Some Amazing Infinite Series for the Multiplication Between Sine, Hyperbolic Sine and Exponential Functions

By Edigles Guedes

March 16, 2014

Therefore, as God's chosen people, holy and dearly loved, clothe yourselves with compassion, kindness, humility, gentleness and patience. - Colossians 3:12

ABSTRACT. I prove the expansion in infinite seiries for the multiplication between sine, hyperbolic sine and exponential functions, that do not exist in the mathematical literature.

1. INTRODUCTION

In this paper, I demonstrated some infinite series, which converge rapidly, for the multiplication between sine, hyperbolic sine and exponential functions. This has led the following expansions in power series: $1/2 - \left(- \sum \right) = \infty$

$$\frac{2e^{1/2}}{3\sqrt{3}}\sin\left(\frac{\sqrt{3}}{2}\right) = \sum_{k=0}^{\infty} \frac{(-1)^k}{(3k+1)!} \left(\frac{k+1}{3k+2}\right)$$
$$\frac{98e^{1/14}}{3\sqrt{3}}\sin\left(\frac{\sqrt{3}}{14}\right) = \sum_{k=0}^{\infty} \frac{(-1)^k}{7^{3k}(3k+1)!} \left(\frac{7k+5}{3k+2}\right).$$

2. The Amazing Infinite Series

Theorem 1. For $z \in \mathbb{R}$ and $|z| \leq 1$, then

$$\frac{2}{\sqrt{3}}\sin\left(\frac{z}{2}\right)\sinh\left(\frac{z\sqrt{3}}{2}\right) = \sum_{k=0}^{\infty} \frac{(-1)^k z^{6k+2}}{(6k+2)!} \left[1 + \frac{z^2}{6k+3} - \frac{z^2}{6k+4}\right],$$

where $\sin(z)$ denotes the sine function and $\sinh(z)$ denotes the hyperbolic sine function.

Proof. I know that

$$\sum_{k=0}^{\infty} \frac{\sin\left(\frac{\pi k}{3}\right) z^{2k}}{(2k)!} = \sin\left(\frac{z}{2}\right) \sinh\left(\frac{z\sqrt{3}}{2}\right).$$
(1)

On the other hand, I notice that

$$\sin\left(\frac{\pi k}{3}\right) = \frac{\sqrt{3}}{2} \times \begin{cases} 1, k = 1, 2, 7, 8, 13, 14, 19, 20, \dots \\ 0, k = 0, 3, 6, 9, 12, 15, 18, \dots \\ -1, k = 4, 5, 10, 11, 16, 17, \dots \end{cases}$$
(2)

From Eq. (1) and Eq. (2), it follows that

$$\sum_{k=0}^{\infty} \frac{\sin\left(\frac{\pi k}{3}\right) z^{2k}}{(2k)!} = \frac{\sqrt{3}}{2} \sum_{k=0}^{\infty} (-1)^k \left[\frac{z^{6k+2}}{(6k+2)!} + \frac{z^{6k+4}}{(6k+4)!} \right]$$
(3)
$$= \frac{\sqrt{3}}{2} \sum_{k=0}^{\infty} \frac{(-1)^k z^{6k+2}}{(6k+2)!} \left[1 + \frac{z^2}{(6k+4)(6k+3)} \right]$$
$$= \frac{\sqrt{3}}{2} \sum_{k=0}^{\infty} \frac{(-1)^k z^{6k+2}}{(6k+2)!} \left[1 + \frac{z^2}{6k+3} - \frac{z^2}{6k+4} \right].$$

2 Some Amazing Infinite Series for the Multiplication Between Sine, Hyperbolic Sine and Exponential Functions

I substitute the right hand side of the Eq. (3) in the left hand side of the Eq. (1). This completes the proof. $\hfill \Box$

Theorem 2. For $z \in \mathbb{R}$ and $|z| \leq 1$, then

$$\frac{2e^{z^2/2}}{\sqrt{3}}\sin\left(\frac{z^2\sqrt{3}}{2}\right) = \sum_{k=0}^{\infty} \frac{(-1)^k z^{6k+2}}{(3k+1)!} \left[1 + \frac{z^2}{3k+2}\right],$$

where $\sin(z)$ denotes the sine function and e^z denotes the exponential function.

Proof. I know that

$$\sum_{k=0}^{\infty} \frac{\sin\left(\frac{\pi k}{3}\right) z^{2k}}{(k)!} = e^{z^2/2} \sin\left(\frac{z^2\sqrt{3}}{2}\right).$$
(4)

From Eq. (2) and Eq. (4), I obtain

$$\sum_{k=0}^{\infty} \frac{\sin\left(\frac{\pi k}{3}\right) z^{2k}}{(k)!} = \frac{\sqrt{3}}{2} \sum_{k=0}^{\infty} (-1)^k \left[\frac{z^{6k+2}}{(3k+1)!} + \frac{z^{6k+4}}{(3k+2)!} \right]$$
$$= \frac{\sqrt{3}}{2} \sum_{k=0}^{\infty} \frac{(-1)^k z^{6k+2}}{(3k+1)!} \left[1 + \frac{z^2}{3k+2} \right].$$

Remark 3. Choosing $z = 1, 1/\sqrt{2}, 1/\sqrt{3}, 1/2, 1\sqrt{5}, 1/\sqrt{6}, 1/\sqrt{7}$, in Theorem 2, I find respectively

$$\begin{aligned} \frac{2e^{1/2}}{3\sqrt{3}}\sin\left(\frac{\sqrt{3}}{2}\right) &= \sum_{k=0}^{\infty} \frac{(-1)^k}{(3k+1)!} \left(\frac{k+1}{3k+2}\right), \\ \frac{8e^{1/4}}{\sqrt{3}}\sin\left(\frac{\sqrt{3}}{4}\right) &= \sum_{k=0}^{\infty} \frac{(-1)^k}{2^{3k}(3k+1)!} \left(\frac{6k+5}{3k+2}\right), \\ 6\sqrt{3}e^{1/6}\sin\left(\frac{1}{2\sqrt{3}}\right) &= \sum_{k=0}^{\infty} \frac{(-1)^k}{3^{3k}(3k+1)!} \left(\frac{9k+7}{3k+2}\right), \\ \frac{32e^{1/8}}{3\sqrt{3}}\sin\left(\frac{\sqrt{3}}{8}\right) &= \sum_{k=0}^{\infty} \frac{(-1)^k}{4^{3k}(3k+1)!} \left(\frac{4k+3}{3k+2}\right), \\ \frac{50e^{1/10}}{\sqrt{3}}\sin\left(\frac{\sqrt{3}}{10}\right) &= \sum_{k=0}^{\infty} \frac{(-1)^k}{5^{3k}(3k+1)!} \left(\frac{15k+11}{3k+2}\right), \\ 24\sqrt{3}e^{1/12}\sin\left(\frac{1}{4\sqrt{3}}\right) &= \sum_{k=0}^{\infty} \frac{(-1)^k}{6^{3k}(3k+1)!} \left(\frac{18k+13}{3k+2}\right), \\ \frac{98e^{1/14}}{3\sqrt{3}}\sin\left(\frac{\sqrt{3}}{14}\right) &= \sum_{k=0}^{\infty} \frac{(-1)^k}{7^{3k}(3k+1)!} \left(\frac{7k+5}{3k+2}\right). \end{aligned}$$