FORCE AND GEOMETRY

Alberto Coe

albamv8@hotmail.com

Abstract

. Will describe a geometric link related with the ratio between two physical forces , gravitational force and electromagnetic force .

Keywords. Gravity , electromagnetism, geometry .

Let's write gravitational force between proton and electron :
$F_{G}=\frac{G e_{m} p_{m}}{r^{2}}$
Newtonian constant of gravitation $G=6.6735 \times 10^{-11} \frac{\mathrm{~m}^{3}}{\mathrm{Kg} \mathrm{s}^{2}}$
Electron mass $=9.109382 \times 10^{-31} \mathrm{Kg}$
Proton mass $=1.67262 \times 10^{-27} \mathrm{Kg}$
Now the electromagnetic force between two units of electric charge :
$F_{E M}=\frac{K Q^{2}}{r^{2}}$
Coulomb's constant $=8.9875518 \times 10^{9} \frac{\mathrm{Nm}}{\mathrm{C}^{2}}$
Electric charge $=1.602176 \times 10^{-19} \mathrm{~J}$
Since the distance (r) is the same in the two forces , shall ignore .
The comparison , ie the ratio , between gravitational force and electromagnetic force when proton and electron are used :
$\frac{F_{G}}{F_{E M}}=4.4074 \times 10^{-40}$

Will see what type of geometric value matches the dimensionless value described before . First write the length's geometric unit from wich we start :
it $=\left(\frac{1}{10^{34}}\right)$
(in reference to the expression coined by the physicist J.A.Wheeler : '’its from bits")[1] .

Note that one 'it' is close to the Planck scale $=\left(10^{-35}\right)$
Now let's define a particular volume's unit :
$V_{i t}=\frac{32}{3} \pi\left[N_{A}(i t)\right]^{4}$
Or , in order to an easier visualization (fig 1) :
$V_{i t}=\frac{4}{3} \pi\left[N_{A}(i t)\right]^{3}\left[8 N_{A}(i t)\right]$
N_{A} refers to Avogadro's number $=6.02214 \times 10^{23}$

Resulting $V_{i t}=4.4074 \times 10^{-40}$
Therefore :
$\frac{F_{G}}{F_{E M}}=V_{i t}$

Fig 1.

Bibliography .
[1] . ''The lightness of being’' Franck Wilczek .

