An exact radial smooth type A solution to the Navier-Stokes equation.

Han Geurdes *
C vd Lijnstraat 1642593 NN Den Haag Netherlands

Abstract

In this paper it is demonstrated that the Navier Stokes equation has a smooth type A nontrivial exact solution combining two radial solutions inside and outside the unit sphere.

Key Words: exact solution Navier Stokes equation
AMS Subject Classifications: 35Q30, 76D05, 76M35
Chinese Library Classifications: O175.27

1 Introduction

One of the Clay institute millenium problems is the yes or no existence of an exact solution of the Navier-Stokes equation for the velocity vector, with elements $\left\{u_{i}\right\}_{i=1}^{3}$, matched with the pressure p. We have $u_{i}=u_{i}\left(x_{1}, x_{2}, x_{3}, t\right),(i=1,2,3)$ and $p\left(x_{1}, x_{2}, x_{3}, t\right)$ in the Navier stokes equation

$$
\begin{equation*}
\frac{\partial}{\partial t} u_{i}+\sum_{j=1}^{3} u_{j} \frac{\partial}{\partial x_{j}} u_{i}-\nu \nabla^{2} u_{i}+\frac{\partial}{\partial x_{i}} p=f_{i} \tag{1.1}
\end{equation*}
$$

The function f_{i} is considered externally given. Furthermore, the solution, u_{i} in (1.1) must have finite energy. We have $\nu>0$ and

$$
\begin{equation*}
\int_{\mathbf{R}^{3}} \sum_{i=1}^{3} u_{i}^{2}\left(x_{1}, x_{2}, x_{3}, t\right) d^{3} x \leq C(t) \tag{1.2}
\end{equation*}
$$

and a vanishing divergence $\sum_{i=1}^{3} \frac{\partial}{\partial x_{i}} u_{i}=0$. The idea is to demonstrate that an exact solution is possible or not given the requirements and the zero time initial conditions $u_{0, i}\left(x_{1}, x_{2}, x_{3}\right)=u_{i}\left(x_{1}, x_{2}, x_{3}, 0\right)$
*Corresponding author. Email address: han.geurdes@gmail.com (J.F. Geurdes)

2 Solution

Let us start to define $x_{i}=r \beta_{i}$ for fixed $\beta_{i},(i=1,2,3)$ and $\sum_{i=1}^{3} \beta_{i}^{2}=1$. Here, $r=\sqrt{x_{1}^{2}+x_{2}^{2}+x_{3}^{2}}$. Subsequently, let us define a heuristic solution for $u_{i}=u_{i}\left(x_{1}, x_{2}, x_{3}, t\right)$, with,

$$
u_{i}=\left\{\begin{array}{l}
c_{i} \exp [-a t-b / r], \quad 0<r \leq 1 \tag{2.1}\\
\left(c_{i} / r\right) \exp [-a t-b r], \quad r \geq 1
\end{array}\right.
$$

with, $a>0, b>0$ real and $c_{i} \in \mathbf{R}$. The initial value function equals $u_{0, i}\left(x_{1}, x_{2}, x_{3}\right)=$ $u_{i}\left(x_{1}, x_{2}, x_{3}, 0\right)$. The function in equation (2.1) is "sufficiently smooth" for $r>0$ and $t>0$.

2.1 Finite energy

In the inspection of the requirements, given in the introductory section, let us check (2.1) for finite energy. We note that generally the solution must show,

$$
\begin{equation*}
\int_{\mathbf{R}^{3}} \sum_{i=1}^{3} u_{i}^{2}\left(x_{1}, x_{2}, x_{3}, t\right) d^{3} x \leq C(t) \tag{2.2}
\end{equation*}
$$

The $C(t)$ is finite. The angular terms of (2.1) give a finite contribution to the energy. Below it will be demonstrated that the velocity in radial terms, including the r^{2} from the Jacobian $J=r^{2} \sin \theta$, gives finite energy too. Firstly,

$$
\begin{equation*}
\int_{0}^{\infty} r^{2} u_{i}^{2}(r, t) d r \leq C_{i}(t) \tag{2.3}
\end{equation*}
$$

From the definition in (2.1) the requirement is

$$
\begin{equation*}
\int_{0}^{1} r^{2} u_{i}^{2}(r, t) d r+\int_{1}^{\infty} r^{2} u_{i}^{2}(r, t) d r \leq C_{i}(t) \tag{2.4}
\end{equation*}
$$

Inside the unit sphere we see, for $b>0, r^{2} \leq 1$ together with $-\frac{b}{r} \leq-b$

$$
\begin{equation*}
\int_{0}^{1} r^{2} u_{i}^{2}(r, t) d r \leq c_{i}^{2} \exp [-2(a t+b)] \tag{2.5}
\end{equation*}
$$

Secondly, for $r \geq 1$, including the r^{2} from the Jacobian

$$
\begin{equation*}
\int_{1}^{\infty} r^{2} u_{i}^{2}(r, t) d r=c_{i}^{2} e^{-2 a t} \int_{1}^{\infty} e^{-2 b r} d r \leq c_{i}^{2} e^{-2 a t} \frac{e^{-2 b}}{2 b} \tag{2.6}
\end{equation*}
$$

Here, $b>0$ and finite real. Hence, from the previous equations (2.3)-(2.6) it follows that $C_{i}(t) \geq \max \left\{1, \frac{1}{2 b}\right\} c_{i}^{2} \exp [-2(a t+b)]$ can be finite. The finite energy requirement is correctly observed for the solution in (2.1).

2.2 Vanishing divergence of the solution

If we suppose $0<r \leq 1$ then

$$
\begin{equation*}
\sum_{i=1}^{3} \frac{\partial u_{i}}{\partial x_{i}}=\sum_{i=1}^{3} e^{-a t} c_{i} \frac{\partial}{\partial x_{i}} e^{-b / r}=\frac{b e^{-a t}}{r^{2}} \sum_{i=1}^{3} \beta_{i} c_{i} \tag{2.7}
\end{equation*}
$$

Hence, from the assumption

$$
\begin{equation*}
\sum_{i=1}^{3} \beta_{i} c_{i}=0 \tag{2.8}
\end{equation*}
$$

it follows that $\nabla \cdot u=0$. Suppose then that, $r \geq 1$. The requirement for $r \geq 1$, is to have, $\sum_{i=1}^{3} \frac{\partial}{\partial x_{i}} u_{i}=0$ so

$$
\begin{equation*}
\frac{\partial u_{i}}{\partial x_{i}}=c_{i} e^{-a t}\left\{-\frac{x_{i}}{r^{3}} e^{-b r}-\frac{b x_{i}}{r^{2}} e^{-b r}\right\} \tag{2.9}
\end{equation*}
$$

In this equation the product $c_{i} \beta_{i}$ is identified and note, $\sum_{i=1}^{3} c_{i} \beta_{i}=0$. Hence, the required vanishing divergence also applies to the $r \geq 1$ case.

2.3 Navier-Stokes for $0<r \leq 1$

In the first part of the solution we have $\frac{\partial}{\partial t} u_{i}=-a u_{i}$. Subsequently, from $\frac{\partial}{\partial x_{j}} u_{i}=\frac{b x_{j}}{r^{3}} u_{i}$

$$
\begin{equation*}
\sum_{j=1}^{3} u_{j} \frac{\partial}{\partial x_{j}} u_{i}=\sum_{j=1}^{3} u_{j} \frac{b x_{j}}{r^{3}} u_{i} \tag{2.10}
\end{equation*}
$$

In (2.10) we may note the co-occurrence of c_{j} and $x_{j}=\beta_{j} r$, so from (2.8) it follows that for $0<r \leq 1$ we have $\sum_{j=1}^{3} u_{j} \frac{\partial}{\partial x_{j}} u_{i}=0$. In addition, the algebraic consequence of (2.1) for the Navier - Stokes is

$$
\begin{equation*}
\frac{\partial^{2}}{\partial x_{j}^{2}} u_{i}=b\left\{\frac{1}{r^{3}}-\frac{3 r^{2} x_{j}^{2}}{r^{7}}\right\} u_{i}+\frac{b^{2} x_{j}^{2}}{r^{6}} u_{i} \tag{2.11}
\end{equation*}
$$

The previous algebraic excercise gives the following

$$
\begin{equation*}
\nabla^{2} u_{i}=\frac{b^{2}}{r^{4}} u_{i} \tag{2.12}
\end{equation*}
$$

Looking back at equation (1.1) gives for $\frac{\partial}{\partial x_{j}} p$

$$
\begin{equation*}
-a u_{i}-\nu \frac{b^{2}}{r^{4}} u_{i}+\frac{\partial}{\partial x_{i}} p=f_{i} \tag{2.13}
\end{equation*}
$$

When $p=p(r, t)$ it is $\frac{\partial}{\partial x_{i}} p=\beta_{i} p^{\prime}(r, t)$ with the prime indicating the r derivation. Hence,

$$
\begin{equation*}
\sum_{i=1}^{3}\left(-a \beta_{i} u_{i}-\nu \frac{b^{2}}{r^{4}} \beta_{i} u_{i}+\beta_{i}^{2} p^{\prime}(r, t)\right)=\sum_{i=1}^{3} \beta_{i} f_{i} \tag{2.14}
\end{equation*}
$$

From this equation the $\beta_{i} u_{i}$ in the sum warrants the vanishing of the first two terms in (2.14) based on the vanishing divergence (2.8). Hence, because $\sum_{i=1}^{3} \beta_{i}^{2}=1$, we see

$$
\begin{equation*}
p(r, t)=p(0, t)+\sum_{i=1}^{3} \beta_{i} \int_{0}^{r} f_{i}\left(r_{1}, t\right) d r_{1} \tag{2.15}
\end{equation*}
$$

Given $0<r \leq 1$ it then follows that (2.1) contains the $\left(u_{1}, u_{2}, u_{3}\right)^{T}$ solution associated with $p=p(r, t)$ in (2.15). The choice of f_{i} in (2.15) is still "free".

2.4 Navier-Stokes for $r \geq 1$

Similarly to the previous algebraic construction we may observe that $\frac{\partial}{\partial t} u_{i}=-a u_{i}$. We note that

$$
\begin{equation*}
\frac{\partial u_{i}}{\partial x_{j}}=c_{i} e^{-a t}\left\{-\frac{x_{j}}{r^{3}} e^{-b r}-\frac{b x_{j}}{r^{2}} e^{-b r}\right\} \tag{2.16}
\end{equation*}
$$

In the previous equation we see that $\beta_{j}=x_{j} / r$ occurs. Together with c_{j} from the premultiplication with u_{j} the product $c_{j} \beta_{j}$ occurs. We have $\sum_{j=1}^{3} c_{j} \beta_{j}=0$. Hence the term $\sum_{j=1}^{3} u_{j} \frac{\partial}{\partial x_{j}} u_{i}=0$. Subsequently we note that in the radial terms of u_{i},

$$
\nabla^{2}=\frac{1}{r^{2}} \frac{\partial}{\partial r}\left(r^{2} \frac{\partial}{\partial r}\right)
$$

This leads us to $\nabla^{2} u_{i}=b^{2} u_{i}$. Hence,

$$
\begin{equation*}
-\left(a+\nu b^{2}\right) u_{i}+\frac{\partial}{\partial x_{i}} p=f_{i} \tag{2.17}
\end{equation*}
$$

If f_{i} conveniently can be selected for $r \geq 1$ such that

$$
\begin{equation*}
f_{i}=g_{i}-\left(a+\nu b^{2}\right) u_{i} \tag{2.18}
\end{equation*}
$$

then $p\left(x_{1}, x_{2}, x_{3}, t\right)=(x \cdot g)$ for g a real constant vector in $r \geq 1$.

3 Requirements for f_{i}

In the previous two sections two reduced forms for $p\left(x_{1}, x_{2}, x_{3}, t\right)$ were obtained. In (2.15) the selected f_{i} is "free". So, regarding the requirement that f_{i} must be multiply differentiable, let us take

$$
\begin{equation*}
f_{i}=g_{i}-\left(a+\nu b^{2}\right) u_{i} \tag{3.1}
\end{equation*}
$$

for $r>0$ and the u_{i} come from (2.1). Suppose, for $r \geq 1$ we have $\varphi(r)=\frac{1}{r} e^{-b r}$. Then

$$
\begin{equation*}
\frac{\partial \varphi(r)}{\partial r}=-\left(\frac{1}{r}+b\right) \varphi(r) \tag{3.2}
\end{equation*}
$$

for $b>0$ finite. Then noting radial dependence only in $r \geq 1$, we may repeatedly apply $\frac{\partial}{\partial r}$ to (3.2) and be convinced that $\left|\frac{\partial^{n}}{\partial x_{j}^{n}} f_{i}\right|$, with, $n=0,1,2, \ldots$ and $i, j=1,2,3$, will remain finite for \mathbb{R}^{3} where $r \geq 1$. For $0<r \leq 1$, we have for $\psi(r)=e^{-b / r}$ the limit behavior $\lim _{r \rightarrow 0} \psi(r)=0$. The multiple application of $\frac{\partial}{\partial r}$ to $\psi(r)$ provides powers of $1 / r$. Note that, $\frac{\partial}{\partial r} \psi(r)=\frac{b}{r^{2}} \psi(r)$. Hence, for $\frac{\partial^{n}}{\partial r^{n}} \psi(r)$, with n finite but perhaps large, we will have $(1 / r)^{m} \psi(r)$ forms and for $r \rightarrow 0$ see a vanishing of differentials. Hence, for $n=1,2, \ldots . N$ with N finite integer possibly large, $\left|\frac{\partial^{n}}{\partial x_{j}^{n}} f_{i}\right|$ will be finite for \mathbb{R}^{3}. If $\mathbb{R}^{3} \backslash(0,0,0)$ may be taken for physical space then $\left|\frac{\partial^{n}}{\partial x_{j}^{n}} f_{i}\right|$ will be finit for $n=1,2,3 \ldots$. It appears that the $\left|\frac{\partial^{n}}{\partial x_{j}^{n}} f_{i}\right|$ requirement is also fullfilled by the heuristic in (2.1). Because, $\sum_{j=1}^{3} c_{j} \beta_{j}=0$, from (3.1) and (2.15) it follows for $0<r \leq 1$ that $p(r, t)=p(0, t)+r \sum_{j=1}^{3} \beta_{j} g_{j}$. Note $x_{j}=r \beta_{j}$, while, we already established, for $r \geq 1, p\left(x_{1}, x_{2}, x_{3}, t\right)=\sum_{j=1}^{3} x_{j} g_{j}=(x \cdot g)$.

4 Conclusion

The claim is that in the previous sections an exact smooth nontrivial type A solution to the Navier-Stokes equation is presented. Perhaps that the exclusively radial dependence will prove to be an unphysical form for solution. However, as far as the author can see this is not a reason to reject the mathematics. The author would also like to refer to another approach of getting exact nontrivial solutions of the Navier Stokes equation in [2].

References

[1] C.L. Fefferman, Existence and smoothness of the Navier Stokes equation, Clay Institute 2000.
[2] A. Kozachok, Navier-Stokes Millennium Prize Problem., preprint and XII International Scientific Kravchuk Conference,(2008) 197-198.

