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An exact radial smooth type A solution to the
Navier-Stokes equation.
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Abstract. In this paper it is demonstrated that the Navier Stokes equation has a
smooth type A nontrivial exact solution combining two radial solutions inside and out-
side the unit sphere.
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1 Introduction

One of the Clay institute millenium problems is the yes or no existence of an exact solution
of the Navier-Stokes equation for the velocity vector, with elements {ui}3i=1, matched with
the pressure p . We have ui =ui(x1,x2,x3,t),(i= 1,2,3) and p(x1,x2,x3,t) in the Navier
stokes equation

∂

∂t
ui+

3∑
j=1

uj
∂

∂xj
ui−ν∇2ui+

∂

∂xi
p=fi (1.1)

The function fi is considered externally given. Furthermore, the solution, ui in (1.1) must
have finite energy. We have ν>0 and∫

R3

3∑
i=1

u2i (x1,x2,x3,t)d
3x≤C(t) (1.2)

and a vanishing divergence
∑3

i=1
∂
∂xi
ui = 0. The idea is to demonstrate that an exact

solution is possible or not given the requirements and the zero time initial conditions
u0,i(x1,x2,x3)=ui(x1,x2,x3,0)
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2 Solution

Let us start to define xi=rβi for fixed βi,(i=1,2,3) and
∑3

i=1β
2
i =1. Here, r=

√
x21+x22+x23.

Subsequently, let us define a heuristic solution for ui=ui(x1,x2,x3,t), with,

ui={
ciexp[−at−b/r], 0<r≤1
(ci/r)exp[−at−br], r≥1

(2.1)

with, a > 0,b > 0 real and ci ∈R. The initial value function equals u0,i(x1,x2,x3) =
ui(x1,x2,x3,0). The function in equation (2.1) is ”sufficiently smooth” for r>0 and t>0.

2.1 Finite energy

In the inspection of the requirements, given in the introductory section, let us check (2.1)
for finite energy. We note that generally the solution must show,∫

R3

3∑
i=1

u2i (x1,x2,x3,t)d
3x≤C(t) (2.2)

The C(t) is finite. The angular terms of (2.1) give a finite contribution to the energy.
Below it will be demonstrated that the velocity in radial terms, including the r2 from the
Jacobian J=r2sinθ, gives finite energy too. Firstly,∫ ∞

0
r2u2i (r,t)dr≤Ci(t) (2.3)

From the definition in (2.1) the requirement is∫ 1

0
r2u2i (r,t)dr+

∫ ∞
1

r2u2i (r,t)dr≤Ci(t) (2.4)

Inside the unit sphere we see, for b>0 , r2≤1 together with − b
r ≤−b∫ 1

0
r2u2i (r,t)dr≤c2i exp[−2(at+b)] (2.5)

Secondly, for r≥1, including the r2 from the Jacobian∫ ∞
1

r2u2i (r,t)dr=c2i e
−2at

∫ ∞
1

e−2brdr≤c2i e−2at
e−2b

2b
(2.6)

Here, b>0 and finite real. Hence, from the previous equations (2.3)-(2.6) it follows that
Ci(t)≥max{1, 12b}c

2
i exp[−2(at+b)] can be finite. The finite energy requirement is correctly

observed for the solution in (2.1).
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2.2 Vanishing divergence of the solution

If we suppose 0<r≤1 then

3∑
i=1

∂ui
∂xi

=
3∑

i=1

e−atci
∂

∂xi
e−b/r =

be−at

r2

3∑
i=1

βici (2.7)

Hence, from the assumption
3∑

i=1

βici=0 (2.8)

it follows that ∇·u= 0. Suppose then that, r≥1. The requirement for r≥1, is to have,∑3
i=1

∂
∂xi
ui=0 so

∂ui
∂xi

=cie
−at
{
−xi
r3
e−br− bxi

r2
e−br

}
(2.9)

In this equation the product ciβi is identified and note,
∑3

i=1ciβi=0. Hence, the required
vanishing divergence also applies to the r≥1 case.

2.3 Navier-Stokes for 0<r≤1

In the first part of the solution we have ∂
∂tui=−aui. Subsequently, from ∂

∂xj
ui=

bxj

r3
ui

3∑
j=1

uj
∂

∂xj
ui=

3∑
j=1

uj
bxj
r3
ui (2.10)

In (2.10) we may note the co-occurrence of cj and xj =βj r, so from (2.8) it follows that
for 0<r≤1 we have

∑3
j=1uj

∂
∂xj

ui=0. In addition, the algebraic consequence of (2.1) for

the Navier - Stokes is
∂2

∂x2j
ui=b

{
1

r3
−

3r2x2j
r7

}
ui+

b2x2j
r6

ui (2.11)

The previous algebraic excercise gives the following

∇2ui=
b2

r4
ui (2.12)

Looking back at equation (1.1) gives for ∂
∂xj

p

−aui−ν
b2

r4
ui+

∂

∂xi
p=fi (2.13)

When p=p(r,t) it is ∂
∂xi
p=βip

′(r,t) with the prime indicating the r derivation. Hence,

3∑
i=1

(
−aβiui−ν

b2

r4
βiui+β

2
i p
′(r,t)

)
=

3∑
i=1

βifi (2.14)
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From this equation the βiui in the sum warrants the vanishing of the first two terms in
(2.14) based on the vanishing divergence (2.8). Hence, because

∑3
i=1β

2
i =1, we see

p(r,t)=p(0,t)+
3∑

i=1

βi

∫ r

0
fi(r1,t)dr1 (2.15)

Given 0<r≤1 it then follows that (2.1) contains the (u1,u2,u3)
T solution associated with

p=p(r,t) in (2.15). The choice of fi in (2.15) is still ”free”.

2.4 Navier-Stokes for r≥1

Similarly to the previous algebraic construction we may observe that ∂
∂tui =−aui. We

note that
∂ui
∂xj

=cie
−at
{
−xj
r3
e−br− bxj

r2
e−br

}
(2.16)

In the previous equation we see that βj =xj/r occurs. Together with cj from the pre-
multiplication with uj the product cjβj occurs. We have

∑3
j=1cjβj =0. Hence the term∑3

j=1uj
∂

∂xj
ui=0. Subsequently we note that in the radial terms of ui,

∇2=
1

r2
∂

∂r

(
r2
∂

∂r

)
This leads us to ∇2ui=b2ui. Hence,

−(a+νb2)ui+
∂

∂xi
p=fi (2.17)

If fi conveniently can be selected for r≥1 such that

fi=gi−(a+νb2)ui (2.18)

then p(x1,x2,x3,t)=(x·g) for g a real constant vector in r≥1.

3 Requirements for fi

In the previous two sections two reduced forms for p(x1,x2,x3,t) were obtained. In (2.15)
the selected fi is ”free”. So, regarding the requirement that fi must be multiply differen-
tiable, let us take

fi=gi−(a+νb2)ui (3.1)

for r>0 and the ui come from (2.1). Suppose, for r≥1 we have ϕ(r)= 1
re
−br. Then

∂ϕ(r)

∂r
=−

(
1

r
+b

)
ϕ(r) (3.2)
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for b>0 finite. Then noting radial dependence only in r≥1, we may repeatedly apply ∂
∂r

to (3.2) and be convinced that | ∂n

∂xn
j
fi|, with, n=0,1,2,... and i,j=1,2,3, will remain finite

for R3 where r≥1. For 0<r≤1, we have for ψ(r)=e−b/r the limit behavior limr→0ψ(r)=0.
The multiple application of ∂

∂r to ψ(r) provides powers of 1/r. Note that, ∂
∂rψ(r)= b

r2
ψ(r).

Hence, for ∂n

∂rnψ(r), with n finite but perhaps large, we will have (1/r)mψ(r) forms and
for r→ 0 see a vanishing of differentials. Hence, for n= 1,2,.....N with N finite integer
possibly large, | ∂n

∂xn
j
fi| will be finite for R3. If R3\(0,0,0) may be taken for physical space

then | ∂n

∂xn
j
fi| will be finit for n= 1,2,3.... It appears that the | ∂n

∂xn
j
fi| requirement is also

fullfilled by the heuristic in (2.1). Because,
∑3

j=1cjβj =0, from (3.1) and (2.15) it follows

for 0<r≤1 that p(r,t)=p(0,t)+r
∑3

j=1βjgj . Note xj =rβj , while, we already established,

for r≥1, p(x1,x2,x3,t)=
∑3

j=1xjgj =(x·g) .

4 Conclusion

The claim is that in the previous sections an exact smooth nontrivial type A solution to
the Navier-Stokes equation is presented. Perhaps that the exclusively radial dependence
will prove to be an unphysical form for solution. However, as far as the author can see this
is not a reason to reject the mathematics. The author would also like to refer to another
approach of getting exact nontrivial solutions of the Navier Stokes equation in [2].
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