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Abstract 

As natural outcome of dimensional regularization, the minimal fractal manifold (MFM) describes a space-time 

continuum equipped with arbitrarily small deviations from four-dimensions 4 ,( D    << 1). This brief note 

suggests that the inner connection between MFM and local conformal field theory points to a surprising duality 

between MFM and classical gravitation. 
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1. Emergence of weak gravitational fields from local conformal transformations 

Consider a flat four-dimensional space-time with constant metric having the standard signature

( 1,..., 1)diag    . A differentiable map ' ( )x x  is called a conformal transformation if the 

metric tensor changes as  
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in which 
2( )x  represents the scale factor and Einstein’s summation convention is implied. The 

scale factor is strictly unitary on flat space-times (
2( ) 1x  ), a condition aligning with the group 

of Lorentz transformations.  If the underlying space-time background deviates from flatness and 

is characterized by a metric ( )g x  ≠  , the condition for local conformal transformation (1) 

reads 
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 2( ) ( ) ( ) ( )g x g x x g x     (2) 

where 2( )x  ≠ 1  in general . A nearly conformal transformation (NCT) is defined by a scale 

factor departing slightly and continuously from unity, that is, 

                                            ( ) 1 ( )x x    ≈ ( )xe   ,  ( )x  << 1                                             (3) 

It is apparent from (3) that the net effect of the NCT is to induce a slight curvature on the flat 

space-time background which, when interpreted in classical terms, generates a nearly-vanishing 

Newtonian-like gravitation. For example, consider the well-known expression of the Newtonian 

potential created by a point-source of mass m  at a radial distance R , 
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where G  ~ 2

PlM  in natural units. In light of (3), if m  << 2

PlM R , the second term in (5) may be 

simply regarded as a nearly vanishing  deviation from local conformal symmetry responsible for 

the onset of ultra-weak gravitational fields.  

2. Emergence of the MFM from dimensional regularization  

We now switch gear and bring into the discussion quantum field theory (QFT) and its 

regularization procedure. As it is known, the technique of regularization assumes that divergent 



 

3 
 

quantities of perturbative QFT depend on a continuous regulator  . The regulator can be either a 

large cutoff UV    or an infinitesimal deviation of the underlying space-time dimension, that 

is,    << 1 , D D   . A divergent quantity O  becomes a function of the regulator,

( )O O  , asymptotically approaching the original quantity in the limit 
1 1 0UV     or 

0   . As a result, in close proximity to this limit, the quantity of interest is no longer 

singular ( ( )O   <  ). To fix ideas, consider the one-loop momentum integral of the massive 4  

theory defined on a two-dimensional Euclidean space-time ( 2D  ),  
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The integral is logarithmically divergent at large momenta 
2( )p   for p   . One way to 

regularize (6) is to upper-bound it with a sharp mass cutoff UV  >> m  as in 
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The Pauli-Villars regularization method is based on subtracting from (6) the same integral 

having a larger momentum scale   >> m , that is,     
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By contrast, dimensional regularization posits that the space-time dimension can be analytically 

continued to D  , which turns (6) into 
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where   is an arbitrary mass scale that preserves the dimensionless nature of DR . It can be 

shown that (9) amounts to   
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in which   stands for the Euler constant. Comparing (8) to (10) and further taking   to be on 

the same order of magnitude with m  ( ( )O m  , leads to the identification   
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Relation (11) describes the connection between the dimensional parameter   and the mass 

scaling 
2

2m


. If   is assumed to be vanishingly small (  << 1) and ( )m O   << ( )UVO   , 

(11) may be reasonably approximated as 
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3. Duality of MFM and classical gravitation 

Consider next the Newtonian potential created by an object of mass m  at a distance on the order 

of its Compton wavelength c , that is, R  ~ c  ~ 
1m
. We obtain   

   



 

5 
 

 00g = 21 2( )
Pl

m

M
  ~ 21 2 e      (13) 

Taking ( )UV PlO M   in (12), relations (5), (12) and (13) highlight an intriguing duality 

between the MFM and classical gravitation of Newtonian fields. Loosely speaking, (13) may be 

associated with the gravitational coupling of a particle-antiparticle pair separated by a distance 

scale comparable with the Compton wavelength.  

 


