
\left.\begin{array}{l}
N \in\left(N, d_{1}\right) \tag{1}\\
M \in\left(N, d_{1}\right)
\end{array}\right\} \Rightarrow M N \subset\left(N d_{1}\right)
$$

The same line must pass through N and P and because
$\left.\begin{array}{l}N \in\left(N, d_{1}\right) \\ P \in\left(N, d_{3}\right)\end{array}\right\} \Rightarrow N P \subset\left(N d_{3}\right)$
M, N, P collinear.

From (1) and (2)
$\Rightarrow M P \subset(N, d) \cap\left(N, d_{3}\right) \Rightarrow M P=\left(N d_{1}\right) \cap\left(d_{2} N\right)$
Then, according to previous problem 8 :
$\frac{\|M N\|}{\|N P\|}=k$
and the required line is $M P$.

Solution to Problem 215.

Let $\triangle M N P$ such that

$$
M P\left\|d_{1}, M N\right\| d_{2}, P N \| d_{3} . M \in d, N \in \alpha
$$

Let $\Delta M^{\prime} N^{\prime} P^{\prime}$ such that

$$
M^{\prime} \in d, N^{\prime} \in \alpha, M^{\prime} P^{\prime}\left\|d_{1} ; M^{\prime} N^{\prime}\right\| d_{2}
$$

$P^{\prime} N^{\prime} \| d_{3}$.
Line MP generates a plane β, being parallel to a fixed direction d_{1} and it is based on a given line d. In the same way, the line $M N$ generates a plane γ, parallel to a fixed direction d_{2}, and based on a given line d. As d is contained by $\gamma \Rightarrow 0$ is a common point for α and $\gamma \Rightarrow \alpha \cap \gamma \neq \varnothing \Rightarrow \alpha \cap \gamma=d^{\prime}, O \in d^{\prime}$.
$\left.\begin{array}{l}N \in \alpha \\ N \in \gamma\end{array}\right\} \Rightarrow N \in \alpha \cap \gamma$
(\forall) the considered Δ, so N also describes a line $d^{\prime} \subset \alpha$.
Because plane γ is well determined by line d and direction d_{2}, is fixed, so $d^{\prime}=\alpha \cap$ γ is fixed.
In the same way, $P N$ will generate a plane δ, moving parallel to the fixed direction d_{3} and being based on the given line d^{\prime}.

As
$\left.\begin{array}{l}O \in d^{\prime} \\ O \in d\end{array}\right\} \Rightarrow\left\{\begin{array}{l}O \in \delta \\ O \in \beta\end{array} \Rightarrow \beta \cap \delta \neq \partial \Rightarrow O \in \beta \cap \delta=d^{\prime \prime}\right.$
$\left.\begin{array}{l}P \in M P \Rightarrow P \in \beta \\ P \in P N \Rightarrow P \in \delta\end{array}\right\} \Rightarrow P \in \beta \cap \delta$
$(\forall) P$ variable peak, $P \in d^{\prime \prime}$.
Thus, in the given conditions, for any $\triangle M N P$, peak $P \in d^{\prime \prime}$.
Vice-versa, let $P^{\prime} \in d^{\prime \prime}$. On plane ($d^{\prime}, d^{\prime \prime}$) we draw $P^{\prime}, M^{\prime}\left\|P M \Rightarrow\left(M^{\prime} P^{\prime} N^{\prime}\right)\right\|(P M N) \Rightarrow$ ($d d^{\prime}$) the intersection of two parallel planes after parallel lines $M^{\prime} N^{\prime}| | M N$ and the so constructed $\Delta M^{\prime} P^{\prime} N^{\prime}$ has its sides parallel to the three fixed lines, has $M^{\prime} \in d$ and $N^{\prime} \in \alpha$, so it is one of the triangles given in the text.

So the locus is line $d^{\prime \prime}$. We've seen how it can be constructed and it passes through O.
In the situation when $D \| \alpha$ we obtain

$$
\left.\begin{array}{l}
d \subset \beta \\
\delta^{\prime} \subset \delta \\
d \| d^{\prime \prime}
\end{array}\right\} \Rightarrow \beta \cap \delta=d^{\prime \prime} \text { si } d^{\prime \prime} \| d
$$

In this case the locus is a parallel line with d.

Let $M N P$ and $M^{\prime} N^{\prime} P^{\prime}$ such that
$\left.\begin{array}{ccc}M P \| d_{1} \\ M N \| d_{2} \\ N P \| d_{3}\end{array} \quad \begin{array}{l}M^{\prime} P^{\prime} \| d_{1} . \\ M^{\prime} N^{\prime} \| d_{2} \\ N^{\prime} P^{\prime} \| d_{3}\end{array} \quad \Rightarrow \begin{array}{c}M P \| M^{\prime} P^{\prime} \\ M N \| M^{\prime} N^{\prime} \\ N P \| N^{\prime} P^{\prime}\end{array}\right\} \Rightarrow \triangle M N P \sim \triangle M^{\prime} N^{\prime} P^{\prime} \Rightarrow$
$M \in \beta, N \in \alpha \quad M^{\prime} \in \beta, N^{\prime} \in \alpha$
$\Rightarrow(M N P) \|\left(M^{\prime} N^{\prime} P^{\prime}\right)$.

We assume $\alpha \cap \beta=d$ and let $d \cap(M N P)=\{O\}$ and $d \cap\left(M^{\prime} N^{\prime} P^{\prime}\right)=\left\{O^{\prime}\right\} \Rightarrow$
$\left.\begin{array}{l}(M N P) \cap \beta=M O \\ \left(M^{\prime} N^{\prime} P^{\prime}\right) \cap \beta=M^{\prime} O^{\prime}\end{array}\right\} \Rightarrow M O \| M^{\prime} O^{\prime}$
a plane cuts the parallel planes after parallel lines.
In the same way, $O N \| O^{\prime} N^{\prime}$ and because

$$
M N \| M^{\prime} N^{\prime} \Rightarrow \triangle O M N \sim \triangle O^{\prime} M^{\prime} N^{\prime}
$$

$$
\begin{aligned}
& \left.\left.\Rightarrow \begin{array}{c}
\frac{\|O M\|}{\left\|O^{\prime} M^{\prime}\right\|}=\frac{\|O N\|}{\left\|O^{\prime} N^{\prime}\right\|}=\frac{\left\|M N^{\prime}\right\|}{\left\|M^{\prime} N^{\prime}\right\|} \\
O \widehat{M} N=O^{\prime} \widehat{M^{\prime} N^{\prime}}
\end{array}\right\} \Rightarrow \triangle M N P \sim M^{\prime} N^{\prime} P^{\prime} \Rightarrow \begin{array}{c}
\frac{\|M P\|}{\left\|M^{\prime} P^{\prime}\right\|}=\frac{\left\|M N^{\prime}\right\|}{\left\|M^{\prime} N^{\prime}\right\|} \\
M \widehat{M N} P=M^{\prime} \widehat{N^{\prime} P^{\prime}}
\end{array}\right\} \Rightarrow \\
& \Rightarrow \triangle O M P \sim O^{\prime} M^{\prime} P^{\prime} \quad(1) \Rightarrow \begin{array}{l}
\widehat{M O P} \equiv \widehat{M^{\prime}} \quad \widehat{\widehat{O}} P^{\prime} \\
\widehat{M P O}=\sqrt{\widehat{P^{\prime}} O^{\prime}}
\end{array}
\end{aligned}
$$

We use the property: Let π_{1} and $\pi_{2} 2$ parallel planes and $A, B, C \subset \pi_{1}$ and $A^{\prime} B^{\prime} C^{\prime} \subset$ $\pi_{2}, A B \| A^{\prime} B^{\prime}$,
$A C \| A^{\prime} C^{\prime}, \widehat{A^{\prime} B^{\prime} C^{\prime} \equiv A^{\prime} B^{\prime} C^{\prime},\|A B\|=\left\|A^{\prime} B^{\prime}\right\|,\|A C\|=\left\|A^{\prime} C^{\prime}\right\| . ~ . ~ . ~ . ~}$

Let's show that $B C \| B^{\prime} C^{\prime}$. Indeed $\left(B B^{\prime} C^{\prime}\right)$ is a plane which intersects the 2 planes after parallel lines.

$$
\left.\left.\Rightarrow \begin{array}{c}
B^{\prime} C^{\prime} \| B C^{\prime \prime} \\
A B \| A^{\prime} B^{\prime}
\end{array}\right\} \Rightarrow \begin{array}{c}
A \widehat{B C^{\prime \prime}} \equiv A^{\prime} \widehat{B^{\prime}} C^{\prime} \\
\widehat{A B C} \equiv A^{\prime} \widehat{B^{\prime} C^{\prime}}
\end{array}\right\} \Rightarrow \widehat{A B C} \equiv \widehat{A C^{\prime \prime}} \Rightarrow|B C=| B C^{\prime \prime} \Rightarrow
$$ $B^{\prime} C^{\prime} \| B C$.

Applying in (1) this property $\Rightarrow O P \| O^{\prime} P^{\prime}$. Maintaining $O P$ fixed and letting P^{\prime} variable, always $O P \| O^{\prime} P^{\prime}$.=, so $O^{\prime} P^{\prime}$ generates a plane which passes through d. We assume $\beta \| \alpha$.

$\left.\begin{array}{l}\alpha \| \beta \\ M N \| M^{\prime} \boldsymbol{N}^{\prime}\end{array}\right\} \Rightarrow|M N| \equiv\left|M^{\prime} N^{\prime}\right|$
$M N N^{\prime} M^{\prime}$ parallelogram
$\Rightarrow M M^{\prime} \| N N^{\prime}$
$\Rightarrow M M^{\prime} \|\left(N N^{\prime} P^{\prime} P\right)$
$\Rightarrow\left(M P P^{\prime} M^{\prime}\right) \cap\left(M N^{\prime} P^{\prime} P\right)=P P^{\prime}$
$P P^{\prime}\left\|M M^{\prime} \Rightarrow P P^{\prime}\right\| N N^{\prime}$
Considering P^{\prime} fix and P variable $\Rightarrow P P^{\prime} \| \alpha$ and the set of parallel lines drawn $P P^{\prime} \| \beta$ to a plane through an exterior point is a parallel plane with the given plane.

So the locus is a parallel plane with α and β.

Solution to Problem 216.

$$
\begin{aligned}
& \|O M\|=\lambda\|O A\| \Rightarrow\left\|\frac{\|O M\|}{\|O A\|}=\lambda ;\right\| O N\|=\lambda\| O B\|\Rightarrow\| \frac{\|O N\|}{\|O B\|}=\lambda ; \\
& \|O P\|=\lambda\|O C\| \Rightarrow \frac{\|O P\|}{\|O C\|}=\lambda
\end{aligned}
$$

In plane DAC we have:

$$
\frac{\|O M\|}{\|O A\|}=\frac{\|O P\|}{\|O C\|} \stackrel{?}{\Rightarrow} P M \| A C .
$$

In plane $D A B$ we have:

$$
\frac{\|O M\|}{\|O A\|}=\frac{\|O N\|}{\|O B\|} \Rightarrow M N \| A B .
$$

In plane $O B C$ we have:

$$
\frac{\|O N\|}{\|O B\|}=\frac{\|O P\|}{\|O C\|} \Rightarrow P N \| B C .
$$

From $P M \| A C$ and $P N\|B C \Rightarrow(M N R)\|(A B C)$.
Let Q and D be midpoints of sides $|M N|$ and $|A B|$.

$$
\left.\begin{array}{l}
\triangle O M N \sim O A B \Rightarrow \frac{\|O M\|}{\|O A\|}=\frac{\|M N\|}{\|A B\|}=\frac{\frac{1}{2}\|M N\|}{\frac{1}{2}\|A B\|}=\frac{\|M N\|}{\|A B\|} \\
O \widehat{M Q} Q=\widehat{O A B}
\end{array}\right\} \Rightarrow \triangle O M Q \sim O A D \Rightarrow
$$

are collinear.

Concurrent lines $O D$ and $O C$ determine a plane which cuts the parallel planes

$$
\begin{aligned}
& \left.\Rightarrow \begin{array}{r}
P Q \| C D \\
(O C D)
\end{array}\right\} \Rightarrow \triangle O P Q \sim \triangle O C D \Rightarrow \frac{\|O P\|}{\|O C\|}=\frac{\|P Q\|}{\|C D\|}=\frac{\frac{2}{3}\|P Q\|}{\frac{2}{3}\|C D\|}=\frac{\left\|P G^{\prime}\right\|}{\|C B\|} \Rightarrow \\
& \Rightarrow \widehat{O P G^{\prime} \equiv \widehat{O C Q} \Rightarrow \triangle O P G^{\prime} \sim \triangle O C Q \Rightarrow \widehat{P O G^{\prime}} \equiv \widehat{C O G} \Rightarrow O, G^{\prime}, G}
\end{aligned}
$$

So $G^{\prime} \in \mid O G \Rightarrow$ the required locus is ray $\mid O G$.
Vice-versa: we take a point on $\mid O G, G^{\prime \prime}$, and draw through it a parallel plane to $(A B C)$, plane $\left(M^{\prime \prime}, N^{\prime \prime}, P^{\prime \prime}\right)$, similar triangles are formed and the ratios from the hypothesis appear.

Solution to Problem 217.

Let $A_{2}, B_{2}, C_{2}, D_{2}$ such that

$$
\frac{\left\|A A_{2}\right\|}{\left\|A_{2} A_{1}\right\|}=\frac{\left\|B B_{2}\right\|}{\left\|B_{2} B_{1}\right\|}=\frac{\left\|C C_{2}\right\|}{\left\|C_{2} C_{1}\right\|}=\frac{\left\|D D_{2}\right\|}{\left\|D_{2} D_{1}\right\|}=k .
$$

Mark on lines $A D_{1}$ and $B C_{1}$ points M and N such that

$$
\begin{aligned}
& M \in\left|A D_{1}\right|, \frac{\|A M\|}{\left\|M D_{1}\right\|}=k \\
& N \in\left|B C_{1}\right|, \frac{\|B N\|}{\left\|N C_{1}\right\|}=k
\end{aligned}
$$

From

$$
\begin{aligned}
& \frac{\left\|A A_{2}\right\|}{\left\|A_{2} A_{1}\right\|}=\frac{\|A M\|}{\left\|M D_{1}\right\|}=k \stackrel{T T_{\text {ales }}}{\Longrightarrow} A_{2} M \| A_{1} D_{1} \\
& A_{2} M \| A_{1} D_{1} \Rightarrow \triangle A A_{2} M \sim \triangle A A_{1} D_{1} \Rightarrow \frac{\left\|A A_{2}\right\|}{\left\|A A_{1}\right\|}=\frac{\left\|A_{2} M\right\|}{\left\|A_{1} D_{1}\right\|}
\end{aligned}
$$

Next is

$$
\begin{equation*}
\frac{\left\|A_{1} M_{1}\right\|}{\left\|A_{2} D_{1}\right\|}=\frac{k}{k+1} \Rightarrow\left\|A_{2} M\right\|=\frac{k}{k+1}\left\|A_{1} D_{1}\right\| \tag{2}
\end{equation*}
$$

The same,

$$
\begin{aligned}
& \frac{\left\|B B_{2}\right\|}{\left\|B_{2} B_{1}\right\|}=\frac{\|B N\|}{\left\|N C_{1}\right\|}=k \Rightarrow B_{2} N \| B_{1} C_{1} \\
& B_{2} N \| B_{1} C_{1} \Rightarrow \triangle B B_{1} N \sim \triangle B B_{1} C, \\
& \Rightarrow \frac{\left\|B B_{2}\right\|}{\| B B_{1}}=\frac{\left\|B_{2} N\right\|}{\left\|B_{1} C_{1}\right\|} .
\end{aligned}
$$

As

$$
\frac{\left\|B B_{2}\right\|}{\| B B_{1}}=\frac{\left\|A A_{2}\right\|}{\left\|A A_{1}\right\|}=\frac{k}{k+1} .
$$

we obtain

$$
\begin{equation*}
\frac{\left\|B_{2} N\right\|}{B_{1} C_{1}}=\frac{k}{k+1} \Rightarrow\left\|B_{2} N\right\|=\frac{k}{k+1}\left\|B_{1} C_{1}\right\| \tag{4}
\end{equation*}
$$

From
$A_{1} D_{1}\left\|B_{1} C_{1} \Rightarrow\right\| A_{1} D_{1}\left\|\mid=B_{1} c_{1}\right\|$
(1), (2), (3), (4) $\Rightarrow A_{2} M \| B_{2} N$ 乌̧i $\left\|A_{2} M\right\|=\left\|B_{2} N\right\| \Rightarrow A_{2} D_{2} N M$
is a parallelogram.
$\Rightarrow A_{2} B_{2}\|M N,\| A_{2} B_{2}\| \|\|M N\| \Rightarrow D_{2} C_{2} N M$
is parallelogram.
$\Rightarrow D_{2} C_{2}\|\mathbf{M N},\| D_{2} C_{2}\| \|\|M N\|$
So
$A_{2} B_{2} \| D_{2} C_{2}$ sii $\left\|A_{2} D_{2}\right\|\left\|\left\|D_{2} C_{2}\right\| \Rightarrow A_{2} B_{2} C_{2} D_{2}\right.$
is a parallelogram.

Solution to Problem 218.

We draw through A^{\prime} a line $d^{\prime \prime} \| d$. We draw two parallel planes with α, which will intersect the three lines in B^{\prime}, B^{*}, B and C^{\prime}, C^{*}, C. Plane $\left(d, d^{*}\right)$ intersects planes α, $\left(B^{\prime} B^{*} B\right),\left(C^{\prime} C^{*} C\right)$ after parallel lines

$$
\left.\begin{array}{l}
A A^{\prime}\left\|B B^{*}\right\| C C^{*} \\
d \| d^{*}
\end{array}\right\} \Rightarrow\left\|A A^{\prime}\right\|=a=-\begin{aligned}
& \left\|B B^{*}\right\|=\left\|C^{\prime} C^{*}\right\| . \\
& \text { Plane }\left(d^{\prime}, d^{*}\right) \text { intersects parallel planes }\left(B^{\prime} B^{*} B\right),\left(C^{\prime} C^{*} C\right) \text { after parallel lines } \\
& \Rightarrow B^{\prime} B^{*}\left\|C^{\prime} C^{*}, B B^{*}\right\| C C^{*} \Rightarrow B \widehat{B^{\prime} B^{*}} \equiv C \widehat{C^{\prime} C^{*}} .
\end{aligned}
$$

So (\forall) parallel plane with α we construct, the newly obtained triangle has a side of α length and the corresponding angle to $\widehat{B^{\prime} B^{*} B}$ is constant. We mark with a line that position of the plane, for which the opposite length of the required angle is l. With the compass spike at C and with a radius equal with l, we trace a circle arc that cuts segment $\left|C^{\prime} C^{*}\right|$ at N or line $C^{\prime} C^{*}$. Through N we draw at (d^{\prime}, d^{*}) a parallel line to d^{*} which precisely meets d^{\prime} in a point M^{\prime}. Through M^{\prime}, we draw the $\|$ plane to α, which will intersect the three lines in M, M^{\prime}, M^{*}.

$$
\left.\Rightarrow \begin{array}{l}
N M^{\prime} \| C^{*} M^{*} \\
C^{*} N \| M^{*} M^{\prime}
\end{array}\right\} \Rightarrow M^{*} M^{\prime} N C^{*}
$$

is a parallelogram.

$$
\left.\Rightarrow \begin{array}{l}
\left\|N M^{\prime}\right\|=\left\|C^{*} M^{*}\right\| \\
\left.\begin{array}{l}
N M^{\prime} \| C^{*} M \\
\\
C M \| C^{*} M^{*} \\
\|C M\|=\left\|C^{*} M^{*}\right\|
\end{array}\right\}(1)
\end{array}\right\}(2)=N M^{\prime}\|C M,\| N M^{\prime}\|=\| C M \|
$$

$\Rightarrow C N M^{\prime} M$ is a parallelogram.
$\Rightarrow\left\|M N^{\prime}\right\|=\|C N\|=$ l
and line $M M^{\prime}$, located in a parallel plane to α, is parallel to α.

Discussion:

Assuming the plane $\left(C^{\prime} C^{*} C\right)$ is variable, as $\left|C C^{*}\right|$ and $\widehat{C C^{\prime} C^{*}}$ are constant, then $d\left(C^{\prime} C^{*} C\right)=b=$ also constant
If $l<d$ we don't have any solution.
If $l=d(\exists)$ a solution, the circle of radius l, is tangent to $C^{\prime} C^{*}$.
If $l>d(\exists)$ two solutions: circle of radius l, cuts $C^{\prime} C^{*}$ at two points N and P.

Solution to Problem 219.

We draw through A planes $\alpha \perp d$ and $\alpha^{\prime} \perp d^{\prime}$.
As A is a common point
$\Rightarrow \alpha \cap \alpha^{\prime} \neq \varnothing \Rightarrow$
$\Rightarrow \alpha \cap \alpha^{\prime}=\Delta \Rightarrow A \in \Delta$.
$\left.\begin{array}{l}d \perp \alpha \Rightarrow d \perp D \\ d^{\prime \prime} \perp \alpha^{\prime} \Rightarrow d^{\prime} \perp D\end{array}\right\} \Rightarrow$
$\Rightarrow \Delta$ the required line
If $\alpha \neq \alpha^{\prime}$ - we have only one solution.
If $\alpha=\alpha^{\prime}(\forall)$ line from α which passes through A corresponds to the problem, so (\exists) infinite solutions.

Solution to Problem 220.

Let $d_{1} \perp d_{2}$ two concurrent perpendicular lines, $d_{1} \cap d_{2}=\{0\}$. They determine a plane $\alpha=\left(d_{1}, d_{2}\right)$ and $O \in \alpha$. We construct on α in O.

$$
d_{3} \perp \alpha, O \in d_{3} \rightarrow d_{3} \perp d_{1}, d_{3} \perp d_{2}
$$

Solution to Problem 221.

We use the reductio ad absurdum method.
Let $d \perp a, d \perp a, d \perp c$. We assume that these lines are not coplanar. Let $\alpha=$ $(b, c), \alpha^{\prime}=(a, b), \alpha \neq \alpha^{\prime}$. Then $d \perp \alpha, d \perp \alpha^{\prime}$.

Thus through point $O, 2$ perpendicular planes to d can be drawn. False $\Rightarrow a, b, c$ are coplanar.

Solution to Problem 222.

By reductio ad absurdum:
Let $a \cap b \cap c \cap d=\{O\}$ and they are perpendicular two by two. From $d \perp a, d \perp$ $a, d \perp c \Rightarrow a, b, c$ are coplanar and $b \perp a, c \perp a$, so we can draw to point O two distinct perpendicular lines. False. So the 4 lines cannot be perpendicular two by two.

Solution to Problem 223.

We assume that $d \pm \alpha$.
In $d^{\prime} \cap \alpha=\{0\}$ we draw line $d^{\prime \prime} \perp \alpha$. Lines d^{\prime} and $d^{\prime \prime}$ are concurrent and determine a plane $\beta=\left(d^{\prime}, d^{\prime \prime}\right)$ and as $O^{\prime} \in \beta, O^{\prime} \in \alpha \Rightarrow$

$$
\alpha \bigcap \beta=a \Rightarrow\left\{\begin{array}{ll}
a \subset \alpha \tag{1}\\
a \subset \beta
\end{array} \Rightarrow \begin{array}{l}
d^{\prime \prime} \perp \alpha \Rightarrow d^{\prime \prime} \perp a \\
\\
d \perp \alpha \Rightarrow d \perp a \\
d^{\prime} \| d \Rightarrow d^{\prime} \perp a
\end{array}\right.
$$

From (1) and (2) \Rightarrow in plane β, on line a, at point O^{\prime} two distinct perpendicular lines had been drawn. False. So $d^{\prime} \| \alpha$.

Solution to Problem 224.

$$
\left.\begin{array}{r}
d \perp \alpha \\
d^{\prime} \perp \alpha \\
d \neq d^{\prime}
\end{array}\right\} \Rightarrow d \| d^{\prime}
$$

Reductio ad absurdum. Let $d \sharp d^{\prime}$. We draw $d^{\prime \prime}| | d$ through O^{\prime}.

$$
\left.\left.\begin{array}{l}
d^{\prime \prime} \| d \\
d \perp \alpha
\end{array}\right\} \Rightarrow \begin{array}{l}
d^{\prime \prime} \perp \alpha \\
d^{\prime \prime} \perp \alpha
\end{array}\right\} \Rightarrow
$$

\Rightarrow at point O^{\prime} we can draw two perpendicular lines to plane α. False.
So $d \| d^{\prime}$.

Solution to Problem 225.

Let $d \perp \alpha$ and $d \cap \alpha=\{0\}$. We draw through O a parallel to d^{\prime}, which will be contained in α, then $d \| \alpha$.

$$
d^{\prime \prime} \| d^{\prime}, O \in d^{\prime \prime} \Rightarrow d^{\prime \prime} \subset \alpha, d \perp \alpha \Rightarrow d \perp d^{\prime \prime} \Rightarrow d \perp d^{\prime}
$$

Solution to Problem 226.

We assume $\beta \Rightarrow \alpha \cap \beta \neq \emptyset$ and let $A \in \alpha \cap \beta \Rightarrow$ through a point A there can be drawn two distinct perpendicular planes on this line. False.

$$
\Rightarrow \alpha \| \beta
$$

Solution to Problem 227.

Let M be a point in space with the property $\|M A\|=\|M B\|$.
We connect M with the midpoint of segment [AB], point O.
$\Rightarrow \triangle A M O=\triangle B M O \Rightarrow M O \perp A B$.
So M is on a line drawn through O, perpendicular to $A B$.
But the union of all perpendicular lines drawn through O to $A B$ is the perpendicular plane to $A B$ at point O, marked with α, so $M \in \alpha$.

Vice-versa: let $M \in \alpha$,
$d=A B \perp \alpha \Rightarrow d \perp M O$
$\left.\begin{array}{l}|A O| \equiv|O M| \\ |M O| \text { common side } \\ M O \perp A B\end{array}\right\} \Rightarrow \triangle A M O \equiv \triangle B M O \Rightarrow\|M A\|=\|M B\|$.

Solution to Problem 228.

Let M be a point in space with this property:

$$
\|M A\|=\|M B\|=\|M C\|
$$

Let O be the center of the circumscribed circle $\triangle A B C \Rightarrow\|O A\|=O B\|=\| O C \|$, so O is also a point of the desired locus.

According to the previous problem the locus of the points in space equally distant from A and B is in the mediator plane of segment $[A B]$, which also contains M. We mark with α this plane. The locus of the points in space equally distant from B and C is in the mediator plane of segment $[B C]$, marked β, which contains both O and M. So $\alpha \cap \beta=O M$.

$$
\left.\begin{array}{l}
A B \perp \alpha \Rightarrow A B \perp O M \\
B C \perp \alpha \Rightarrow B C \perp O M
\end{array}\right\} \Rightarrow O M \perp(A B C)
$$

so $M \in$ the perpendicular line to plane $(A B C)$ in the center of the circumscribed circle $\triangle A B C$.

Vice-versa, let $M \in$ this perpendicular line

$$
\left.\begin{array}{c}
O M \perp O A \\
O M \perp O B \\
O M \perp O C \\
\|O A\|=\|O B\|=\|O C\|
\end{array}\right\} \Rightarrow \triangle O M A \equiv \triangle O M B \equiv \triangle O M C \Rightarrow\|A M\|=\|B M\|
$$

$=\|C M\|$, so M has the property from the statement.

Solution to Problem 229.

We draw \perp from B to the plane. Let O be the foot of this perpendicular line.
Let

$$
\begin{aligned}
& \left.\begin{array}{l}
B M \perp d \\
B O \perp \alpha
\end{array}\right\} \Rightarrow M O \perp d \Rightarrow \\
& \Rightarrow m(O M A)=90^{\circ} \Rightarrow M \in
\end{aligned}
$$

the circle of radius $O A$. Vice-versa, let $M \in$ this circle
$\Rightarrow O M \perp A M, B O \perp \alpha \Rightarrow B M \perp A M \Rightarrow B M \perp d$,
so M represents the foot from B to $A M$.

Solution to Problem 230.

Let α be a plane that passes through a and let M be the \perp foot from A to $\alpha \Rightarrow$ $A M \perp \alpha$.

From
$\left.\begin{array}{l}A M \perp \alpha \\ A A^{\prime} \perp a\end{array}\right\} \Rightarrow M A^{\prime} \perp a$,
so $M \in$ a perpendicular line to a in A^{\prime}, thus it is an element of the perpendicular plane to a in A^{\prime}, which we mark as π and which also contains A.

$$
A M \perp \alpha \Rightarrow A M \perp M A^{\prime} \Rightarrow
$$

$M \in$ the circle of radius $A A^{\prime}$ from plane π.

*Vice-versa, let M be a point on this circle of radius $A A^{\prime}$ from plane π.

$$
\left.\Rightarrow \begin{array}{l}
M A^{\prime} \perp a \\
\\
A A^{\prime} \perp a \\
A M \perp M A^{\prime}
\end{array}\right\} \Rightarrow A M \perp(M, a)
$$

$\Rightarrow M$ is the foot of a \perp drawn from A to a plane that passes through a.

Solution to Problem 231.

Let A^{\prime} and B^{\prime} be the feet of the perpendicular lines from A and B to α
$\left.\begin{array}{l}A A^{\prime} \perp \alpha \\ B B^{\prime} \perp \alpha\end{array}\right\} \Rightarrow A A^{\prime} \| B B^{\prime} \Rightarrow$
(ヨ) a plane $\beta=\left(A A^{\prime}, B B^{\prime}\right)$ and $A B \subset \beta$

$$
\left.\Rightarrow \begin{array}{l}
O \in \beta \\
O \in \alpha
\end{array}\right\} \Rightarrow O \in \alpha \cap \beta=A^{\prime} B^{\prime} \Rightarrow O, A^{\prime}, B^{\prime}
$$

are collinear.
In plane β we have
$\left.\begin{array}{l}\|O A\|=\|O B\| \\ \widehat{A O A^{\prime}} \equiv \widehat{B O B^{\prime}} \\ \Delta \quad \text { right }\end{array}\right\} \Rightarrow \triangle A O A^{\prime} \equiv B O B^{\prime} \Rightarrow\left\|A A^{\prime}\right\|=\left\|B B^{\prime}\right\|$

Solution to Problem 232.

Let d, d^{\prime} be given lines, A given point. We draw through A plane $\alpha \perp$ to d^{\prime}.
If $a \cap \alpha=\{B\}$, then line $A B$ is the desired one, because it passes through A, meets d and from $d^{\prime} \alpha d^{\prime} A B$. If $d \cap \alpha=\varnothing$ there is no solution.

If $d \subset \alpha$, then any line determined by A and a point of d represents solution to the problem, so there are infinite solutions.

Solution to Problem 233.

$$
\left.\begin{array}{l}
\alpha \cap \beta=d \Rightarrow \begin{array}{l}
d \subset \alpha \\
d \subset \beta
\end{array} \\
M M_{1} \perp \alpha \Rightarrow M M_{1} \perp d \\
M M_{2} \perp \beta \Rightarrow M M_{2} \perp d
\end{array}\right\} \Rightarrow d \perp\left(M M_{1} M_{2}\right)
$$

Solution to Problem 234.

Let M be a point such that $\|A M\|=k$.
We draw $A A^{\prime} \perp \alpha \Rightarrow A^{\prime}$ fixed point and $A A^{\prime} \perp A^{\prime} M$.
We write $\left\|A A^{\prime}\right\|=a$.
Then

$$
\left.\begin{array}{r}
\|A M\|=\sqrt{k^{2}-a^{2}}=c t \\
A^{2}-\mathrm{fix}
\end{array}\right\} \Rightarrow
$$

$M \in$ a circle centered at A^{\prime} and of radius $\sqrt{k^{2}-a^{2}}$, for $k>a$.
For $k=a$ we obtain 1 point.
For $k<a$ empty set.
Vice-versa, let M be a point on this circle \Rightarrow

$$
\left.\begin{array}{c}
\left\|A^{\prime} M\right\|=\sqrt{k^{2}-a^{2}} \\
\left\|A A^{\prime}\right\|=a
\end{array}\right\} \Rightarrow\|A M\|=
$$

so M has the property from the statement.

Solution to Problem 235.

1) $\|A B\|=\sqrt{a^{2}+b^{2}} ;\|B C\|=\sqrt{b^{2}+c^{2}},\|C A\|=\sqrt{a^{2}+c^{2}}$
2)

$\left.\begin{array}{r}O M \perp A B \\ C O \perp(O A B)\end{array}\right\} \Rightarrow C M \perp A B$

In $\triangle O C M$:
$\|C M\|=\sqrt{c^{2}+\frac{a^{2} b^{2}}{a^{2}+b^{2}}}=\sqrt{\frac{c^{2} a^{2}+c^{2} b^{2}+a^{2} b^{2}}{a^{2}+b^{2}}}$
$\sigma[A B C]=\frac{\|A B\| \cdot\|C M\|}{2}=\sqrt{\frac{a^{2}+b^{2}}{2}} \times$
$\times \sqrt{\frac{a^{2} c^{2}+c^{2} b^{2}+a^{2} b^{2}}{a^{2}+b^{2}}} \Rightarrow$
$\Rightarrow \sigma^{2}[A B C]=\frac{a^{2} b^{2}+a^{2} c^{2}+b^{2} c^{2}}{4}$.
But
$\sigma[O A B]=\frac{a b}{2}$
$\left.\alpha[B O C]=\frac{b c}{2} ; \sigma_{i}^{\prime} C O A\right]=\frac{a c}{2}$
$\sigma^{2}[A B C]=\frac{a^{2} b^{2}}{4}+\frac{a^{2} c^{2}}{4}+\frac{b^{2} c^{2}}{4}=\sigma^{2}[A O B]+\sigma^{2}[D O C]+\sigma^{2}[C O A]$.
3. Let H be the projection of O Icp. plane $A B C$, so
$O H \perp(A B C) \Rightarrow O H \perp A C$
$\left.\begin{array}{l}O C \perp D A \\ O C \perp O B\end{array}\right\} \Rightarrow O C \perp(O A B) \Rightarrow O C \perp A B$
$\Rightarrow A B \perp\left(O H^{\prime} C\right) \Rightarrow A B \perp C H \Rightarrow$
$H \in$ corresponding heights of side $A B$. We show in the same way that $A C \perp$
$B H$ and thus H is the point of intersection of the heights, thus orthocenter.
4) $\|O H\| \cdot\|C M\|=\|O C\| \cdot\|O M\| \Rightarrow O H \cdot \sqrt{\frac{a^{2} c^{2}+c^{2} b^{2}+b^{2} a^{2}}{a^{2}+b^{2}}}=\frac{a b}{\sqrt{a^{2}+b^{2}}} \Rightarrow$
$\Rightarrow\|O H\|=\frac{\frac{c a b}{\sqrt{a^{2}+b^{2}}}}{\frac{\sqrt{a^{2} c^{2}+c^{2} b^{2}+b^{2} a^{2}}}{\sqrt{a^{2}+b^{2}}}}=\frac{a b c}{\sqrt{a^{2} b^{2}+a^{2} c^{2}+b^{2} c^{2}}}$.

Solution to Problem 236.

First we prove that if a line is \perp to two concurrent planes \Rightarrow the planes coincide.
$\left.\begin{array}{c}a \perp \alpha \\ a \perp \beta \\ \alpha \cap \beta=\alpha\end{array}\right\} \Rightarrow \alpha=\beta$.
Let

$$
\begin{aligned}
& A=a \cap \alpha, B=a \cap \beta, M \in d \\
& \left.\begin{array}{l}
a \perp \alpha \Rightarrow a \perp A M \\
a \perp \beta \Rightarrow a \perp B M
\end{array}\right\} \Rightarrow \triangle A B M
\end{aligned}
$$

$\triangle A B M$ has two right angles. False. We return to the given problem.

$\left.\begin{array}{l}A A^{\prime} \perp(B C D) \Rightarrow A A^{\prime} \perp C D \\ B B^{\prime} \perp(A C D) \Rightarrow B B^{\prime} \perp C D\end{array}\right\} \Rightarrow C D \perp\left(A A^{\prime}, B B^{\prime}\right)$
being concurrent, they determine a plane $\Rightarrow C D \perp A B$.
$C C^{\prime} \perp(A B D) \Rightarrow C C^{\prime} \perp A B$
$D D^{\prime} \perp(A B C) \Rightarrow D D^{\prime} \perp A B$
$\left.\begin{array}{l}\left.\begin{array}{l}A B \perp C D \\ A B \perp D D^{\prime}\end{array}\right\} \Rightarrow A B \perp\left(C D D^{\prime}\right) \\ \\ \left.\begin{array}{l}A B \perp C D \\ A B \perp C C^{\prime}\end{array}\right\} \Rightarrow A B^{\prime} \perp\left(C D C^{\prime}\right) \cap\left(C D D^{\prime}\right)=C D\end{array}\right\}$
$C, D, C^{\prime}, D^{\prime}$ are coplanar $\Rightarrow C C^{\prime}$ and $D D^{\prime}$ are coplanar.

Solution to Problem 237.

We draw
$A A^{\prime} \perp(B C D)$
$\left.\begin{array}{l}A A^{\prime} \perp B C \\ A B \perp D C\end{array}\right\} \Rightarrow D C \perp\left(A B A^{\prime}\right) \Rightarrow D C \perp B A^{\prime}$
$\Rightarrow B A^{\prime}$ height in $\triangle B C D$ (1)
$\left.\begin{array}{l}A A^{\prime} \perp B D \\ A C \perp B D\end{array}\right\} \Rightarrow B D \perp\left(A A^{\prime} C\right) \Rightarrow B D \perp A^{\prime} C$
$\Rightarrow A^{\prime} C$ height in $\triangle A B C$ (2)
From (1) and (2) $\Rightarrow A^{\prime}$ is the orthocenter $\triangle A B C \Rightarrow O A^{\prime} \perp B C$.
$\left.\begin{array}{l}D A^{\prime} \perp B C \\ A A^{\prime} \perp B C\end{array}\right\} \Rightarrow B C \perp\left(D A A^{\prime}\right) \Rightarrow B C \perp A D$

Solution to Problem 238.

Let

$$
\left.\begin{array}{rl}
O O^{\prime} \perp(A B C) \Rightarrow & O^{\prime} O^{\prime} \perp A O^{\prime} \\
& O O^{\prime} \perp B O^{\prime} \\
& O O^{\prime} \perp C O^{\prime}
\end{array}\right\} \Rightarrow \triangle A O O^{\prime}
$$

$\triangle B O O^{\prime}$ and $\triangle C O O^{\prime}$ are right at O^{\prime}.

$$
\begin{gathered}
\text { As } \left.\begin{array}{l}
|O A| \equiv|O B| \equiv|O C| \\
\left|O O^{\prime}\right| \text { common side }
\end{array}\right\} \\
\Rightarrow \triangle A O O^{\prime} \equiv \triangle B O O^{\prime} \equiv \triangle C O O^{\prime} \\
\Rightarrow\|O A\|=\left\|B O^{\prime}\right\|=\left\|C O^{\prime}\right\| \Rightarrow O^{\prime}
\end{gathered}
$$

is the center of the circumscribed circle $\triangle A B C$.

Solution to Problem 239.

Let D be the midpoint of $[B C]$ and $E \in \mid D A^{\prime}$ such that $\|D E\|=\|D A\|$.
$A D$ is median in the Δ isosceles

$$
\begin{aligned}
& \left.\Rightarrow \begin{array}{c}
A D \perp B C \\
A A^{\prime} \perp \alpha
\end{array}\right\} \Rightarrow A^{\prime} D \perp B C \\
& \left.\begin{array}{l}
|A D| \equiv|D E| \\
|D C| \text { common }
\end{array}\right\} \Rightarrow \triangle A D C \equiv \triangle D C E \Rightarrow \widehat{D A C} \equiv \widehat{D E C}
\end{aligned}
$$

$$
\widehat{D A^{\prime} C}>\widehat{D E C}
$$

being external for

$$
\Delta C A^{\prime} E \Rightarrow \widehat{D A C}>\widehat{B A C} \Rightarrow 2 \widehat{D A^{\prime} C}>2 \widehat{D A C} \Rightarrow \widehat{B_{A}^{\prime} C}>\widehat{B A C} .
$$

Solution to Problem 240.

Let M be a point in the plane and $\mid A M^{\prime}$ the opposite ray to $A M$.
According to theorem 1

$$
\begin{aligned}
& \Rightarrow \widehat{B^{\prime} A B}<\widehat{M A} B \Rightarrow \\
& \Rightarrow m\left(\widehat{B^{\prime} A} B\right)<\widehat{M^{\prime} A} B \Rightarrow m\left(\widehat{B^{\prime} A} B\right)<m\left(\widehat{M^{\prime} A} B\right) \Rightarrow \\
& \Rightarrow-m\left(\widehat{B^{\prime} A} B\right)>-m\left(\widehat{M^{\prime} A} B\right) \Rightarrow \\
& \Rightarrow 180^{\circ}-m\left(\widehat{B^{\prime} A B}\right)>180^{\circ}-m\left(\widehat{M^{\prime} A} B\right) \Rightarrow m\left(\widehat{B^{\prime \prime} A B}\right)>m(\widehat{M A B}) \Rightarrow \widehat{B^{\prime \prime} A B}>\widehat{M A B} .
\end{aligned}
$$

Solution to Problem 241.

We construct B on the plane
$\left.\begin{array}{r}\Rightarrow B B^{\prime} \perp \alpha \\ A C \perp \alpha\end{array}\right\} \Rightarrow$
$\Rightarrow A C$ and $B B^{\prime}$ determine a plane $\beta=\left(A C, B B^{\prime}\right) \Rightarrow A B \subset \beta$ and on this plane $M(\widehat{C A B})=90^{\circ}-m\left(\widehat{B A B^{\prime}}\right)$.

Solution to Problem 242.

Let ray $\mid A B \subset \beta^{\prime}$ such that $A B \perp m$. Let $\mid A C$ another ray such that $\mid A C \subset \beta^{\prime}$. We draw $B B^{\prime} \perp \alpha$ and $C C^{\prime} \perp \alpha$ to obtain the angle of the 2 rays with α, namely $\widehat{B A B^{\prime}}>\widehat{C A C^{\prime}}$. We draw line $\mid A A^{\prime}$ such that $A A^{\prime} \perp \alpha$ and is on the same side of plane α as well as half-plane β^{\prime}.

$$
\left.\begin{array}{rl}
A A^{\prime} \perp \alpha \Rightarrow & A A^{\prime} \perp m \\
& A B \perp m \\
& A^{\prime} A^{\prime \prime} \perp A B
\end{array}\right\} \Longrightarrow A^{\prime} A^{\prime \prime} \perp \beta^{\prime} \Rightarrow
$$

[AB is the projection of ray $\left[A A^{\prime}\right.$ on plane β
$\beta \stackrel{t .1}{\Rightarrow} \widehat{A^{\prime} A B}<\widehat{A^{\prime}} C \Rightarrow m\left(\widehat{A^{\prime} A} B\right)<m\left(\widehat{A^{\prime} A C} C\right) \Rightarrow-m\left(\widehat{A^{\prime} A} B\right)>-m\left(\widehat{A^{\prime} A} C\right) \Rightarrow 90^{\circ}-$
$-m\left(\widehat{A^{\prime} A} B\right)>90^{\circ}-m\left(\widehat{A^{\prime} A} C\right) \Rightarrow \widehat{B A B^{\prime}}>\widehat{C A C^{\prime}}$

Solution to Problem 243.
Let d be the border of α^{\prime} and $A \in d$. We draw a plane \perp on d in A, which we mark as γ.

$$
\left.\begin{array}{c}
\gamma \cap c=c \\
d \perp \gamma
\end{array}\right\} \Rightarrow d \perp c
$$

In this plane, there is only one ray b, with its origin in A, such that $m(\widehat{c, b})=a$.
The desired half-plane is determined by d and ray b, because from

Solution to Problem 244.

Let d be the edge of the dihedral angle and $A \in d$. We draw $a \perp d, a \subset \alpha^{\prime}$ and $b \perp$ $d, b \subset \beta^{\prime}$ two rays with origin in A. It results $d \perp(a b)$. We draw on plane (a, b) ray c such that $m(\widehat{a c})=m(\widehat{c b})(1)$.
As $d \perp(a b) \Rightarrow d \perp c$.
Half-plane $\gamma^{\prime}=(d, c)$ is the desired one, because

$$
\left.\begin{array}{l}
m\left(\widehat{\alpha^{\prime} \gamma^{\prime}}\right)=m(\widehat{a, c}) \\
m\left(\widehat{\gamma^{\prime} \beta^{\prime}}\right)=m(\widehat{c, b})
\end{array}\right\} \Rightarrow\left(\alpha^{\prime} \gamma^{\prime}\right)=m\left(\gamma^{\prime} \beta^{\prime}\right)
$$

If we consider the opposite ray to c, c^{\prime}, half-plane $\gamma^{\prime \prime}=\left(d, c^{\prime}\right)$ also forms concurrent angles with the two half-planes, being supplementary to the others.

Solution to Problem 245.

Let M be a point in space equally distant from the half-planes $\alpha^{\prime}, \beta^{\prime} \Rightarrow| | M A| |=$ $||M B||$.

$$
\left.\begin{array}{l}
M A \perp \alpha \Rightarrow M A \perp d \\
M B \perp \beta \Rightarrow M B \perp d
\end{array}\right\} \Rightarrow d \perp(M A B)
$$

where $d=\alpha \cap \beta$.
Let

$$
\begin{aligned}
& d \cap(M A B)=\{O\} \Rightarrow \\
& \left.\begin{array}{l}
d \perp O A \\
d \perp O B
\end{array}\right\} \Rightarrow m\left(\alpha^{\prime} \beta^{\prime}\right)= \\
& =m(\widehat{A O B}) .
\end{aligned}
$$

$\left.\begin{array}{c}|M A|=|M B| \\ |O M| \text { common side right triangle }\end{array}\right\} \Rightarrow$
$\Rightarrow \triangle M O A \equiv \triangle M O B \Rightarrow \widehat{M O A} \equiv \widehat{M O B} \Rightarrow$
$\Rightarrow M \in$ bisector of the angle.
$\widehat{A D B} \Rightarrow M \in$ bisector half-plane of the angle of half-planes $\alpha^{\prime}, \beta^{\prime}$.
If M^{\prime} is equally distant from half-planes β^{\prime} and $\alpha^{\prime \prime}$ we will show in the same way that $M^{\prime} \in$ bisector half-plane of these half-planes. We assume that M and M^{\prime} are on this plane \perp to d, we remark that $m\left(\widehat{M O M}^{\prime}\right)=90^{\circ}$, so the two half-planes are \perp.

Considering the two other dihedral angles, we obtain 2 perpendicular planes, the 2 bisector planes.

Vice-versa: we can easily show that a point on these planes is equally distant form planes α and β.

Solution to Problem 246.

$\left.\begin{array}{l}\alpha \perp \beta \\ Q \in \beta \\ d \perp \alpha \\ Q \in d\end{array}\right\} \Rightarrow d \subset \beta$.
Let $\alpha \cap \beta=\alpha$. In plane β we draw

$$
d^{\prime} \perp a, Q \in d^{\prime}
$$

As

$$
\left.\begin{array}{rl}
\alpha \perp \beta \Rightarrow m\left(\widehat{d^{\prime} b}\right)=90^{\circ} \Rightarrow & d^{\prime} \perp b \\
& d^{\prime} \perp a
\end{array}\right\} .
$$

but

so from a point it can be drawn only one perpendicular line to a plane,
$d^{\prime} \subset \beta \Rightarrow d \subset \beta$.

Solution to Problem 247.

Let
$\left.\begin{array}{l}d_{1} \perp \alpha \\ d_{2} \perp \alpha \\ d_{3} \perp \alpha\end{array}\right\} \Rightarrow \begin{array}{llllll}d_{1} & \| & d_{2} & \| & d_{3} \Rightarrow \\ & & & \end{array}$
the line with the same direction. We know that the union of the lines with the same direction and are based on a given line is a plane. As this plane contains a perpendicular line to α, it is perpendicular to α.

Solution to Problem 248.

Let $\alpha=\left(d_{1}, d_{2}\right)$ the plane of the two concurrent lines and M is a point with the property $d\left(M, d_{1}\right)=d\left(M, d_{2}\right)$. We draw

$$
M A \perp d_{1}, \quad M B \perp d_{2} \Rightarrow\|M A\|=\|M B\| .
$$

Let

$$
\begin{aligned}
& M^{\prime}=\mathrm{pr}_{\mathrm{a}} M \Rightarrow \triangle M A M^{\prime} \equiv \triangle M B M^{\prime} \Rightarrow\left\|M^{\prime} A_{\|}\right\|= \\
& \left\|M^{\prime} B\right\| \Rightarrow M^{\prime} \in
\end{aligned}
$$

a bisector of the angle formed by the two lines, and M is on a line α which meets a bisector $\Rightarrow M \in$ a plane $\perp \alpha$ and which intersects α after a bisector. Thus the locus will be formed by two planes $\perp \alpha$ and which intersects α after the two bisectors of the angle formed by d_{1}, d_{2}. The two planes are \perp.

$$
\left.\Rightarrow \begin{array}{c}
\left\|M^{\prime} A\right\|=\left\|M^{\prime} B\right\| \\
\left\|\mathrm{MM}^{\prime}\right\| \text { common side }
\end{array}\right\} \Rightarrow M A \perp d_{1}
$$

And in the same way $M B \perp d_{2} \Rightarrow M$ has the property from the statement.

Solution to Problem 249.

Let $\beta \cap \gamma=d$ and $M \in d \Rightarrow M \in \beta, M \in \gamma$. We draw \perp from M to α, line d^{\prime}.
According to a previous problem

$$
\left.\Rightarrow \begin{array}{l}
d^{\prime \prime} \subset \beta \\
d \subset \alpha
\end{array}\right\} \Rightarrow d \perp \alpha .
$$

Solution to Problem 250.

Let β and γ be such planes, that is

$$
\begin{aligned}
& A \in \beta, \beta \perp \alpha \\
& A \in \gamma, \gamma \perp \alpha
\end{aligned}
$$

From
$\left.\begin{array}{c}A \in \beta \\ A \in \gamma\end{array}\right\} \Rightarrow \beta \cap \gamma \neq \theta \Rightarrow$
are secant planes and \perp to α.
$\alpha \stackrel{p r r}{\Longrightarrow} \alpha \perp(\beta \cap \gamma)=d, A \in d$.
So their intersection is \perp through A to plane α.

Solution to Problem 251.
We construct the point on the two planes and the desired plane is determined by the two perpendicular lines.

Solution to Problem 252.
Let $\alpha \cap \beta=d$ and $M \in d$. We consider a ray originating in $M, a \in \alpha$ and we construct a \perp plane to a in M, plane γ.

$$
\left.\begin{array}{l}
\text { Because } \\
M \in \beta \\
M \in \gamma
\end{array}\right\} \Rightarrow \beta \cap \gamma \neq \varnothing
$$

and let a ray originating in $M, b \subset \beta \cap \gamma \Rightarrow b \subset \beta, b \subset . \gamma$ As $a \perp \gamma \Rightarrow a \perp b$ and the desired plane is that determined by rays (a, b).

Solution to Problem 253.

Let $\alpha \cap \beta=a$ and $d \cap \beta=\{A\}$.
We suppose that $A \notin a$. Let $M \in a$, we build $b \perp \beta, M \in b \Rightarrow b \subset \alpha$.

$$
b \perp \beta, d \perp \beta \Rightarrow d\|b \Rightarrow d\| \alpha .
$$

If

$$
\left.\begin{array}{l}
A \in a \\
d \pm \beta
\end{array}\right\} \Rightarrow d \subset \alpha .
$$

Solution to Problem 254.

$$
\left.\begin{array}{l}
\alpha \cap \gamma=b \\
\alpha \cap \beta=c \\
\gamma \cap \beta=a \\
\left.\begin{array}{l}
\pi \perp \alpha \\
\pi \perp \beta
\end{array}\right\} \Rightarrow \pi \perp c \\
\pi \perp \alpha \\
\pi \perp \gamma \tag{3}
\end{array}\right\} \Rightarrow \pi \perp b
$$

From (1), (2), (3) $\Rightarrow a\|b\| c$.

Solution to Problem 255.

Let $A \in$ int. $\left(\overline{\alpha^{\prime} \beta^{\prime}}\right), \alpha \cap \beta=d$.

$$
\begin{aligned}
& \left.\begin{array}{l}
A B \perp \alpha \Rightarrow A B \perp d \\
\\
A C \perp \beta \Rightarrow A C \perp d
\end{array}\right\} \Rightarrow d \perp(A B C) \\
& \Rightarrow\left\{\begin{array}{l}
d \cap(A B C)=\{O\} \\
d \perp O C \\
d \perp O B
\end{array}\right\} \Rightarrow m\left(\widehat{\alpha^{\prime} \beta^{\prime}}\right)=m(\widehat{B O C}) \\
& \\
& \left.\begin{array}{l}
m(\widehat{A B O})=90^{\circ} \\
\\
m(\widehat{A C O})=90^{\circ}
\end{array}\right\} \Rightarrow m(\widehat{B A C})+m\left(\widehat{\alpha^{\prime} \beta^{\prime}}\right)=180^{\circ} . \\
& \Rightarrow \\
& \Rightarrow\left(\widehat{\alpha\left(\beta^{\prime}\right)}=180^{\circ}-m(\widehat{B A C}) \Rightarrow m(\widehat{B A C})=180^{\circ}-m\left(\widehat{\alpha \beta^{\prime}}\right)\right.
\end{aligned}
$$

Let $A \in \operatorname{int} .\left(\widehat{\alpha^{\prime \prime} \beta^{\prime}}\right)$. We show the same way that

$$
\begin{aligned}
& \left.\begin{array}{l}
m(\widehat{B A C})=180^{\circ}-m\left(\widehat{\alpha^{\prime \prime} \beta^{\prime}}\right) \\
m\left(\widehat{\alpha^{\prime \prime} \beta^{\prime}}\right)=180^{0}-m\left(\widehat{\alpha^{\prime} \beta^{\prime}}\right)
\end{array}\right\} \Rightarrow m(\widehat{B A C})=180^{0}-180^{\circ}+m\left(\widehat{\alpha^{\prime} \beta^{\prime}}\right)=m\left(\widehat{\alpha^{\prime} \beta^{\prime}}\right) . \\
& \text { If } A \in \operatorname{int} .\left(\widehat{\alpha^{\prime \prime} \beta^{\prime \prime}}\right) \Rightarrow m(\widehat{B A C})=180^{0}-m\left(\widehat{\alpha^{\prime \prime} \beta^{\prime}}\right) \text {. } \\
& \text { If } A \in \operatorname{int} .\left(\widehat{\alpha^{\prime} \beta^{\prime \prime}}\right) \Rightarrow m(\widehat{B A C})=180^{0}-m\left(\widehat{\alpha^{\prime} \beta^{\prime}}\right) \text {. }
\end{aligned}
$$

This book is a translation from Romanian of "Probleme Compilate şi Rezolvate de Geometrie şi Trigonometrie" (University of Kishinev Press, Kishinev, 169 p., 1998), and includes problems of 2D and 3D Euclidean geometry plus trigonometry, compiled and solved from the Romanian Textbooks for 9th and 10th grade students, in the period 1981-1988, when I was a professor of mathematics at the "Petrache Poenaru" National College in Balcesti, Valcea (Romania), Lycée Sidi El Hassan Lyoussi in Sefrou (Morroco), then at the "Nicolae Balcescu" National College in Craiova and Dragotesti General School (Romania), but also I did intensive private tutoring for students preparing their university entrance examination. After that, I have escaped in Turkey in September 1988 and lived in a political refugee camp in Istanbul and Ankara, and in March 1990 I immigrated to United States. The degree of difficulties of the problems is from easy and medium to hard. The solutions of the problems are at the end of each chapter. One can navigate back and forth from the text of the problem to its solution using bookmarks. The book is especially a didactical material for the mathematical students and instructors.

The Author

