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A simple exact solution to the Navier Stokes
equation.

Han Geurdes ∗

C vd Lijnstraat 164 2592 NN Den Haag Netherlands

Abstract. In this paper it is demonstrate, via construction, that the Navier Stokes
equation has a smooth nontrivial exact solution in (2+1). The smoothness is accom-
plished by connecting disconnected pieces of solution over a vanishingly small inter-
vall.We show by example that the algebra of connecting coefficients is consitent.
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1 Introduction

In the present paper a simple solution to the (2+1), two space one time, Navier-Stokes
equation is proposed that observes the requirements of vanishing divergence, finite energy
and bounded absolute differentials of velocity and force [1]. The claim is that the pair
of exact solutions (u,p) exists that observe the requirements. Here, the velocity vector,
u, {ui}2i=1, is matched with a simultaneous solution for pressure p. We have for the i-th
element ui=ui(x1,x2,t),(i=1,2) of the velocity vector and p=p(x1,x2,t). The NS equation
is:

∂

∂t
ui+

2∑
j=1

uj
∂

∂xj
ui−ν∇2ui+

∂

∂xi
p=fi (1.1)

Following [1] it is allowed to have ν=1. The function fi is external and we may assume to
be able to select fi,(i=1,2) such that requirement (5) of [1] also applies. This assumption
will be checked. The solution, ui in (1.1) must have finite energy [1]∫

R2

2∑
i=1

u2i (x1,x2,t)d
2x≤C(t) (1.2)

and a vanishing divergence
∑2

i=1
∂
∂xi
ui= 0. The challenge is to demonstrate that a non-

trivial smooth exact solution (modified type A, [1]) is possible with the zero time initial
conditions u0,i(x1,x2)=ui(x1,x2,0).
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2 Solution heuristics

Let us define a heuristic solution for ui=ui(x1,x2,t), with, x=(x1,x2) and

ui=c
ι(x)
i exp

[
−at−

2∑
k=1

αk|xk|

](
λ
ι(x1)
i1

)H(ε,x1)(
λ
ι(x2)
i2

)H(ε,x2)
≡uι(x)i (2.1)

with, a> 0 real and αk> 0 real, k= 1,2, and ||α||= 1 and ||.|| the euclidean norm. The
ι(x) in the superscript is intended as an index i.e. ι(x)=(ι(x1),ι(x2))=(sgn(x1),sgn(x2)).
E.g. ι(x)=(+,−), for x1>0 and x2<0. The superscript indicates that we are looking at
the solution related to that subsection,or quadrant, of R2 where in the example x1>0 and
x2<0. The family of vector functions {uι(x)(x,t)|ι(x) holds no zero’s }, are associated to
the four quadrants that do not contain zero. Smoothness will be discussed later and is

associated to the constants c
ι(x)
i and λ

ι(xj)
ij . The H exponents are defined by

H(ε,xi)=
{ 1, xi∈(−ε,ε)

0, xi /∈(−ε,ε) (2.2)

Furthermore, it is assumed that the constants {cι(x)i }2i=1 and {αi}2i=1 are such that

2∑
j=1

αjc
ι(x)
j sgn(xj)=0 (2.3)

With the sign of xk in the index one can have different c. E.g., (x1,x2) such that, x1>
0,x2<0 gives

c
(+,−)
1 α1−c(+,−)2 α2=0 (2.4)

or e.g. x1<0,x2<0

−c(−,−)1 α1−c(−,−)2 α2=0 (2.5)

etcetera, while ||α||= 1. The reader may note that instead of e.g. (+,+) we could
have used c1,1i or similar. The use of the superscript is to select the proper form from
a family of 4 vector functions, associated to x= (x1,x2), xk 6= 0 and explicitly written
as, {u(−,−)(x,t),u(−,+)(x,t),u(+,−)(x,t),u(+,+)(x,t)} that differ by a constant c vector that

gives (2.3). We take sgn(0)=0. If, e.g. x1 =0, and, x2>0, then we have c
(0,+)
2 in (2.1).

Note in passing that a (1+1) NS is not a (completely) valid problem in terms of vanishing

divergence and nontrivial solution. So, c
(0,+)
i for i=1,2 is a valid characteristic of the (2+1)

solution but is not a part of a nontrivial (1+1) solution.

2.1 Finite energy

The requirement of finite energy is given in equation (1.2). The superscript ι(x) can be
suppressed in the argument. The requirement can be expressed in subspaces of R2=R×R
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( × the Cartesian product),

R2=(R−×R−)∪(R−×R+)∪(R+×R−)∪(R+×R+)

This implies (suppressing the use of d2x for the moment)

C(t)≥
∫
R2

||u||2=

∫
R−×R−

||u||2+

∫
R−×R+

||u||2+

∫
R+×R−

||u||2+

∫
R+×R+

||u||2 (2.6)

and C(t) finite. We have ||u||2=u21+u22. Because in the analysis of smoothness, a vanish-
ingly small interval is excluded, the integration for e.g. x1<0 and x2<0 must be written
as

E1(ε)=

∫ −ε
−∞

∫ −ε
−∞

u21dx1dx2dx2 (2.7)

with 0<ε→0. In effect we may take the, in this case upper limit, of the integrations equal
to zero and proceed in this way in our attempt to demonstrate finite energy. Hence, we
may write the first term of (2.6) as

E1=

∫ 0

−∞

∫ 0

−∞
u21dx1dx2 (2.8)

Then, looking at equation, (2.1), noting xk<0 in the first integral of (2.6).

E1=

∫ 0

−∞

∫ 0

−∞
u21dx1dx2=

{
c
(−,−)
1

}2
e−2at

∫ 0

−∞

∫ 0

−∞
exp

[
2

2∑
k=1

αkxk

]
dx1dx2 (2.9)

Hence,

E1=
{
c
(−,−)
1

}2
e−2at

∫ 0

−∞
exp[2α1x1]dx1

∫ 0

−∞
exp[2α2x2]dx2 (2.10)

such that

E1=
{
c
(−,−)
1

}2
e−2at

∫ ∞
0

exp[−2α1x1]dx1

∫ ∞
0

exp[−2α2x2]dx2 (2.11)

which gives

E1=

(
1

4α1α2

){
c
(−,−)
1

}2
e−2at (2.12)

The last integration term for u1 in (2.6) is

E4=

∫ ∞
0

∫ ∞
0

u21dx1dx2 (2.13)

then, looking again at (2.1), noting xk>0 here,

E4=
{
c
(+,+)
1

}2
e−2at

∫ ∞
0

∫ ∞
0

exp

[
−2

2∑
k=1

αkxk

]
dx1dx2 (2.14)
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This then gives

E4=

(
1

4α1α2

){
c
(+,+)
1

}2
e−2at (2.15)

The second integral for u1 is

E2=

∫ 0

−∞

∫ ∞
0

u21dx1dx2 (2.16)

Hence, we may write

E2=
{
c
(−,+)
1

}2
e−2at

∫ 0

−∞
exp[2α1x1]dx1

∫ ∞
0

exp[−2α2x2]dx2 (2.17)

This implies

E2=

{
c
(−,+)
1

}2
e−2at

4α1α2
(2.18)

A similar form goes for E3 the third term in (2.6). So,

E3=

{
c
(+,−)
1

}2
e−2at

4α1α2
(2.19)

Because for u1 we have E=E1+E2+E3+E4 and for u2 forms similar to, (2.12), (2.15),
(2.18) and (2.19) can be derived, we may conclude that the energy is finite for this solution.
Hence, it is possible to have

∞>C(t)≥e−at
∑

ι1∈{−,+}

∑
ι2∈{−,+}

||c(ι1,ι2)||2

4α1α2

2.2 Terms in the Navier Stokes equation

In the analysis we assume xk /∈(−ε,ε) for k=1,2, with 0<ε→0.

2.2.1 divergence

From (2.1) observe that, if the dot denotes the time differentiation, then, u̇i =−aui.
Subsequently,

∂ui
∂xi

=c
ι(x)
i

∂

∂xi
exp

[
−at−

2∑
k=1

αk|xk|

]
(2.20)

Note that the ι(x) in c
ι(x)
i is an index, not a power. Then,

∂ui
∂xi

=−cι(x)i

(
αi

∂

∂xi
|xi|
)

exp

[
−at−

2∑
k=1

αk|xk|

]
(2.21)
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Furthermore, ∂
∂xi
|xi|= sgn(xi)+2xiδ(xi), with δ(xi) the Dirac delta function. The term,

xiδ(xi) can be ignored. We have, δ(xi) 6= 0 when xi= 0. The δ arises from ∂
∂xi

sgn(xi) =
δ(xi)+δ(−xi) and δ(−xi)=δ(xi) noting sgn(xi)=Θ(xi)−Θ(−xi) and Θ(xi)=1 for xi≥0
and Θ(xi)=0 for xi<0. From the equation (2.21) and xi 6=0, it follows that

2∑
i=1

∂ui
∂xi

=−

(
2∑
i=1

c
ι(x)
i αisgn(xi)

)
exp

[
−at−

2∑
k=1

αk|xk|

]
=0 (2.22)

The exponent term remains finite because a > 0, αk > 0 and |xk|> ε. From (2.3) the
divergence of u, vanishes, i.e. ∇·u=0, as required.

2.2.2 uj product differentiation & ∇2

In addition,

∂ui
∂xj

=−cι(x)i αjsgn(xj)exp

[
−at−

2∑
k=1

αk|xk|

]
(2.23)

Hence,

uj
∂ui
∂xj

=−cι(x)i c
ι(x)
j αjsgn(xj)exp

[
−2at−2

2∑
k=1

αk|xk|

]
(2.24)

Because,(2.3) we see that
2∑
j=1

uj
∂ui
∂xj

=0 (2.25)

From equation (2.23) it also follows that

∂2ui
∂x2j

=c
ι(x)
i {(αj)

2−2αjδ(xj)}exp

[
−at+

2∑
k=1

αk|xk|

]
(2.26)

with ||α||2=1. Note δ(xj)=0 for xj 6=0, then ∇2ui=ui. Hence, the Navier-Stokes equation
reduces for xk 6=0 with k=1,2, to (ν=1)

−(a+1)ui+
∂p

∂xi
=fi (2.27)

Suppose we select p=constant, for all x∈R2 and t≥0, then,

f
ι(x)
i =−(a+1)u

ι(x)
i .

The requirement of multiple differentiability and finite bounded fi is observed per quan-
drant, (R−\{0})×(R−\{0}), (R−\{0})×(R+\{0}), (R+\{0})×(R−\{0})and (R+\{0})×
(R+\{0}) and ι(x) associated to the quadrants.∣∣∣∣ ∂k∂xk1 ∂m

∂xm2

∂n

∂tn
f
ι(x)
i

∣∣∣∣≤Λ
ι(x)
i,k,m,n

(
1+||x||C

ι(x)
i,k,m,n

)−1
(2.28)
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and Λ
ι(x)
i,k,m,n∈R+\{0} and C

ι(x)
i,k,m,n∈R+\{0}. This is so because in each quadrant we may

write ui as an exponent that for xk and for t>0 vanishes.

2.3 Smoothness of ui arguments

The following sections will be devoted to the connection between the solutions of the four
ι(x) 6= 0 subspaces via xi in (−ε,ε) intervals. The left and right hand limit of ui at each
(x1,x2) must be equal in order to claim a smooth solution. For x1 = 0 and/or x2 = 0
this can be accomplished with the λ coefficients in the functions with one or both spatial
variables inside (−ε,ε). The λ coefficients disturb the function such that it is no longer
a solution of the NS. The 0<ε→ 0 warrants that this ’not valid’ interval is vanishingly
small. In physics, a real fluid will drastically change if the ε decreases beyond the size of
the atoms. Boundary values in xk=0, i.e. along the axes, are initial givens to the Navier
Stokes equation.

2.3.1 coefficients

In the first place let us look at the following limit, where x2 /∈(−ε,ε),

lim
0>x1→0−

x2 /∈(−ε,ε)

u
ι(x)
i (x1,x2,t)=c

(−,±)
i λ−i1w(0−,x2,t) (2.29)

with w(x1,x2,t) = exp[−at−α(−,±)
1 |x1|−α(−,±)

2 |x2|] . Note that, w(0−,x2,t) =w(0,x2,t).
The λ−i1 is included because for 0<x1→0, we have at a certain point H(ε,x1) = 1 when
0<x1→0 ’faster’ than 0<ε→0. The second limit we need to look at is

lim
0<x1→0+

x2 /∈(−ε,ε)

u
ι(x)
i (x1,x2,t)=c

(+,±)
i λ+i1w(0+,x2,t) (2.30)

Here, w(0+,x2,t)=w(0,x2,t). For x1=0 we have

u
ι(x)
i (0,x2,t)=c

(0,±)
i λ0i1w(0,x2,t) (2.31)

For continuous connection of the expressions in (2.29)-(2.31), we need to have λ−i1,λ
+
i1 and

λ0i1 such that

c
(−,±)
i λ−i1=c

(+,±)
i λ+i1=c

(0,±)
i λ0i1 (2.32)

For x1 /∈(−ε,ε) and 0 6=x2→0 an equation similar to (2.32) is

c
(±,−)
i λ−i2=c

(±,+)
i λ+i2=c

(±,0)
i λ0i2 (2.33)

The question is whether it is possible to have cι(x) vectors of constants. Let us define
µ±ij =λ±ij/λ

0
ij . Hence,

c
(−,±)
i µ−i1=c

(+,±)
i µ+i1=c

(0,±)
i (2.34)
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For x1 /∈(−ε,ε) and 0 6=x2→0 an equation similar to (2.32) is

c
(±,−)
i µ−i2=c

(±,+)
i µ+i2=c

(±,0)
i (2.35)

Subsequently, for the case where xk∈(−ε,ε), k=1,2, the continuous condition gives in the
µ form

c
(−,−)
i µ−i1µ

−
i2=c

(+,+)
i µ+i1µ

+
i2=c

(−,+)
i µ−i1µ

+
i2=c

(+,−)
i µ+i1µ

−
i2=c

(0,0)
i (2.36)

The second equation of (2.34) gives c
(+,+)
i µ+i1µ

+
i2 = c

(0,+)
i µ+i2 and c

(−,−)
i µ−i1µ

−
i2 = c

(0,−)
i µ−i2.

Looking at (2.36) we see that c
(0,−)
i µ−i2=c

(0,+)
i µ+i2 such that

λ+i2
λ−i2

=
c
(0,−)
i

c
(0,+)
i

(2.37)

Using equations (2.35) and(2.36) we see c
(+,+)
i µ+i1µ

+
i2 = c

(+,0)
i µ+i1 = c

(0,0)
i together with

c
(−,−)
i µ−i1µ

−
i2=c

(−,0)
i µ−i1=c

(0,0)
i . So,

λ+i1
λ−i1

=
c
(−,0)
i

c
(+,0)
i

(2.38)

From (2.36) it can be derived that

c
(−,+)
i λ−i1λ

+
i2=c

(+,−)
i λ+i1λ

−
i2=c

(0,0)
i λ0i1λ

0
i2

Hence, (
λ+i1
λ−i1

)(
λ−i2
λ+i2

)
=
c
(−,+)
i

c
(+,−)
i

(2.39)

In this previous equation (2.39), the λ’s can be eliminated with the results in (2.37) and
(2.38) to give

c
(−,+)
i

c
(+,−)
i

=
c
(−,0)
i c

(0,+)
i

c
(+,0)
i c

(0,−)
i

(2.40)

Moreover, from(2.36)

c
(−,−)
i

c
(+,+)
i

=
c
(−,0)
i c

(0,−)
i

c
(+,0)
i c

(0,+)
i

(2.41)

2.3.2 example

Suppose, α1 = 1
2 >0, α2 = 1

2

√
3>0. Hence, ||α||2 = 1. The next step is to see if c vectors

are possible such that (2.40) and (2.41) hold. Let us define the c coefficients with unequal
signs in the superscript. Hence,

c
(+,−)
1 =

√
3, c

(+,−)
2 =1

c
(−,+)
1 =−

√
3, c

(−,+)
2 =−1

(2.42)
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So,

α1c
(+,−)
1 −α2c

(+,−)
2 =

(
1

2
∗
√

3

)
−
(

1

2

√
3∗1

)
=0

and,

−α1c
(−,+)
1 +α2c

(−,+)
2 =−

(
−1

2
∗
√

3

)
+

(
−1

2

√
3∗1

)
=0.

For equal sign coefficients

c
(+,+)
1 =

√
3, c

(+,+)
2 =−1

c
(−,−)
1 =−

√
3, c

(−,−)
2 =1

(2.43)

Subsequently, we have to check consistency

α1c
(+,+)
1 +α2c

(+,+)
2 =

(
1

2
∗
√

3

)
+

(
−1

2

√
3∗1

)
=0

together with

−α1c
(−,−)
1 −α2c

(−,−)
2 =−

(
−1

2
∗
√

3

)
−
(

1

2

√
3∗1

)
=0

In order to match with (2.40) and (2.41), we could have c
(−,0)
i = c

(+,0)
i = c

(0,+)
i = 1 and

c
(0,−)
i =−1. Hence,

λ+i1
λ−i1

=1 and
λ+i2
λ−i2

=−1. We can conclude that the algebra for continuous

connection is possible. So the process 0<ε→0 holds consistent selections of coefficients.

3 Conclusion and discussion

In the previous section it was demonstrated that the Navier Stokes equation has a non-
trivial exact solution for the 4 quadrants of R2 and xk 6=0.

The solution refers to 4 quadrants. We have u(−,−), for, (R−\{0})×(R−\{0}), u(−,+)

for (R−\{0})×(R+\{0}), u(+,−) for (R+\{0})×(R−\{0}), and u(+,+) for (R+\{0})×(R+\{0}).
The algebraic construction of

∑2
i=1c

ι(x)
i αisgn(xi)=0 is basic to the solution. Use is made

of ∂
∂xi
|xi|= sgn(xi) thereby ignoring the xiδ(xi) term. This is allowed for |Xi|> 0. The

required zero time initial conditions can be found at the t= 0 point of the solution and
obey the requirements as well. For x1=0, x2 6=0 we have the vector u(0,sgn(x2))(0,x2,t) with
c(0,sgn(x2)). Similarly for x2=0, x1 6=0. In (x1,x2)=(0,0) we have u(0,0)(0,0,t).

The argumentation for smoothness related to x1 = 0 and/or x2 = 0 connecting the
separate solutions associated to the quadrants (R−\{0})×(R−\{0}), (R−\{0})×(R+\{0}),
(R+\{0})×(R−\{0})and (R+\{0})×(R+\{0}), is given in the paper. For sufficiently small
0< ε→ 0, the 4 quadrant NS solutions are connected and the algebra of coefficients is
demonstrated to be consistent. It is noted that for xk∈(−ε,ε)0<ε→0, the NS equation does
not apply. In a physical sense we hence may claim to have obtained an exact modified type
A solution. The NS breaks down physically in xk ∈ (−ε,ε)0<ε→0 because the absence of
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continuum mechanics beyond a certain length limit in a real fluid. Note in passing that the
origin of R2 is arbitrary. Moreover, select a pair (x1,x2), with, (∃ε>0)x1∈ (−ε,ε), |x1|>0,
then there always will be an 0<ε′<ε such that x1 /∈(−ε′,ε′) and (x1,x2) is included in the
solution space. In fact for all {(x1,x2)∈R2 : ι(xi) 6= 0,i= 1,2} an exact solution is found.

With the c
(0,±)
i ,c

(±,0)
i ,c

(0,0)
i we can identify initial boundary values of the problem. Hence,

we claim a type A solution with connection to boundary (initial) values in x1 =0 and/or
x2=0.

Finally let us inspect the modifications to the type A of [1] we employed here. In the
first place, we did not select fi=0 for i=1,2 such as was officially stated in type A of [1].
In the second place the paper shows the (2+1) version of the NS equation. Of course
one can correctly put in u3 = 0 and come with a formal n= 3, (3+1) from the previous
considerations in the paper. Finite energy remains valid, and u3 = 0 fits p= constant
and f3 =0. However, it is most likely that this is not what is intended in [1] when n=3
is insisted upon. In the third place the boundary value on the x1 and x2 axes and the
irreducible breakdown of NS in a vanishingly small section of R2 is also not present in the
type A of [1]. We could argue that, considering physical validity such as for finite energy,
cannot avoid the existence of atoms. In other words, if one claims finite energy, should one
also not allow irreducible lengths where the atoms prevent continuum mechanics? Despite
the modifications of the type A solution of [1], the paper is a step closer to this type A.
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