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Zero and negative energy dissipation at information-theoretic 
erasure 
 

Laszlo Bela Kish, Claes-Göran Granqvist, Sunil P. Khatri, Ferdinand Peper 
 
Abstract We introduce information-theoretic erasure 
based on Shannon’s binary channel formula. It is 
pointed out that this type of erasure is a natural 
energy-dissipation-free way in which information is 
lost in double-potential-well memories, and it may be 
the reason why the brain can forget things 
effortlessly. We also demonstrate a new non-volatile, 
charge-based memory scheme wherein the erasure 
can be associated with even negative energy 
dissipation; this implies that the memory’s 
environment is cooled during information erasure and 
contradicts Landauer’s principle of erasure 
dissipation. On the other hand, writing new 
information into the memory always requires positive 
energy dissipation. 
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1 Introduction: Classical information erasure 

In computer memories, the erasure of a bit means 
resetting its value to zero. This type of erasure, which 
we call classical erasure, implies a bit-value change if 

the bit value before the erasure was 1. In accordance 
with Brillouin’s negentropy equation [1–3], any bit-
value change gives a minimum dissipation of energy 
Ed by  

 
Ed ≥ kT ln

1
pe

⎛
⎝⎜

⎞
⎠⎟

  ,            (1) 

where  pe  is the error probability of the operation 

 pe < 0.5( ) , k is Boltzmann’s constant and T is 

absolute temperature. In the case of pe = 0.5 , which 

is the limit for the completely inefficient operation, 
the relevant kT ln(2)  dissipation is the famous 
Szilard–Brillouin–Landauer limit [1-3]. 

In this paper, we introduce “information-
theoretic erasure”, ITE, for which the elimination of 
the information is guaranteed by information theory. 
We show that ITE does not cause energy dissipation, 
and it can even produce negative energy dissipation 
by cooling the environment. However, the writing of 
new information into the memory always requires 
positive energy dissipation. 

 

2 Information-theoretic erasure 

In accordance with Shannon’s formula for binary 
channels, the information content (entropy) I1  of a 
single bit with error probability pe is given by 

 I1 = 1+ pe log2 pe + (1− pe )log2(1− pe )            (2) 

as illustrated in Fig. 1. The case of  pe = 0  yields an 

 I1 = 1 bit , while  pe = 0.5  corresponds to a random 

coin with an  I1 = 0 bit .  

Motivated by these facts, we consider the 
memory an information channel between the Writer 
and Reader of information and introduce ITE as 
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follows: Suppose that the bit-operations are error-free 
and that the bit-value before the erasure is 1. Then the 
probability p(1)  that the bit has the value 1 is 

p(1) = 1  .             (3) 

Similarly, if the bit value before the erasure is 0, then 
the probability is 

p(0) = 1  .             (4) 

We define information-theoretic erasure so that, 
after the erasure, these probabilities become 

 p(1) = 0.5    and    p(0) = 0.5  ,           (5) 

which guarantees total elimination of information 
from the memory. 

 

 

Fig. 1 Information content of a bit versus error according to 
Eq. (2). 

 

3 Physical realizations 

In this section, we show two physical realizations: 
one is passive erasure (thermalization) in memories 
with double-potential wells and the other is active 
erasure in capacitor-based memories, where even 
negative energy dissipation is feasible. 

 

3.1 Passive erasure in symmetric potential wells 

The most natural process that leads to information-
theoretic erasure is thermalization in a symmetric 
double-well potential system, such as in a magnetic 
memory; see Fig. 2. When such a system is kept 
untouched for a number of relaxation events, the 

exponential nature of relaxation will cause ITE so 
that 

 p(1)→ 0.5    and    p(0)→ 0.5            (6) 

occur without energy dissipation because equilibrium 
thermal fluctuations are utilized for erasure. Of 
course, such a process may take thousands of years, 
but the existence of this phenomenon proves that no 
energy dissipation is required for information erasure. 
Similar arguments may explain how the brain can 
easily forget neutral information, while the creation 
of new information requires efforts. 

 

 
 

Fig. 2 Passive information-theoretic erasure in a zero-
energy-dissipation fashion by waiting for thermalization at 
ambient temperature, or, in a dissipative way, by heating 
the memory cell to rapidly thermalize the bit. 

  

Of course, it is possible to heat the memory cell 
so that kT approaches the barrier height E (see Fig. 2) 
sufficiently to cause rapid ITE, but this approach 
involves energy dissipation and is uninteresting from 
a fundamental scientific point of view. 

 

3.2 Charge-based bit with information-theoretic 
erasure 

We now consider a capacitor-type information cell. 
Figs. 3–6 show various aspects of its operation. 
Suppose that positive voltage is interpreted as bit 1 
and negative voltage as bit 0.  

Fig. 3 shows the writing process. An external 
resistor and voltmeter are connected to the cell, and 
thus a parallel RC circuit is present. As a 
consequence of the measurement and decision 
process described below, the writing process is 
strongly dissipative. The resistor will drive a Johnson 
noise current through the capacitor thereby yielding a 
noise voltage on the capacitor; see Fig. 4. The 
voltmeter monitors this voltage, and the resistor is 
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disconnected when the required voltage is reached. 
The root-mean-square value of the Johnson noise 
voltage on a parallel RC circuit is [3] 

σ = kT /C  ,            (7) 

and the corresponding mean energy in the capacitor 
is kT/2. Two cases should be considered: 

(i) If, during the writing process, we choose +σ  for 
bit value 1 and −σ  for bit value 0 then the 
information-containing capacitor will possess thermal 
equilibrium energy in accordance with Boltzmann’s 
equipartition theorem for a single thermal degree of 
freedom.  

(ii) On the other hand, if we use the voltages ±u0  for 

the 1 and 0 bits, respectively, where u0 <σ , then the 

energy in the capacitor will be less than the thermal 
equilibrium level kT/2. 

 

 
 

Fig. 3 Writing of information into a capacitor. Johnson 
noise in the resistor drives the current, and the connection 
to the memory is terminated when the voltage level 
corresponding to the information to be stored is reached. 

 

 
 

Fig. 4 Johnson noise voltage in a capacitor. The voltage 
levels ±u0 pertain to written bit values; see the main text for 
details. 

Fig. 5 shows the corresponding read-out process. 
It entails measuring the voltage and deciding if it is 
positive (bit value 1) or negative (bit value 0).  

 

 

 

Fig. 5 Reading out information from a capacitor. 

 

Fig. 6 illustrates the erasure process. The 
capacitor is reconnected to the resistor, but no voltage 
measurement or decision is necessary. The capacitor 
will be thermalized within a few events with 
relaxation time τ = RC , and the conditions of 
relations (6) are reached. The energy dissipation 
during erasure is determined by our former choice: 

(iii) Using writing condition (i), the mean energy of 
the capacitor will not change during erasure, and 
hence the energy dissipation is zero. 

(iv) However using writing condition (ii), the mean 
energy of the capacitor is increased during 
information erasure so that energy dissipation is 
negative, and consequently the resistor and the 
environment of the memory cell are cooled in 
accordance with 

 
Ecool =

1
2
Cu0

2 − kT( ) < 0   .           (8) 

 

 

 

Fig. 6 Information erasure by thermalization of a capacitor. 
For small values of u0, energy is extracted from the resistor 
so that its environment is cooled, thus indicating negative 
energy dissipation. 
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4  Conclusion and remarks 

Our present study showed schemes and realizations 
for information erasure, for which energy dissipation 
can be zero or negative. We trust that these results 
lend further credence to objections [4–10] against the 
Landauer theorem [11,12], which claims that 
information erasure is a dissipative process whereas 
information writing is not.  

Following general practices [11,12] for analysis 
of information writing and erasure, we neglected the 
energy dissipation of the external control step for 
connecting the resistor to the capacitor in the case of 
erasure. Including the energy for this control [2,3] 
would imply positive net dissipation in the 
environment. However, the same happens also during 
information writing, and consequently information 
writing still comes out as much more dissipative than 
erasure. 

However, it is still possible to avoid dissipation 
due to connecting issues, and thus maintain zero and 
negative energy dissipation, by keeping the resistor 
permanently connected to the capacitor. Then the 
passive erasure with zero energy dissipation will take 
place as in the double-well potential case (see Sec. 
3.1) with the following modifications: at condition (i) 
the energy dissipation will be exactly zero, see (iii); 
and at condition (ii) the energy dissipation due to 
erasure will be strictly negative, see (iv). 
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