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Abstract 

By starting from a quaternionic separable Hilbert space as a base model the paper uses the 

capabilities and the restrictions of this model in order to investigate the origins of the electric 

charge and the electric fields. Also other discrete properties such as color charge and spin are 

considered. 

The paper exploits all known aspects of the quaternionic number system and it uses 

quaternionic differential calculus rather than Maxwell based differential calculus. 

The paper presents fields as mostly continuous quaternionic functions. The electric field is 

compared with another basic field that acts as a background embedding continuum. 

 

 

If the paper introduces new science, then it has fulfilled its purpose. 
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1 Introduction 
Indications suggest that electrical charges are properties of space. The major indication is the 

fact that quaternionic number systems exist in several versions that differ in their symmetry 

properties. These symmetry properties are related to the way that these versions are ordered.  

As a consequence, it makes sense to introduce the notion of types of spaces where each type has 

its own symmetry flavor. An important category of these spaces are symmetry centers. 

Symmetry centers float on a covering background space that has its own symmetry flavor. 

Within a separable Hilbert space such types of spaces can coexist as eigenspaces of 

corresponding types of quaternionic operators. That is why we will use an infinite dimensional 

separable quaternionic Hilbert space ℌ as our base model.  

Each infinite dimensional separable quaternionic Hilbert space owns a companion Gelfand triple 

ℋ, which is a non-separable Hilbert space. In the separable Hilbert space ℌ the eigenspaces of 

operators are countable. In the Gelfand triple ℋ the eigenspaces of operators can be continuums. 

In the separable Hilbert space we introduce the concept of well-ordered normal operators. We 

will define a well-ordered reference operator ℛ whose eigenspace acts as a model-wide 

parameter space. The well-ordered reference operator that provides the countable parameter 

space in the separable Hilbert space ℌ owns a companion reference operator ℜ in the Gelfand 

triple ℋ that provides a continuum eigenspace.  

Fields will appear as continuum eigenspaces of normal operators that reside in the Gelfand 

triple. We will show that fields can be defined as quaternionic functions that use the eigenspace 

of the reference operator ℜ as their parameter space. 

Symmetry centers reside in the separable Hilbert space and are maintained in finite dimensional 

subspaces. Symmetry centers exist in a small number of types that differ in the corresponding 
symmetry flavor. Corresponding normal operators 𝕾𝑥 map these subspaces onto themselves. 

Superscript  𝑥 refers to the symmetry flavor of the symmetry center. The center location of the 

symmetry center corresponds to the value of a quaternionic mapping function of its 

quaternionic location in the parameter space that is defined via the well-ordered reference 

operator ℛand its companion ℜ. That value is a location in a background continuum ℭ. 
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2 Quaternions 
Quaternions can be interpreted as combinations of a real scalar and a three dimensional real 

vector. The combination supports numeric arithmetic. The vector part introduces a non-

commutative multiplication. 

We will indicate the real part of quaternion 𝑎 by subscript 𝑎0 and the vector part will be put in 

bold font face 𝒂. 

𝑎 = 𝑎0 + 𝒂 

𝑎∗ = 𝑎0 − 𝒂 

𝑎∗ is the quaternionic conjugate of 𝑎.  

 

The sum is defined by: 

𝑐 = 𝑐0 + 𝒄 = 𝑎 + 𝑏 

𝑐0 = 𝑎0 + 𝑏0 

𝒄 = 𝒂 + 𝒃 

 

The product rule is defined by: 

𝑐 = 𝑎 𝑏 = (𝑎0 + 𝒂)(𝑏0 + 𝒃) = 𝑎0 𝑏0 − 〈𝒂, 𝒃〉 + 𝑎0𝒃 + 𝑏0𝒂 ± 𝒂 × 𝒃 

𝑐0 = 𝑎0 𝑏0 − 〈𝒂, 𝒃〉 

𝒄 = 𝑎0𝒃 + 𝑏0𝒂 ± 𝒂 × 𝒃 

The ± sign signalizes the choice between right handed and left handed external vector product. 

This choice indicates that quaternionic number systems exist in multiple versions. Due to the 

four dimensions of quaternions will quaternionic number system exist in sixteen different 

symmetry flavors.  

 

The norm of a quaternion is defined by: 

|𝑎| = √𝑎𝑎∗ = √𝑎0𝑎0 + 〈𝒂, 𝒂〉 

  

(1) 

(2) 

(3) 

(4) 

(5) 

(6) 

(7) 

(8) 

(9) 
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3 Quaternionic Hilbert spaces 
Separable Hilbert spaces are linear vector spaces in which an inner product is defined. This 

inner product relates each pair of Hilbert vectors. The value of that inner product must be a 

member of a division ring. Suitable division rings are real numbers, complex numbers and 

quaternions. This paper uses quaternionic Hilbert spaces. 

〈𝑥|𝑦〉 = 〈𝑦|𝑥〉∗ 

〈𝑥 + 𝑦|𝑧〉 = 〈𝑥|𝑧〉 + 〈𝑦|𝑧〉 

〈𝛼𝑥|𝑦〉 = 𝛼〈𝑥|𝑦〉 

〈𝑥| is a bra vector. |𝑦〉 is a ket vector.  𝛼 is a quaternion. 

This paper considers Hilbert spaces as no more and no less than structured storage media for 

dynamic geometrical data that have an Euclidean signature. Quaternions are ideally suited for 

the storage of such data. Quaternionic Hilbert spaces are described in “Quaternions and 

quaternionic Hilbert spaces” [8]. 

The operators of separable Hilbert spaces have countable eigenspaces. Each infinite dimensional 

separable Hilbert space owns a Gelfand triple. The Gelfand triple embeds this separable Hilbert 

space and offers as an extra service operators that feature continuums as eigenspaces. In the 

corresponding subspaces the definition of dimension loses its sense. 

3.1 Representing continuums and continuous functions 
Operators map Hilbert vectors onto other Hilbert vectors. Paul Dirac introduced the bra-ket 

notation that eases the formulation of Hilbert space habits [5]. Via the inner product the 

operator 𝑇 may be linked to an adjoint operator 𝑇†.  

〈𝑇𝑥|𝑦〉 ≡ 〈𝑥|𝑇†𝑦〉 

〈𝑇𝑥|𝑦〉 = 〈𝑦|𝑇𝑥〉∗ = 〈𝑇†𝑦|𝑥〉∗ 

A linear quaternionic operator 𝑇, which owns an adjoint operator 𝑇† is normal when 

𝑇† 𝑇 =  𝑇 𝑇†  

𝑇0 = (𝑇 + 𝑇†)/2 is a self adjoint operator and 𝑻 = (𝑇 − 𝑇†)/2 is an imaginary normal operator. 

Self adjoint operators are also called Hermitian operators. Imaginary normal operators are also 

called anti-Hermitian operators. 

By using bra-ket notation, operators that reside in the Hilbert space and correspond to 

continuous functions, can easily be defined by starting from an orthogonal base of vectors. This 
works both in separable Hilbert spaces as well as in non-separable Hilbert spaces.  

Let {𝑞𝑖} be the set of rational quaternions in a selected quaternionic number system and let 
{|𝑞𝑖〉} be the set of corresponding base vectors. They are eigenvectors of a normal operator ℛ =
|𝑞𝑖〉𝑞𝑖〈𝑞𝑖|. Here we enumerate the base vectors with index 𝑖. 

ℛ = |𝑞𝑖〉𝑞𝑖〈𝑞𝑖|  

ℛ is the configuration parameter space operator.  

ℛ0 = (ℛ + ℛ†)/2 is a self-adjoint operator. Its eigenvalues can be used to order the 

eigenvectors. The ordered eigenvalues can be interpreted as progression values. 

(1) 

(2) 

(3) 

(1) 

(2) 

(3) 

(4) 
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𝓡 = (ℛ −  ℛ†)/2 is an imaginary operator. Its eigenvalues can be used to order the 

eigenvectors. The eigenvalues can be interpreted as spatial values and can be ordered in several 

ways. 

 

Let 𝑓(𝑞) be a quaternionic function. 

𝑓 = |𝑞𝑖〉𝑓(𝑞𝑖)〈𝑞𝑖|  

𝑓 defines a new operator that is based on function 𝑓(𝑞).  

Operator 𝑓 has discrete quaternionic eigenvalues. 

 

In a non-separable Hilbert space, such as the Gelfand triple, the continuous function ℱ(𝑞) can be 

used to define an operator, which features a continuum eigenspace. 

 

ℱ = |𝑞〉ℱ(𝑞)〈𝑞|  

 

Via the continuous quaternionic function ℱ(𝑞), the operator ℱ defines a curved continuum ℱ. 

This operator and the continuum reside in the Gelfand triple, which is a non-separable Hilbert 

space. 

 

ℜ = |𝑞〉𝑞〈𝑞| 

 

The function ℱ(𝑞) uses the eigenspace of the reference operator ℜ as a flat parameter space that 

is spanned by a quaternionic number system {𝑞}. The continuum ℱ represents the target space 

of function ℱ(𝑞).  

Here we no longer enumerate the base vectors with index 𝑖. We just use the name of the 

parameter. If no conflict arises, then we will use the same symbol for the defining function, the 

defined operator and the continuum that is represented by the eigenspace. 

In general the dimension of a subspace loses its significance in the non-separable Hilbert space.  

The continuums that appear as eigenspaces in the non-separable Hilbert space ℋ can be 

considered as quaternionic functions that also have a representation in the corresponding 

infinite dimensional separable Hilbert space ℌ. Both representations use a flat parameter space 

ℜ or ℛ that is spanned by quaternions. 

The parameter space operators will be treated as reference operators. The rational quaternionic 

eigenvalues {𝑞𝑖} that occur as eigenvalues of the reference operator ℛ in the separable Hilbert 

space map onto the rational quaternionic eigenvalues {𝑞𝑖} that occur as subset of the 

quaternionic eigenvalues {𝑞} of the reference operator ℜ in the Gelfand triple. In this way the 

reference operator ℛ in the infinite dimensional separable Hilbert space ℌ relates directly to the 

reference operator ℜ, which resides in the Gelfand triple ℋ. 

Embedding occurs in a continuum that is defined by a quaternionic function ℭ(𝑞). 

(5) 

(6) 

(7) 
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4 Well-ordered reference operators 
The eigenvalues of a normal operator 𝑇 that resides in a separable Hilbert space can be ordered 

with respect to the real part of the eigenvalues. Operator 𝑇0 = (𝑇 +  𝑇†)/2 is the corresponding 

self-adjoint operator. If each real value occurs only once, then the operator 𝑇 and its adjoint 𝑇† 
can be well-ordered. The imaginary part of the eigenvalues can then still be ordered in different 

ways. Operator 𝑻 = (𝑇 −  𝑇†)/2 is the corresponding anti-Hermitian operator. For example it 

can be ordered according to Cartesian coordinates or according to spherical coordinates. Also 

each of these orderings can be done in different ways. 

The property of being well-ordered is restricted to operators with countable eigenspaces. 

 Progression ordering 
A single self-adjoint reference operator that offers an infinite set of rational eigenvalues can 

synchronize a category of well-ordered normal operators. The ordered eigenvalues of the self-
adjoint operator act as progression values. In this way the infinite dimensional separable Hilbert 

space owns a model wide clock. With this choice the separable Hilbert space steps with model-

wide progression steps. 

A selected well-ordered normal reference operator that resides in an infinite dimensional 

separable quaternionic Hilbert space is used in the specification of the companion quaternionic 

Gelfand triple. In that way progression steps in the separable Hilbert space and flows in the 

companion Gelfand triple. Both reference operators will be used to provide parameter spaces. 

The countable set of progression values of the Hermitian part ℛ0 = (ℛ +  ℛ†)/2 of the well-

ordered reference operator ℛ can be used to enumerate other ordered sequences. 

 Cartesian ordering 
The whole separable Hilbert space can at the same time be spanned by the eigenvectors of a 

reference operator whose eigenvalues are well-ordered with respect to the real parts of the 

eigenvalues, while the imaginary parts are ordered with respect to a Cartesian coordinate 

system.  

For Cartesian ordering, having an origin is not necessary. In affine Cartesian ordering only the 

direction of the ordering is relevant. Affine Cartesian ordering exists in eight symmetry flavors. 

Cartesian ordering supposes a unique orientation of the Cartesian axes. 

The well-ordered reference operator ℛ is supposed to feature affine Cartesian ordering.  

 Spherical ordering 
Spherical ordering starts with a selected Cartesian set of coordinates. In this case the origin is at 

a unique center location. Spherical ordering can be done by first ordering the azimuth and after 

that the polar angle is ordered. Finally, the radial distance from the center can be ordered. 

Another procedure is to start with the polar angle, then the azimuth and finally the radius. Such, 

spherical orderings may create a symmetry center. Since the ordering starts with a selected 

Cartesian coordinate system, spherical ordering will go together with affine Cartesian ordering.  

Each symmetry center is described by the eigenspaces of an anti-Hermitian operator 𝕾𝑥 that 

map a finite dimensional subspace of Hilbert space ℌ onto itself. Superscript  𝑥 refers to the 

ordering type of the symmetry center. 𝕾𝑥 has no Hermitian part. Only through its ordering it can 

synchronize with progression steps. 
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5 Symmetry flavor 
Quaternions can be mapped to Cartesian coordinates along the orthonormal base vectors 1, 𝒊, 𝒋 

and 𝒌; with 𝒊𝒋 = 𝒌  

Due to the four dimensions of quaternions, quaternionic number systems exist in 16 well-

ordered versions {𝑞𝑥} that differ only in their discrete Cartesian symmetry set. The quaternionic 
number systems {𝑞𝑥} correspond to 16 versions {𝑞𝑖

𝑥} of rational quaternions.  

Half of these versions are right handed and the other half are left handed. Thus the handedness 

is influenced by the symmetry flavor. 

The superscript  𝑥 can be  ⓪,  ①,  ②,  ③,  ④,  ⑤,  ⑥,  ⑦,  ⑧,  ⑨,  ⑩,  ⑪,  ⑫,  ⑬,  ⑭, or ⑮.  

This superscript represents the symmetry flavor of the indexed subject. 

A reference operator ℛ⓪ = |𝑞𝑖
⓪〉 𝑞𝑖

⓪ 〈𝑞𝑖
⓪

| in separable Hilbert space ℌ maps into a reference 

operator ℜ⓪ = |𝑞⓪〉𝑞⓪〈𝑞⓪| in Gelfand triple ℋ. 

The symmetry flavor of the symmetry center 𝕾𝑥, which is maintained by operator 

𝕾𝑥 = |𝖘𝑖
𝑥〉𝖘𝑖

𝑥〈𝖘𝑖
𝑥| is determined by its Cartesian ordering and then compared with the reference 

symmetry flavor, which is the symmetry flavor of the reference operator ℛ⓪.  

Now the symmetry related charge follows in three steps. 

1. Count the difference of the spatial part of the symmetry flavor of 𝕾𝑥 with the spatial part 

of the symmetry flavor of reference operator ℛ⓪. 

2. If the handedness changes from R to L, then switch the sign of the count. 

3. Switch the sign of the result for anti-particles. 

 

Symmetry flavor 
Ordering 
x   y   z    τ 

Supe
r 
script 

Handedness 
Right/Left 

Color 
charge 

Charge * 3 Symmetry center type 
Names are taken from the 
standard model 

 ⓪ R N +0 neutrino 

 ① L R −1 down quark 

 ② L G −1 down quark 

 ③ L B −1 down quark 

 ④ R B +2 up quark 

 ⑤ R G +2 up quark 

 ⑥ R R +2 up quark 

 ⑦ L N −3 electron 

 ⑧ R N +3 positron 

 ⑨ L R −2 anti-up quark 

 ⑩ L G −2 anti-up quark 

 ⑪ L B −2 anti-up quark 

 ⑫ R B +1 anti-down quark 

 ⑬ R R +1 anti-down quark 

 ⑭ R G +1 anti-down quark 

 ⑮ L N −0 anti-neutrino 
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Per definition, members of coherent sets {𝑎𝑖
𝑥} of quaternions all feature the same symmetry 

flavor that is marked by superscript  𝑥. 

Also continuous functions and continuums feature a symmetry flavor. Continuous quaternionic 

functions 𝜓𝑥(𝑞𝑥) and corresponding continuums do not switch to other symmetry flavors  𝑦.  

The reference symmetry flavor 𝜓𝑦(𝑞𝑦) of a continuous function 𝜓𝑥(𝑞𝑦) is the symmetry flavor 

of the parameter space {𝑞𝑦}.  

If the continuous quaternionic function describes the density distribution of a set {𝑎𝑖
𝑥} of 

discrete objects 𝑎𝑖
𝑥, then this set must be attributed with the same symmetry flavor  𝑥. The real 

part describes the location density distribution and the imaginary part describes the 

displacement density distribution. 

6 Symmetry centers 
Each symmetry center corresponds to a dedicated subspace of the infinite dimensional 
separable Hilbert space. That subspace is spanned by the eigenvectors {|𝖘𝑖

𝑥〉} of a corresponding 

symmetry center reference operator 𝕾𝑥. Here the superscript  𝑥 refers to the type of the 

symmetry center. 

Symmetry flavors relate to affine Cartesian ordering. Each symmetry center will own a single 

symmetry flavor. The symmetry flavor of the symmetry center relates to the Cartesian 

coordinate system that acts as start for the spherical ordering. The combination of affine 

Cartesian ordering and spherical ordering puts corresponding axes in parallel. Spherical 

ordering relates to spherical coordinates. Starting spherical ordering with the azimuth 

corresponds to half integer spin. The azimuth runs from 0 to π radians. Starting spherical 

ordering with the polar angle corresponds to integer spin. The polar angle runs from 0 to 2π 

radians. These selections add to the properties of the symmetry centers.  

The model suggests that symmetry centers are maintained by special mechanisms that ensure 

the spatial and dynamical coherence of the coupling of the symmetry center to the background 

space. Several types of such mechanisms exist. Each symmetry center type corresponds to a 

mechanism type. These mechanisms are not part of the separable Hilbert space. 

Symmetry centers are resources where the coherence ensuring mechanisms can take dynamic 

locations that are stored in quaternionic eigenvalues of dedicated operators, in order to generate 

coherent location swarms that represent point-like objects. The type of the point-like object 

corresponds to the type of the controlling mechanism.  

The basic symmetry center is independent of progression. Once created, a symmetry center 

persists until it is annihilated. Any progression dependence that concerns a symmetry center is 

handled by a type dependent mechanism. The type depends on the symmetry flavor and on the 

spin. Further, it depends on other characteristics that will not be treated in this paper, but that 

will appear as properties of the point-like object that will be supported by the controlling 

mechanism. An example is the generation flavor of the point-like particle. Symmetry flavor and 

spin can be related to ordering of the symmetry center. Generation flavor is a property of the 

controlling mechanism. 

Symmetry centers have a well-defined spatial origin. That origin floats on the eigenspace of the 

reference operator ℛ⓪. Symmetry centers are formed by a dedicated category of compact anti-
Hermitian operators.  
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An infinite dimensional separable Hilbert space can house a set of subspaces that each represent 

such a symmetry center. Each of these subspaces then corresponds to a dedicated spherically 

ordered reference operator 𝕾𝑥. The superscript  𝑥 distinguishes between symmetry flavors and 

other properties, such as spin and generation flavor. Symmetry centers correspond to dedicated 

subspaces that are spanned by the eigenvectors {|𝖘𝑖
𝑥〉} of the symmetry center reference 

operator 𝕾𝑥. 

 

𝕾𝑥 = |𝖘𝑖
𝑥〉𝖘𝑖

𝑥〈𝖘𝑖
𝑥| 

 

𝕾𝑥†
=  −𝕾𝑥 

 

Only the location of the center inside the eigenspace of reference operator ℛ⓪ is a progression 
dependent value. This value is not eigenvalue of operator 𝕾𝑥. The location of the center is 

eigenvalue of a central governance operator ℊ. 

Symmetry centers feature a symmetry related charge that depends on the difference between the 

symmetry flavor of the symmetry center and the symmetry flavor of the reference operator ℛ⓪, 

which equals the symmetry flavor of the embedding continuum ℭ. The symmetry related 

charges raise a symmetry related field 𝜑. The symmetry related field influences the position of 

the map of the symmetry center into the field that represents the embedding continuum ℭ. Both 

fields use the eigenspace of the reference operator ℜ as their parameter space. 

The closed subspaces that correspond to a symmetry center have a fixed finite dimension. This 

dimension is the same for all types of symmetry centers. This ensures that symmetry related 

charges all appear in the same short list. 

Symmetry centers cover a subspace that has a fixed finite dimension. This dimension is the same 

for all types of symmetry centers. 

6.1 Synchronization via coupling 
The basic symmetry center is independent of progression. Any progression dependence that 

concerns a symmetry center is handled by a type dependent mechanisms that controls the usage 

of the symmetry center. The type dependent mechanism acts in a progression dependent 

fashion. On certain progression steps the mechanism selects a location from the symmetry 

center that will be used to embed a point-like object in the background space. 

The background space, is maintained by reference operator ℛ. Embedding the symmetry center 

into the eigenspace of this operator ensures the synchronization of the symmetry center with 

the background space. That is why the embedding occurs at instances that are selected from the 

progression values, which are offered as eigenvalues by ℛ0 = (ℛ +  ℛ†)/2. However, the 

controlling mechanism does not embed the center location, but instead the mechanism uses a 

stochastic process in order to select a location somewhere inside the symmetry center. Further, 
not all eigenvalues {𝖘𝑖

𝑥} of 𝕾𝑥 will be used in the embedding process. A special operator ℴ that is 

dedicated to the type of the embedded point-like object describes the selections in its 

eigenvalues. 

The embedded location represents a point-like object that resides in the symmetry center. That 

embedding location is mapped onto the embedding continuum, which resides as the eigenspace 

(1) 

(2) 
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of operator ℭ in the Gelfand triple ℋ. This continuum is defined as a function ℭ(𝑞) over 

parameter space ℜ. 

The locations in the symmetry center that for the purpose of the embedding are selected, form a 

coherent location swarm and a hopping path that characterize the dynamic behavior of the 

point-like object. The embedding process deforms continuum ℭ.This embedding process is 

treated in more detail in [14]. 
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7 Central governance 
The eigenvalues of the central governance operator ℊ administer the relative locations of the 

symmetry centers with respect to the reference operator ℛ⓪ which resides in the separable 

Hilbert space ℌ and maps to the reference continuum ℜ⓪ in the Gelfand triple ℋ. A further map 

projects onto the embedding continuum ℭ.The central governance operator ℊ resides in the 

separable Hilbert space ℌ. 

The reference continuum ℜ⓪ acts as a parameter space of the function 𝜑(𝑞) that specifies the 

symmetry related field 𝜑, which is eigenspace of the corresponding operator.  

Each symmetry center owns a symmetry related charge, which is located at its geometric center. 

Each symmetry related charge owns an individual field that contributes to the overall symmetry 

related field 𝜑. 

The reference continuum ℜ⓪ also acts as a parameter space of the function ℭ(𝑞) that specifies 

the embedding continuum ℭ, which is eigenspace of the corresponding operator ℭ. 

A fundamental difference exists between field 𝜑 and field ℭ. However both fields obey the same 

quaternionic differential calculus. The difference originates from the artifacts that cause the 

discontinuities of the fields. In the symmetry related field 𝜑 these artifacts are the symmetry 

related charges. In the embedding continuum ℭ these artifacts are the embedding events. What 

happens in not too violent conditions will be described by the wave equation of the 

corresponding field and will be affected by the local and current conditions. Since the 

elementary point-like objects reside inside their individual symmetry center, the embedding 

continuum will also be affected by what happens to the symmetry centers. 

Double differentiation of field 𝜑 shows the relation between 𝜑 and ℊ. 

 

∇∗∇ 𝜑 = ℊ 

 

  

(1) 
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8 Embedding symmetry centers 
Together with the locations of the symmetry centers, the well-ordered eigenspace of a 

quaternionic normal operator ℛ⓪ that resides in an infinite dimensional separable Hilbert 

space acts as a reference operator from which the parameter space ℜ⓪ of the embedding 

continuum ℭ will be derived. This parameter space resides as continuum eigenspace of a 

corresponding operator ℜ⓪ in the Gelfand triple. This parameter space also acts as parameter 

space of a symmetry related field 𝜑. It is sparsely covered by locations of symmetry centers. The 

central governance operator ℊ administers these locations. The symmetry centers contain 

symmetry related charges. The locations of these charges are influenced by the symmetry 

related field 𝜑.  

9 Field dynamics 
In the model that we selected, the dynamics of the fields are determined by quaternionic 

differential calculus. Apart from the eigenspaces of reference operators and the symmetry 

centers we encountered two fields that are defined by quaternionic functions and corresponding 

operators. One is the symmetry related field 𝜑 and the other is the embedding field ℭ.  

𝜑 determines the dynamics of the symmetry centers. ℭ gets deformed by the recurrent 

embedding of point-like elementary particles that each reside on an individual symmetry center.  

Apart from the way that they are affected by point-like artifacts that disrupt the continuity of the 

field, both fields obey, under not too violent conditions, the same differential calculus.  

Under rather general conditions the change of a quaternionic function 𝑓(𝑞) can be described by: 

 

𝑑𝑓(𝑞) = 𝑐𝜏 𝑑𝑞𝜏 + 𝑐𝑥 𝑑𝑞𝑥 + 𝑐𝑦 𝑑𝑞𝑦 + 𝑐𝑧 𝑑𝑞𝑧 = 𝑑𝑓𝜈(𝑞)𝒆𝜈 = ∑
𝜕𝑓

𝜕𝑞𝜇
𝑑𝑞𝜇

𝜇=0…3

= 𝑐𝜇(𝑞)𝑑𝑞𝜇 

 

Here the coefficients 𝑐𝜇(𝑞) are full quaternionic functions. 𝑑𝑞𝜇 are real numbers. 

Under more moderate conditions the function behaves more linearly.  

 

𝑑𝑓(𝑞) = 𝑐0
𝜏 𝑑𝑞𝜏 + 𝑐0

𝑥 𝒊 𝑑𝑞𝑥 + 𝑐0
𝑦

 𝒋 𝑑𝑞𝑦 + 𝑐0
𝑧 𝒌 𝑑𝑞𝑧 = 𝑐0

𝜇(𝑞)𝑑𝑞𝜇 

 

Here the coefficients 𝑐0
𝜇(𝑞) are real functions.  

Thus, in a rather flat continuum we can use the quaternionic nabla ∇. 

 

∇= {
𝜕

𝜕𝜏
,

𝜕

𝜕𝑥
,

𝜕

𝜕𝑦
,

𝜕

𝜕𝑧
} =  

𝜕

𝜕𝜏
+ 𝒊

𝜕

𝜕𝑥
+ 𝒋

𝜕

𝜕𝑦
+ 𝒌

𝜕

𝜕𝑧
= 𝛻0 +  𝜵 

𝛷 = 𝛷0 + 𝜱 = 𝛻𝜓 = (𝛻0 +  𝜵)(𝜓0 + 𝝍) 

 

(1) 

(2) 

(3) 

(4) 
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𝛷0 = 𝛻0𝜓0 − ⟨𝜵, 𝝍⟩ 

 

𝜱 = 𝛻0𝝍 + 𝜵𝜓0 ± 𝜵 × 𝝍 

 

Double differentiation will then result in the quaternionic wave equation: 

 

𝜌 = 𝜌0 + 𝝆 = 𝛻∗𝛻𝜓 = (𝛻0 −  𝜵)(𝛻0 +  𝜵)(𝜓0 + 𝝍) = {𝛻0𝛻0 +  〈𝜵, 𝜵〉}𝜓 

=
𝜕2𝜓

𝜕𝜏2
+

𝜕2𝜓

𝜕𝑥2
+

𝜕2𝜓

𝜕𝑦2
+

𝜕2𝜓

𝜕𝑧2
 

 

Here 𝜌 is a quaternionic function that describes the density distribution of a set of point-like 
artifacts that disrupt the continuity of function 𝜓(𝑞). However, in case of a single artifact, the 

function 𝜌 will describe the corresponding Green’s function. 

Function 𝜓(𝑞) describes the mostly continuous field 𝜓. 

The wave equation can be split into two continuity equations: 

𝛷 = 𝛻𝜓 

 

𝜌 = 𝛻∗𝛷 

 

If 𝜓 and Φ are normalizable functions and ‖𝜓‖ = 1, then with real 𝑚 and ‖𝜁‖ = 1 

 

𝛻𝜓 = 𝑚 𝜁 

 

9.1 Fourier equivalents 
In this quaternionic differential calculus, differentiation is implemented as multiplication. 

This is revealed by the Fourier equivalents of the equations. 

𝛷̃ = 𝛷̃0 + 𝜱̃ = 𝑝 𝜓̃ = (𝑝0 +  𝒑)(𝜓̃0 + 𝝍̃) 

 

𝛷̃0 = 𝑝0𝜓̃0 − ⟨𝒑, 𝝍̃⟩ 

 

𝜱̃ = 𝑝0𝝍̃ + 𝒑𝜓̃0 ± 𝒑 × 𝝍̃ 

 

The equivalent of the quaternionic wave equation is: 

(5) 

(6) 

(7) 

(8) 

(9) 

(10) 

(1) 

(2) 

(3) 
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𝜌̃ = 𝜌̃0 + 𝝆̃ = 𝑝∗𝑝 𝜓̃ = {𝑝0𝑝0 +  〈𝒑, 𝒑〉}𝜓̃ 

 

The continuity equations result in: 

𝛷̃ = 𝑝𝜓̃ 

 

𝜌̃ = 𝑝∗𝛷̃ 

  

(4) 

(5) 

(6) 
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10 Conclusion 
By introducing a background space and a set of symmetry center types, this paper exploits the 

way in which quaternionic number systems can be ordered. This distinguishes between 

Cartesian ordering and spherical ordering and it reveals that these ordered versions of the 

number systems exist in several distinct symmetry flavors. The background space needs no 

origin and as a consequence it does not feature spin. The coupling of symmetry centers onto the 

background space offers the possibility to define an algorithm that computes corresponding 

symmetry related charges that are in agreement with the short list of electric charges and other 

discrete properties of elementary particles. For example, also the diversity of color charge and 

spin can be explained in this way. This indicates that elementary particles inherit these 

properties from the space in which they reside. 

An important role is played by controlling mechanisms that are not part of the Hilbert spaces, 

but that make use of the Hilbert spaces as a structured storage medium. The elementary 

particles inherit their properties both from the Hilbert space and from these controlling 

mechanisms. 

This paper considers the embedding field because it uses the same parameter space ℜ as the 

symmetry related field does. The embedding field obeys the same quaternionic differential 

calculus as the symmetry related field, but the triggers that cause discontinuities differ 

fundamentally between these fields. That is why these fields behave differently. Still both fields 

determine the kinematics of elementary particles. This is treated in more detail in [14]. 
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paper. G. Birkhoff and J. von Neumann, The Logic of Quantum Mechanics, Annals of Mathematics, 
Vol. 37, pp. 823–843 

[2] The lattices of quantum logic and classical logic are treated in detail in: 

http://vixra.org/abs/1411.0175 . 

[3] The Hilbert space was discovered in the first decades of the 20-th century by David Hilbert 

and others. http://en.wikipedia.org/wiki/Hilbert_space. 

[4] In the second half of the twentieth century Constantin Piron and Maria Pia Solèr proved that 

the number systems that a separable Hilbert space can use must be division rings. See: “Division 

algebras and quantum theory” by John Baez. http://arxiv.org/abs/1101.5690 and 

http://www.ams.org/journals/bull/1995-32-02/S0273-0979-1995-00593-8/  

[5] Paul Dirac introduced the bra-ket notation, which popularized the usage of Hilbert spaces. 

Dirac also introduced its delta function, which is a generalized function. Spaces of generalized 

functions offered continuums before the Gelfand triple arrived. 

[6] In the sixties Israel Gelfand and Georgyi Shilov introduced a way to model continuums via an 

extension of the separable Hilbert space into a so called Gelfand triple. The Gelfand triple often 

gets the name rigged Hilbert space. It is a non-separable Hilbert space. 

http://www.encyclopediaofmath.org/index.php?title=Rigged_Hilbert_space . 

[7] Potential of a Gaussian charge density: 

http://en.wikipedia.org/wiki/Poisson%27s_equation#Potential_of_a_Gaussian_charge_density . 

http://vixra.org/abs/1411.0175
http://en.wikipedia.org/wiki/Hilbert_space
http://arxiv.org/abs/1101.5690
http://www.ams.org/journals/bull/1995-32-02/S0273-0979-1995-00593-8/
http://www.encyclopediaofmath.org/index.php?title=Rigged_Hilbert_space
http://en.wikipedia.org/wiki/Poisson%27s_equation#Potential_of_a_Gaussian_charge_density


17 
 

[8] Quaternionic function theory and quaternionic Hilbert spaces are treated in: 

http://vixra.org/abs/1411.0178 . 

[9] In 1843 quaternions were discovered by Rowan Hamilton. 

http://en.wikipedia.org/wiki/History_of_quaternions  
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