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Therefore, as God’s chosen people, holy and dearly loved, clothe yourselves with compassion, kindness, humility,

gentleness and patience. - Colossians 3:12

Abstract. I prove the expansion in infinite seiries for the multiplication between sine,

hyperbolic sine and exponential functions, that do not exist in the mathematical literature.

1. Introduction

In this paper, I demonstrated some infinite series, which converge rapidly, for the multiplication
between sine, hyperbolic sine and exponential functions. This has led the following expansions in
power series:
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2. The Amazing Infinite Series

Theorem 1. For z ∈R and |z |6 1, then
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where sin (z) denotes the sine function and sinh (z) denotes the hyperbolic sine function.
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1, k = 1, 2, 7, 8, 13, 14, 19, 20, ...
0, k = 0, 3, 6, 9, 12, 15, 18, ...
−1, k = 4, 5, 10, 11, 16, 17, ...
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From Eq. (1) and Eq. (2), it follows that
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I substitute the right hand side of the Eq. (3) in the left hand side of the Eq. (1). This completes
the proof. �

Theorem 2. For z ∈R and |z |6 1, then

2ez
2/2

3
√ sin

(

z2 3
√

2

)

=
∑

k=0

∞

(−1)kz6k+2

(3k + 1)!

[

1+
z2

3k + 2

]

,

where sin (z) denotes the sine function and ez denotes the exponential function.

Proof. I know that

∑

k=0

∞ sin
(

πk

3

)

z2k

(k)!
= ez

2/2 sin

(

z2 3
√

2

)

. (4)

From Eq. (2) and Eq. (4), I obtain
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, in Theorem 2, I find respectively
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