A simple exact solution to the Navier Stokes equation.

Han Geurdes *

C vd Lijnstraat 164 2593 NN Den Haag Netherlands

Abstract. In this paper it is demonstrated that the Navier Stokes equation has a smooth nontrivial exact solution. The solution is a heuristic and is the smoothly glueing together of $x_k \ge 0$ with $x_k < 0$ solutions.

Key Words: exact solution Navier Stokes equation AMS Subject Classifications: 35Q30, 76D05, 76M35

1 Introduction

In the present paper a simple solution to the Navier-Stokes equation is proposed that observes the requirements of vanishing divergence, finite energy and bounded absolute differentials of velocity and force [1]. The claim is that the pair of exact solutions (u,p) exists that observe the requirements. Here, the velocity vector, u, $\{u_i\}_{i=1}^3$, is matched with a simultaneous solution for pressure p. We have for the i-th element $u_i = u_i(x_1, x_2, x_3, t)$, (i = 1,2,3) of the velocity vector and $p = p(x_1, x_2, x_3, t)$ in the NS equation

$$\frac{\partial}{\partial t}u_i + \sum_{j=1}^3 u_j \frac{\partial}{\partial x_j} u_i - \nu \nabla^2 u_i + \frac{\partial}{\partial x_i} p = f_i$$
(1.1)

Following [1] it is allowed to have $\nu = 1$. The function f_i is external and we may assume to be able to select f_i , (i=1,2,3) such that requirement (5) of [1] also applies. This assumption will be checked. The solution, u_i in (1.1) must have finite energy [1]

$$\int_{\mathbb{R}^3} \sum_{i=1}^3 u_i^2(x_1, x_2, x_3, t) d^3x \le C(t)$$
(1.2)

and a vanishing divergence $\sum_{i=1}^{3} \frac{\partial}{\partial x_i} u_i = 0$. The challenge is to demonstrate that a non-trivial smooth exact solution (type A, [1]) is possible with the zero time initial conditions $u_{0,i}(x_1, x_2, x_3) = u_i(x_1, x_2, x_3, 0)$.

©200x Global-Science Press

^{*}Corresponding author. *Email address:* han.geurdes@gmail.com (J.F. Geurdes)

2 Solution heuristics

Let us define a heuristic solution for $u_i = u_i(x_1, x_2, x_3, t)$, with,

$$u_{i} = \begin{cases} c_{i} \exp\left[-at - \sum_{k=1}^{3} \alpha_{k} x_{k}\right], & \forall_{x_{k} > 0} \& k = 1, 2, 3\\ \\ c_{i} \exp\left[-at + \sum_{k=1}^{3} \alpha_{k} x_{k}\right], & \forall_{x_{k} < 0} \& k = 1, 2, 3 \end{cases}$$

$$(2.1)$$

and, a > 0 real and $\alpha_k > 0$ real, with $||\alpha|| = 1$. If $x_k = 0$ for k = 1, 2, 3, then $u_i = c_i \exp[-at]$. We may assume that the constants $\{c_i\}_{i=1}^3$ and $\{\alpha_i\}_{i=1}^3$ are such that $\sum_{j=1}^3 \alpha_j c_j = 0$.

2.1 Finite energy

The requirement of finite energy is given in equation (1.2). Per entry of the sum $||u||^2$ this can be written

$$\int_{-\infty}^{\infty} u_k^2 dx_k = \int_{-\infty}^{0} u_k^2 dx_k + \int_{0}^{\infty} u_k^2 dx_k$$
(2.2)

Looking at equation (2.1) we see

$$\int_{-\infty}^{\infty} u_k^2 dx_k = 2c_k^2 e^{-2at} \int_0^{\infty} e^{-2\alpha_k x_k} dx_k = \frac{c_k^2 e^{-2at}}{\alpha_k}$$
(2.3)

For finite $\alpha_k > 0, k = 1, 2, 3$, the requirement of finite energy in equation (1.2) is observed.

2.2 Solution for $x_k > 0, (k = 1, 2, 3)$

From (2.1) observe that, if the dot denotes the time differentiation, then, $\dot{u}_i = -au_i$. Subsequently

$$\frac{\partial u_i}{\partial x_i} = -c_i \alpha_i \exp\left[-at - \sum_{k=1}^3 \alpha_k x_k\right]$$
(2.4)

From this equation it follows that

$$\sum_{i=1}^{3} \frac{\partial u_i}{\partial x_i} = -\left(\sum_{i=1}^{3} c_i \alpha_i\right) \exp\left[-at - \sum_{k=1}^{3} \alpha_k x_k\right] = 0$$
(2.5)

Hence, the divergence of u, vanishes, i.e. $\nabla \cdot u = 0$, as required. In addition,

$$\frac{\partial u_i}{\partial x_j} = -c_i \alpha_j \exp\left[-at - \sum_{k=1}^3 \alpha_k x_k\right]$$
(2.6)

Hence,

$$u_j \frac{\partial u_i}{\partial x_j} = -c_i c_j \alpha_j \exp\left[-2at - 2\sum_{k=1}^3 \alpha_k x_k\right]$$
(2.7)

JF. Geurdes / J. Part. Diff. Eq., x (200x), pp. 1-4

Because, $\sum_{j=1}^{3} \alpha_j c_j = 0$, we see that

$$\sum_{j=1}^{3} u_j \frac{\partial u_i}{\partial x_j} = 0 \tag{2.8}$$

From equation (2.6) it also follows that $\nabla^2 u_i = u_i$, when it is noted that $||\alpha|| = 1$. Hence, the Navier-Stokes equation reduces for $x_k > 0$ with k = 1, 2, 3, to $(\nu = 1)$

$$-(a+1)u_i + \frac{\partial p}{\partial x_i} = f_i \tag{2.9}$$

Suppose we select $p = \sum_{k=1}^{3} \exp[-x_k] d_k$, with $\{d_k\}_{k=1}^{3}$ constants, then,

$$f_i = -d_i \exp[-x_i] - (a+1)u_i$$

and the requirement of multiple differentiability and finite bounded forms $|\frac{\partial^n f_i}{\partial x_j^n}|$ is observed for $x_k > 0, k = 1, 2, 3$.

2.3 Solution for $x_k < 0, (k = 1, 2, 3)$

The time differentiation does not change, $\dot{u}_i = -au_i$. Furthermore,

$$\frac{\partial u_i}{\partial x_i} = c_i \alpha_i \exp\left[-at + \sum_{k=1}^3 \alpha_k x_k\right]$$
(2.10)

similarly to the previous case this leads us to vanishing divergence for $x_k < 0$ (k=1,2,3) because $\sum_{j=1}^{3} \alpha_j c_j = 0$ remains unaffected for a change in the sign of the x_k . With a similar argument one can also arrive at

$$\sum_{j=1}^{3} u_j \frac{\partial u_i}{\partial x_j} = 0 \tag{2.11}$$

for $x_k < 0$ (k=1,2,3). In this domain of x we also have for u_i

$$\frac{\partial^2 u_i}{\partial x_j^2} = c_i \alpha_j^2 \exp\left[-at + \sum_{k=1}^3 \alpha_k x_k\right]$$
(2.12)

Because, $||\alpha|| = 1$, it also follows that $\nabla^2 u_i = u_i$ for $x_k < 0$ (k = 1, 2, 3). Hence,

$$-(a+1)u_i + \frac{\partial p}{\partial x_i} = f_i \tag{2.13}$$

in the case that $x_k < 0$ (k=1,2,3). Similarly we can have $p = \sum_{k=1}^{3} \exp[x_k] d_k$ and

$$f_i = d_i \exp[x_i] - (a+1)u_i$$

in $x_k < 0 \ (k=1,2,3)$.

3 Conclusion

In the previous section it was demonstrated that the Navier Stokes equation has a smooth type A, cite1, solution. Basically \mathbb{R}^3 is dissected in \mathbb{R}^3_+ and \mathbb{R}^3_- and, via x=(0,0,0) the two parts can be "glued" together resulting in a smooth solution. The algebraic construction of a vanishing sum $\sum_{j=1}^3 c_i \alpha_i$ with c_i from the entries u_i and α_i from the exponent in the entries, stands at the foundation of resolving the problem. Zero time initial conditions can be found at the t=0 point of the solution and obey the requirements as well.

References

- [1] C.L. Fefferman, Existence and smoothness of the Navier Stokes equation, (2000), Clay Institute.
- [2] A. Kozachok, Navier-Stokes Millennium Prize Problem., preprint and XII International Scientific Kravchuk Conference, (2008) 197-198.
- [3] C. Sun, and H. Gao, Hausdorff dimension of random attractor for stochastic Navier Stokes Voight equations, Dynamics of PDE, (2010) 7(4), 307-326.
- [4] C. Foias, R.M.S. Rosa, and R. Temam, Properties of the time-dependent statistical solutions of the three dimensional Navier Stokes equation, (2012), arXiv math.AP:1111.6257.
- [5] J.L. Guermond, Faedo-Galerkin weak solutions of the Navier Stokes equations with Dirichlet boundary conditions are suitable, J. Math. Pures. Appl. (2007), 88, 87-106.
- [6] N.S. Bakhvalov, Ya.M. Zhileikin, E.A. Zabolotskaya, Nonlinear theory of sound beams, AIP press (1987), 67-68.