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Abstract

In this paper it is demonstrated that the Navier Stokes Voight equation has a smooth nontrivial

exact solution in (2+1). This can be extended to (3+1). Smoothness of the solution is accomplished

by connecting disconnected pieces of solution over a vanishingly small intervall. We show by

example that the algebra of connecting coefficients is consitent.
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I. INTRODUCTION

A. Preliminaries

In the present paper a simple exact solution to the (2+1), i.e. two space one time, Navier

Stokes Voight (NSV) equation is presented. The solution observes the requirements of

vanishing divergence, finite energy and bounded absolute differentials of velocity, pressure

and force [1]. The claim is that the pair of exact solutions (u, p) exists that observe the

requirements of the type A solution of [1] written down for the Navier Stokes (NS) equation.

Despite the fact that we are dealing with the NSV we follow the requirements for the NS.

The solution is initially associated to 4 quadrants of R2.For sufficiently small 0 < ε→ 0, the

4 quadrant NSV solutions are connected and the algebra of coefficients is demonstrated to

be consistent. It is noted that for xk ∈ (−ε, ε)0<ε→0, the NSV equation does not apply. In

a physical sense we hence may claim to have obtained an exact modified type A solution.

The NSV breaks down physically in xk ∈ (−ε, ε)0<ε→0 because the absence of continuum

mechanics beyond a certain length limit in a real fluid. Finite energy derives from a real

physics fluid. It is noted that a real physics fluid consists of atoms. Beyond a certain length

scale there is no continuum in a real fluid.

B. The equation

The velocity vector, u, {un}2n=1, is matched with a simultaneous solution for a constant

pressure p. Generally we have for the n-th element un = un(x1, x2, t), (n = 1, 2) of the

velocity vector and p = p(x1, x2, t). The NSV equation is:

∂un
∂ t

+
2∑
j=1

uj
∂un
∂ xj
− ν∇2un − η2∇2∂un

∂t
+

∂p

∂ xn
= fn (1)

with kinematic viscosity ν > 0 and length scale η > 1. The function fn is external. In type

A, fn = 0. Accordingly the solution, un in (1) must have finite energy [1]∫
R2

2∑
n=1

u2n(x1, x2, t)d
2x ≤ C(t) (2)
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and a vanishing divergence
∑2

n=1
∂
∂xn

un = 0. The challenge is to demonstrate that a non-

trivial smooth exact solution is possible with the zero time initial conditions u0,n(x1, x2) =

un(x1, x2, 0). The pressure p and force fn obey the requirements of type A. We demon-

strate here that un follows the requirements of type A. The initial boundary conditions with

irreducible scale 0 < ε→ 0 represents the slight modification to A.

II. SOLUTION HEURISTICS

Let us define a heuristic solution for un = un(x1, x2, t), with, x = (x1, x2) and

un = cιn exp

[
−at−

2∑
k=1

αk|xk|

]
(λιn1)

H(ε,x1) (λιn2)
H(ε,x2) ≡ uιn (3)

with, n = 1, 2, a > 0 real and αk > 0 real, k = 1, 2, and λιjn ∈ {−1, 1}. The λ coefficients

project in {−1, 1}. Later we will enter into the details of the coefficients λ. The H exponents

in (3) for the λ’s are defined by

H(ε, xn) =
{ 1, xn ∈ (−ε, ε)

0, xn /∈ (−ε, ε)
(4)

The H functions are unequal to zero for an interval around zero with 0 < ε → 0 for

xk ∈ (−ε, ε). Furthermore, ||α|| = 1 and ||.|| the euclidean norm. The ι in the superscript

is an index, with ι = (ι1, ι2) and (x1, x2) ∈ Rι1\{0} ×Rι2\{0}, with xn ∈ Rιn\{0} such that

|xn| > 0 and sgn(xn) = ιn = ±1. I.e. ι = ι(x) = (ι(x1), ι(x2)) = (sgn(x1), sgn(x2)), with,

sgn(0) = 0. E.g. ι(x) = (+,−), for x1 > 0 and x2 < 0. The superscript indicates that we are

looking at the solution related to that subsection, or quadrant, of R2 where in the example

x1 > 0 and x2 < 0. The set {uι(x)(x, t)|ι(x) holds no zero’s } contains u that are associated

to the four quadrants excluding zero. Smoothness of the solution will be discussed later and

is associated to the constants c
ι(x)
n . Furthermore, it is assumed that the constants {cι(x)n }2n=1

and {αn}2n=1 are such that
2∑
j=1

αjc
ι(x)
j sgn(xj) = 0 (5)

With the sign of xk in the index one can have different c. E.g., (x1, x2) such that, x1 >

0, x2 < 0 gives

c
(+,−)
1 α1 − c(+,−)2 α2 = 0 (6)
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while e.g. x1 < 0, x2 < 0

−c(−,−)1 α1 − c(−,−)2 α2 = 0 (7)

etcetera, and ||α||2 = 1. The reader may note that instead of e.g. (+,+) we could

have used c1,1n or similar. The use of the superscript is to select the proper function

from a family of 4 vector functions, associated to x = (x1, x2), xk 6= 0. This family is

{u(−,−)(x, t), u(−,+)(x, t), u(+,−)(x, t), u(+,+)(x, t)}. The vector functions only differ by a con-

stant c vector that is restricted by (5).

A. Finite energy

The requirement of finite energy is given in equation (2). The superscript ι(x) can be

suppressed in the argument. The requirement can be expressed in subspaces of R2 = R×R

( × the Cartesian product),

R2 = (R− × R−) ∪ (R− × R+) ∪ (R+ × R−) ∪ (R+ × R+)

Note, ι(x) = (ι1, ι2) with (x1, x2) ∈ (Rι1 × Rι2), and, ∀n∈{1,2} |xn| > 0. This implies (sup-

pressing the use of d2x for the moment)

C(t) ≥
∫
R2

||u||2 =

∫
R−×R−

||u||2 +

∫
R−×R+

||u||2 +

∫
R+×R−

||u||2 +

∫
R+×R+

||u||2 (8)

and C(t) finite. We have ||u||2 = u21+u
2
2. Because in the analysis of smoothness, a vanishingly

small interval is excluded, the integration for e.g. x1 < 0 and x2 < 0 must be written as

E1(ε) =

∫ −ε
−∞

∫ −ε
−∞

u21dx1dx2dx2 (9)

with 0 < ε → 0. In effect we may take boundary in the integrations equal to zero and

proceed in this way in our attempt to demonstrate finite energy. Hence, we may write the

first term of (8) as

E1 =

∫ 0

−∞

∫ 0

−∞
u21dx1dx2 (10)

Then, looking at equation, (3), noting xk < 0 in the first integral of (8).

E1 =

∫ 0

−∞

∫ 0

−∞
u21dx1dx2 =

{
c
(−,−)
1

}2

e−2at
∫ 0

−∞

∫ 0

−∞
exp

[
2

2∑
k=1

αkxk

]
dx1dx2 (11)
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Hence,

E1 =
{
c
(−,−)
1

}2

e−2at
∫ 0

−∞
exp [2α1x1] dx1

∫ 0

−∞
exp [2α2x2] dx2 (12)

such that

E1 =
{
c
(−,−)
1

}2

e−2at
∫ ∞
0

exp [−2α1x1] dx1

∫ ∞
0

exp [−2α2x2] dx2 (13)

which gives

E1 =

(
1

4α1α2

){
c
(−,−)
1

}2

e−2at (14)

The last integration term for u1 in (8) is

E4 =

∫ ∞
0

∫ ∞
0

u21dx1dx2 (15)

then, looking again at (3), noting xk > 0 here,

E4 =
{
c
(+,+)
1

}2

e−2at
∫ ∞
0

∫ ∞
0

exp

[
−2

2∑
k=1

αkxk

]
dx1dx2 (16)

This then gives

E4 =

(
1

4α1α2

){
c
(+,+)
1

}2

e−2at (17)

The second integral for u1 is

E2 =

∫ 0

−∞

∫ ∞
0

u21dx1dx2 (18)

Hence, we may write

E2 =
{
c
(−,+)
1

}2

e−2at
∫ 0

−∞
exp[2α1x1]dx1

∫ ∞
0

exp[−2α2x2]dx2 (19)

This implies

E2 =

{
c
(−,+)
1

}2

e−2at

4α1α2

(20)

A similar form goes for E3 the third term in (8). So,

E3 =

{
c
(+,−)
1

}2

e−2at

4α1α2

(21)

Because for u1 we have E = E1 +E2 +E3 +E4 and for u2 forms similar to, (14), (17), (20)

and (21) can be derived, we may conclude that the energy is finite for this solution. Hence,

it is possible to have

∞ > C(t) ≥ e−at
∑

ι1∈{−,+}

∑
ι2∈{−,+}

||c(ι1,ι2)||2

4α1α2
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B. Terms in the Navier Stokes equation

In the analysis we assume xk /∈ (−ε, ε) for k = 1, 2, with 0 < ε→ 0.

1. divergence

From (3) observe that, if the dot denotes the time differentiation, then, u̇n = −aun.

Subsequently,

∂un
∂xn

= cι(x)n

∂

∂xn
exp

[
−at−

2∑
k=1

αk|xk|

]
(22)

To be completely clear, the ι(x) in c
ι(x)
n is a superscript index, not a power. Then,

∂un
∂xn

= −cι(x)n

(
αn

∂

∂xn
|xn|

)
exp

[
−at−

2∑
k=1

αk|xk|

]
(23)

Furthermore, ∂
∂xn
|xn| = sgn(xn) + 2xnδ(xn), with δ(xn) the Dirac delta function. The term,

xnδ(xn) can be ignored. We have, δ(xn) 6= 0 when xn = 0, otherwise, δ(xn) = 0. The δ arises

from ∂
∂xn

sgn(xn) = δ(xn) + δ(−xn) and δ(−xn) = δ(xn) noting sgn(xn) = Θ(xn) − Θ(−xn)

and Θ(xn) = 1 for xn ≥ 0 and Θ(xn) = 0 for xn < 0. From the equation (23) and xn 6= 0, it

follows that

2∑
n=1

∂un
∂xn

= −

(
2∑

n=1

cι(x)n αnsgn(xn)

)
exp

[
−at−

2∑
k=1

αk|xk|

]
= 0 (24)

The exponent term in ”exp” remains finite because a > 0, αk > 0 and |xk| > ε. From (5)

the divergence of u, vanishes, i.e. ∇ · u = 0, as required.

2. uj product differentiation & ∇2

In addition,

∂un
∂xj

= −cι(x)n αjsgn(xj) exp

[
−at−

2∑
k=1

αk|xk|

]
(25)

Hence,

uj
∂un
∂xj

= −cι(x)n c
ι(x)
j αjsgn(xj) exp

[
−2at− 2

2∑
k=1

αk|xk|

]
(26)

Because,(5) we see that
2∑
j=1

uj
∂un
∂xj

= 0 (27)
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From equation (25) it also follows that

∂2un
∂x2j

= cι(x)n {(αj)2 − 2αjδ(xj)} exp

[
−at+

2∑
k=1

αk|xk|

]
(28)

with ||α||2 = 1. Note δ(xj) = 0 for xj 6= 0, then ∇2un = un. From the previous we also may

see that the Voight term is equal to

−η2∇2∂un
∂t

= aη2un.

Hence, the NSV equation reduces for xk 6= 0 with k = 1, 2, to (ν > 0, η > 1)

−(a+ ν − aη2)un +
∂p

∂xn
= fn (29)

For n = 1, 2 in type A we have fn = 0. If, a = ν
η2−1 for η > 1, then a > 0. This, together

with p = constant and fn = 0 gives a complete type A solution provided un is smooth.

C. Smoothness of un arguments

The following sections will be devoted to the connection between the solutions of the four

ι(x) 6= 0 subspaces via xn in (−ε, ε) intervals. The left and right hand limit of un at each

(x1, x2) must be equal in order to claim a smooth solution. The smoothness of u1 and of u2

is inspected for the coefficients c
ι(x)
1 and c

ι(x)
2 separately. The u1 needs to smoothly connect

for index n = 1 and limits. Similarly for u2 and index n = 2 plus limits. It isn’t necessary

to do algebra for connecting u1 with u2 in the limits.

1. limits

The limits employ c coefficients in the un, n = 1, 2, functions with one or both spatial

variables, x1, and/or, x2 inside (−ε, ε). The 0 < ε→ 0 warrants that this ’not valid’ interval

is vanishingly small. In physics, a real fluid will no longer be continuous if the ε decreases

beyond the size of the particles that constitute the fluid. Boundary values in xk = 0, i.e.

along the axes, are initial givens to the Navier Stokes Voight equation. The axes can be

arbitrarily projected in the fluid that is supposed to fill R2. Extension to R3 will be discussed

later.
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2. coefficients

In the first place let us look at the following limit, where x2 /∈ (−ε, ε), where H(ε, x1) = 1,

for a certain given small ε > 0 that can be decreased to 0 in a ”later” limit process.

lim

0 > x1 → 0−

x2 /∈ (−ε, ε)

uι(x)n (x1, x2, t) = λ
(−,±)
1n c(−,±)n w(0−, x2, t) (30)

with w(x1, x2, t) = exp[−at−α1|x1|−α2|x2|] . Note that, for limits, w(0−, x2, t) = w(0, x2, t).

The second limit we need to look at is

lim

0 < x1 → 0+

x2 /∈ (−ε, ε)

uι(x)n (x1, x2, t) = λ
(+,±)
1n c(+,±)n w(0+, x2, t) (31)

Here, w(0+, x2, t) = w(0, x2, t). For x1 = 0 and |x2| > 0, we have

uι(x)n (0, x2, t) = λ
(0,±)
1n c(0,±)n w(0, x2, t) (32)

For x2 = 0 and |x1| > 0, we have

uι(x)n (x1, 0, t) = λ
(±,0)
2n c(±,0)n w(x1, 0, t) (33)

For x1 = x2 = 0 we have u
(0,0)
n (0, 0, t) = c

(0,0)
n λ

(0,0)
1n λ

(0,0)
2n w(0, 0, t). Here, c

(0,0)
n λ

(0,0)
1n λ

(0,0)
2n = 1,

and where limits from either quadrant show discontinuity, a jump is replaced by a smooth

connection in x1 ∈ (−ε, ε) and x2 ∈ (−ε, ε), with, 0 < ε→ 0.

3. example

Suppose, α1 = 1
2
> 0, α2 = 1

2

√
3 > 0. Hence, ||α||2 = 1. The sι = ± is not important

for the relation of α and c. The next step is to see if c vectors with given α are possible.

Let us define the c coefficients with unequal signs in the superscript. Hence,

c
(+,−)
1 =

√
3, c

(+,−)
2 = 1

c
(−,+)
1 = −

√
3, c

(−,+)
2 = −1

(34)

So,

α1c
(+,−)
1 − α2c

(+,−)
2 =

(
1

2
∗
√

3

)
−
(

1

2

√
3 ∗ 1

)
= 0
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and,

−α1c
(−,+)
1 + α2c

(−,+)
2 = −

(
−1

2
∗
√

3

)
+

(
−1

2

√
3 ∗ 1

)
= 0.

For equal sign coefficients

c
(+,+)
1 =

√
3, c

(+,+)
2 = −1

c
(−,−)
1 = −

√
3, c

(−,−)
2 = 1

(35)

Subsequently, we have to check consistency

α1c
(+,+)
1 + α2c

(+,+)
2 =

(
1

2
∗
√

3

)
+

(
−1

2

√
3 ∗ 1

)
= 0

together with

−α1c
(−,−)
1 − α2c

(−,−)
2 = −

(
−1

2
∗
√

3

)
−
(

1

2

√
3 ∗ 1

)
= 0

4. further breakdown of the c coefficients

The result of the previous paragraph is given by

c
(+,−)
1 =

√
3, c

(+,−)
2 = 1; c

(−,+)
1 = −

√
3, c

(−,+)
2 = −1

c
(+,+)
1 =

√
3, c

(+,+)
2 = −1; c

(−,−)
1 = −

√
3, c

(−,−)
2 = 1

(36)

When we check for smoothness, or connectedness, algebraic consistency checks are necessary

for equal lower (n-) indexed c
(ι1,ι2)
n . Suppose, furthermore, that the c coefficients can be

broken down into indexed factors e, d, f, g and h

c(ι1,ι2)n = eι1n d
ι2
n fng

ι1hι2 (37)

Subsequently let us inspect equal lower indexed c. For, n = 1, 2 let us inspect quotients of

c. Firstly, we take a look at unequal signed upper indices

c
(−,+)
n

c
(+,−)
n

=
e−n d

+
n g
−h+

e+n d
−
n g

+h−
= −1 (38)

Secondly, the equal upper indexes and n = 1, 2,

c
(−,−)
n

c
(+,+)
n

=
e−n d

−
n g
−h−

e+n d
+
n g

+h+
= −1 (39)

Thirdly we take a look at the other upper indexes

c
(+,−)
1

c
(+,+)
1

=
e+1 d

−
1 g

+h−

e+1 d
+
1 g

+h+
=

d−1 h
−

d+1 h
+ = 1

c
(+,−)
2

c
(+,+)
2

=
e+2 d

−
2 g

+h−

e+2 d
+
2 g

+h+
=

d−2 h
−

d+2 h
+ = −1

(40)
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together with

c
(−,+)
1

c
(−,−)
1

=
e−1 d

+
1 g

−h+

e−1 d
−
1 g

−h−
=

d+1 h
+

d−1 h
− = 1

c
(−,+)
2

c
(−,−)
2

=
e−2 d

+
2 g

−h+

e−2 d
−
2 g

−h−
=

d+2 h
+

d−2 h
− = −1

(41)

So, if we take
h−

h+
= 1 (42)

and,

d−2 = −1, d+2 = d−1 = d+1 = 1 (43)

then, (40) and (41) are ok. Subsequently, in this section we inspect the, e, coefficients. So,

c
(−,+)
1

c
(+,+)
1

=
e−1 d

+
1 g

−h+

e+1 d
+
1 g

+h+
=

e−1 g
−

e+1 g
+ = −1

c
(−,+)
2

c
(+,+)
2

=
e−2 d

+
2 g

−h+

e+2 d
+
2 g

+h+
=

e−2 g
−

e+2 g
+ = 1

(44)

and

c
(+,−)
1

c
(−,−)
1

=
e+1 d

−
1 g

+h−

e−1 d
−
1 g

−h−
=

e+1 g
+

e−1 g
− = −1

c
(+,−)
2

c
(−,−)
2

=
e+2 d

−
2 g

+h−

e−2 d
−
2 g

−h−
=

e+2 g
+

e−2 g
− = 1

(45)

Similarly we can derive
g−

g+
= −1 (46)

and,

e−2 = −1, e+2 = e−1 = e+1 = 1 (47)

Fourthly, let us check the statements in (38) and (39) with the results for d and e coefficients

in (43) and (47). We have

−1 =
c
(−,+)
1

c
(+,−)
1

=
e−1 d

+
1 g
−h+

e+1 d
−
1 g

+h−
=
g−h+

g+h−
(48)

With, (42) and (46), g−/g+

h−/h+
= −1, and e−1 = e+1 = 1 and d+1 = d−1 = 1, (48) is verified.

Subsequently,

−1 =
c
(−,+)
2

c
(+,−)
2

=
e−2 d

+
2 g
−h+

e+2 d
−
2 g

+h−
=
−g−h+

−g+h−
(49)

which with e−2 d
+
2 = −1 and e+2 d

−
2 = −1, then completes the verification of the claim in (38).

Further, we have

c
(−,−)
1

c
(+,+)
1

=
e−1 d

−
1 g
−h−

e+1 d
+
1 g

+h+
=
g−h−

g+h+
= −1 (50)
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with, e−1 d
−
1 = e+1 d

+
1 = 1.

c
(−,−)
2

c
(+,+)
2

=
e−2 d

−
2 g
−h−

e+1 d
+
1 g

+h+
=

(−1)× (−1)× g−h−

g+h+
= −1 (51)

because, g−

g+
= −1, and, h−

h+
= 1. So we may use the broken down expression for the c

coefficients in (37) with the given coefficients in (36).

5. λ coefficients first coordinate

Let us assume in the first place that λ
(0,±)
jn = λ

(±,0)
jn = 1, for j, n = 1, 2. Let us, in the

second place, look at

c(0,±)n = c(+,±)n λ
(+,±)
1n = c(−,±)n λ

(−,±)
1n (52)

Let us first look at n = 1 and the second ι coordinate ι2 = +. We note from (36), c
(+,+)
1 =

√
3

and c
(−,+)
1 = −

√
3. So in order to bring those two coefficients in balance, we may take,

λ
(+,+)
11 = 1 and λ

(−,+)
11 = −1. For n = 2 we have, c

(+,+)
2 = −1 and c

(−,+)
2 = −1. Then (52) for

n = 2 and ι2 = +, is consistent with, λ
(+,+)
12 = λ

(−,+)
12 = 1. Subsequently let us take ι2 = −

and look at n = 1 again. This then gives from (36), c
(+,−)
1 =

√
3 and c

(−,−)
1 = −

√
3. Hence,

(52) can be made consistent with λ
(+,−)
11 = 1 and λ

(−,−)
11 = −1. If we then take a look at

n = 2 and ι2 = −, this gives first looking at (36), c
(+,−)
2 = 1 and c

(−,−)
2 = 1 the necessity to

have λ
(+,−)
12 = λ

(−,−)
12 = 1 for consistency in (52).

6. λ coefficients second coordinate

Let us look at the |x1| > 0 and x2 ∈ (−ε, ε), so H(ε, x2) = 1 and H(ε, x1) = 0.

c(±,0)n = c(±,+)
n λ

(±,+)
2n = c(±,−)n λ

(±,−)
2n (53)

Let us first inspect n = 1 and ι1 = +. From (36) we see, c
(+,+)
1 =

√
3 and c

(+,−)
1 =

√
3.

Hence, (53) is consistent when λ
(+,+)
21 = λ

(+,−)
21 = 1. We have ι1 = −, with, c

(−,+)
1 = −

√
3 and

c
(−,−)
1 = −

√
3. Hence, λ

(−,+)
21 = λ

(−,−)
21 = 1. Subsequently, we take n = 2 and c

(+,+)
2 = −1

together with c
(+,−)
2 = 1. Consistency in (53) can be concluded via λ

(+,+)
22 = −1 and

λ
(+,−)
22 = 1. Subsequently, n = 1 and ι1 = − gives c

(−,+)
1 = −

√
3 and c

(−,−)
1 = −

√
3. Hence,

λ
(−,+)
21 = λ

(−,−)
21 = 1 gives (53) consistency in this case. For n = 2, ι1 = − we see c

(−,+)
2 = −1

and c
(−,−)
2 = 1. Hence λ

(−,+)
22 = −1 and λ

(−,−)
22 = 1 in (53).

11



7. verification

In the previous two sections the λ and c coefficients were obtained. In this section the

combination of the form in (37) will be verified for all the λ coefficients to check system

consistency. In the first place we inspect c
(0,+)
1 . We have

c
(0,+)
1 = λ

(−,+)
11 c

(−,+)
1 = λ

(+,+)
11 c

(+,+)
1 (54)

With (37) we write λ
(−,+)
11 e−1 d

+
1 f1g

−h+ = λ
(+,+)
11 e+1 d

+
1 f1g

+h+. Hence

λ
(−,+)
11 = λ

(+,+)
11

e+1 g
+

e−1 g
− (55)

With λ
(+,+)
11 = 1 and λ

(−,+)
11 = −1 this is consistent. The

e+1 g
+

e−1 g
− = −1. For, c

(0,−)
1 we write

c
(0,−)
1 = λ

(−,−)
11 c

(−,−)
1 = λ

(+,−)
11 c

(+,−)
1 (56)

With, (37) we then may note that, λ
(−,−)
11 e−1 d

−
1 f1g

−h− = λ
(+,−)
11 e+1 d

−
1 f1g

+h−. This implies,,

λ
(−,−)
11 = λ

(+,−)
11

e+1 g
+

e−1 g
− (57)

And so, with λ
(−,−)
11 = −1 and λ

(+,−)
11 = 1, there is also consistency in this case. Subsequently

we look at c
(0,+)
2 . Hence,

c
(0,+)
2 = λ

(−,+)
12 c

(−,+)
2 = λ

(+,+)
12 c

(+,+)
2 (58)

This implies, λ
(−,+)
12 e−2 d

+
2 f2g

−h+ = λ
(+,+)
12 e+2 d

+
2 f2g

+h+, such that

λ
(−,+)
12 = λ

(+,+)
12

e+2 g
+

e−2 g
− (59)

We have,
e+2 g

+

e−2 g
− = 1, and with, λ

(+,+)
12 = λ

(−,+)
12 = 1 hence consistency. Furthermore,

c
(0,−)
2 = λ

(−,−)
12 c

(−,−)
2 = λ

(+,−)
12 c

(+,−)
2 (60)

This leads to

λ
(−,−)
12 = λ

(+,−)
12

e+2 g
+

e−2 g
− (61)

We have, λ
(−,−)
12 = λ

(+,−)
12 = 1 and hence, consistency. Then we continue with n = 1 and

c
(+,0)
1 . This gives

c
(+,0)
1 = λ

(+,+)
21 c

(+,+)
1 = λ

(+,−)
21 c

(+,−)
1 (62)
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Using (37) this reduces to

λ
(+,+)
21 = λ

(+,−)
21

d−1 h
−

d+1 h
+

(63)

From the first equation in (41) it follows that
d−1 h

−

d+1 h
+ = 1. hence, when λ

(+,+)
21 = λ

(+,−)
21 = 1

there is consistency. Similarly, the expression for c
(−,0)
1 leads to

λ
(−,+)
21 = λ

(−,−)
21

d−1 h
−

d+1 h
+

(64)

This is consistent because in the previous section we found λ
(−,+)
21 = λ

(−,−)
21 = 1. Because,

λ
(±,+)
22 = −1 and λ

(±,−)
22 = 1 together with

d−2 h
−

d+2 h
+ = −1, the expressions for c

(±,0)
2 are consistent

too. Hence, we have verified our system of coefficients and demonstrated its consistency. For

decreasingly positive ε the system of connecting coefficients that connect the u in separate

quadrants, are consistent.

III. CONCLUSION AND DISCUSSION

In the previous section it was demonstrated that the NSV equation has a nontrivial exact

type A solution for the 4 quadrants of R2 and xk 6= 0. The 4 quadrants show u(ι1,ι2), for,

(Rι1\{0})× (Rι2\{0}) and ιn ∈ {+,−}, with n = 1, 2. The algebra for smoothly connecting

solutions with x1 = 0 and/or x2 = 0 is given in the paper.

For sufficiently small 0 < ε → 0, the 4 quadrant NSV solutions are connected and the

algebra of coefficients is, by giving an example, demonstrated to be consistent. It must be

noted that connecting the uιn functions over the interval between −ε and ε may change the

sign. For certain ι and n we can have outside the interval uιn = cιnw(x1, x2, t) and inside the

interval uιn = −cιnw(x1, x2, t), because there a λ is −1. We may assume that a smooth but

fast change can always replace the jump in sign. It is also noted that for xk ∈ (−ε, ε)0<ε→0,

the NSV equation does not apply. In a physical sense we may claim to have obtained an

exact modified type A solution. The NSV breaks down physically in xk ∈ (−ε, ε)0<ε→0 and

this can be explained by the absence of continuum mechanics beyond a certain length limit

in a real fluid. Note that the requirement of finite energy derives from physics. If this is used,

then should irreducible length scales also not be a part of the solution considering that a fluid

in real physics also consists of atoms in addition to having finite energy. This irreducible

discreteness effect shows at the axes of the coordinate system. It occurs throughout the fluid

however, because the origin of the coordinate system is arbitrary.
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The algebraic construction of
∑2

n=1 c
ι(x)
n αnsgn(xn) = 0 is basic to the solution. Use is

made of ∂
∂xn
|xn| = sgn(xn) thereby ignoring the xnδ(xn) term. For |xn| > 0 the δ(xn) from

∂
∂xk

sgn(xk) is ignored. Moreover, select a pair (x1, x2), with e.g. |x2| > ε and (∃ε>0)x1 ∈

(−ε, ε), |x1| > 0, then there always will be an 0 < ε′ < ε such that x1 /∈ (−ε′, ε′) and (x1, x2)

is included in the solution space. In fact for all {(x1, x2) ∈ R2 : ι(xn) 6= 0, n = 1, 2} an exact

solution is found. With the c
(0,±)
n , c

(±,0)
n , c

(0,0)
n we can identify initial boundary values of the

problem. Hence, we claim a slightly modified type A solution for NSV with connection to

boundary (initial) values in x1 = 0 and/or x2 = 0. The (2+1) can be extended to (3+1)

by having u3 = 0, which means no contribution to finite energy, and f3 = 0. In effect this

means that in this paper we looked at a laminar NSV.
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tute.
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